Skip to main content

Functional Nanogels and Hydrogels: A Multipronged Nanotherapy in Drug Delivery and Imaging

  • Chapter
  • First Online:
Multifunctional And Targeted Theranostic Nanomedicines
  • 174 Accesses

Abstract

Materials like nanogel and hydrogel have numerous uses, especially in the biomedical and pharmaceutical sectors. Their abilities to load pharmaceuticals of all kinds, including hydrophobic ones and biomolecules, while maintaining form and mechanical qualities, as well as their capacity to absorb large amounts of aqueous solutions, offer a notion of their diversity and growing demand. Numerous techniques of synthesis have been identified, particularly for chemical/permanent hydrogels, as they have been studied extensively over a long period of time. Like this, stimuli-responsive hydrogels, commonly referred to as intelligent materials, have been investigated in order to improve the regulation of qualities like targeting and drug release. The uses for the so-called twenty-first-century materials have been expanded even further by studying hydrogel on the micro- and nanoscales and manipulating the particle size. Our goal in writing this article was to provide a summary of recent research on the synthesis processes, biological uses, and pharmaceutical applications of macro-, micro-, and nanogels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ali I, Rahis-ud-din SK, Aboul-Enein HY, Rather MA (2011) Social aspects of cancer genesis. Cancer Ther 8:6–14

    Google Scholar 

  • Allison SD (2008) Effect of structural relaxation on the preparation and drug release behavior of poly (lactic-co-glycolic) acid microparticles drug delivery systems. J Pharm Sci 97:2022–2035

    Article  CAS  PubMed  Google Scholar 

  • Alsarra IA, Alarifi MN (2004) Validated liquid chromatographic determination of 5- fluorouracil in human plasma. J Chromatogr B 804:435–439

    Article  CAS  Google Scholar 

  • Anderson JM, Shive MS (1997) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 28:5–24

    Article  CAS  PubMed  Google Scholar 

  • Anitha A, Chennazhi KP, Nair SV, Jayakumar R (2012) 5-Flourouracil loaded N, O- carboxymethyl chitosan nanoparticles as an anticancer nanomedicine for breast cancer. J Biomed Nanotechnol 8:1–14

    Article  Google Scholar 

  • Anitha A, Deepagan VG, Divya VVM, Deepthy M, Nair SV, Jayakumar R (2011) Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. CarbohydrPolym 84:1158–1164

    CAS  Google Scholar 

  • Azegami T, Yuki Y, Hayashi K, Hishikawa A, Sawada S, Ishige K, Akiyoshi K, Kiyono H, Itoh H (2018) Intranasal vaccination against angiotensin II type 1 receptor and pneumococcal surface protein a attenuates hypertension and pneumococcal infection in rodents. J Hypertens 36:387–394

    Article  CAS  PubMed  Google Scholar 

  • Bae KH, Mok H, Park TG (2008) Synthesis, characterization and intracellular delivery of reducible heparin nanogels for apoptotic cell death. Biomaterials 29:3376–3383

    Article  CAS  PubMed  Google Scholar 

  • Bailon P, Berthold W (1998) Polyethylene glycol-conjugated pharmaceutical proteins. Pharm Sci Technol Today 1:352–356

    Article  CAS  Google Scholar 

  • Baldock C, Karger CP, Zaidi H (2020) Gel dosimetry provides the optimal end-to-end quality assurance dosimetry for MR-linacs. Med Phys 47:3259–3262

    Article  PubMed  Google Scholar 

  • Baviskar DT, Chaudhari RD, Kale MT, Jain DK (2011) Recent advances on tumor targeted drug delivery system, an overview. J Biomed Pharma Sci 1:32–42

    Google Scholar 

  • Bazile DV, Ropert C, Huve P, Verrecchia T, Marlard M, Frydman A, Veillard M, Spenlehauer G (1992) Body distribution of fully biodegradable [14C]-poly (lactic acid) nanoparticles coated with albumin after parenteral administration to rats. Biomaterials 13:1093–1102

    Article  CAS  PubMed  Google Scholar 

  • Bergueiro J, Glitscher EA, Calderón M (2022) A hybrid thermoresponsive plasmonic nanogel designed for NIR-mediated chemotherapy. Biomat Adv 137(2):12842

    Google Scholar 

  • Bhaskaran S, Lakshmi PK (2009) Comparative evaluation of niosome formulations prepared by different techniques. Acta Pharm Sci 51:27–32

    CAS  Google Scholar 

  • Blander JM (2016) The comings and goings of MHC class I molecules herald a new Dawn in cross-presentation. Immunol Rev 272:65–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bombardelli E (1991) Phytosome: new cosmetic delivery system. Boll Chim Farm 130:431–438

    CAS  PubMed  Google Scholar 

  • Brubaker CE, Panagiotou V, Demurtas D, Bonner DK, Swartz MA, Hubbell JA (2016) A cationic micelle complex improves CD8+ T cell responses in vaccination against unmodified protein antigen. ACS Biomater Sci Eng 2:231–240

    Article  CAS  PubMed  Google Scholar 

  • Chakravarthi SS, De S, Miller DW, Robbinson DH (2010) Comparison of anti-tumor efficacy of paclitaxel delivered in nano- and microparticles. Int J Pharm 383:37–44

    Article  CAS  PubMed  Google Scholar 

  • Chang RS, Kim J, Lee HY, Han S-E, Na J, Kim K, Kwon IC, Kim YB, Oh Y-K (2010) Reduced dose-limiting toxicity of intraperitoneal mitoxantrone chemotherapy using cardiolipin-based anionic liposomes. Nanomed Nanotechnol 6(6):769–776

    Article  CAS  Google Scholar 

  • Changcheng H, Kexin J, Xu Z, Mei X, Zhiyong L, Huiliang W (2011) Nanoparticles, microgels and bulk hydrogels with very high mechanical strength starting from micelles. Soft Matter 7:2943–2952

    Article  Google Scholar 

  • Changediya V, Khadke M, Devdh ES (2011) Phytosomes, new approach for delivering herbal drug with improved bioavailability. Res J Pharm, Biol Chem Sci 2:57–68

    CAS  Google Scholar 

  • Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, Levy-Nissenbaum E, Radovic-Moreno AF, Langer R, Farokhzad OC (2007) Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28:869–876

    Article  CAS  PubMed  Google Scholar 

  • Clausen BE, Stoitzner P (2015) Functional specialization of skin dendritic cell subsets in regulating T cell responses. Front Immunol 6:1–19

    Article  Google Scholar 

  • David L, Nahrwold DL, Dawes LG (1997) Biliary neoplasms in surgery. In: Greenfield LJ (ed) Scientific principles and practice, 2nd edn. Raven, Philadelphia, pp 1056–1066

    Google Scholar 

  • Deshpandey DD, Shankhe K, Amiji M (2008) Novel multimodal omega-3-fatty acid oil containing nanoemulsion formulation for the treatment of inflammation and endothelial dysfunction in atherosclerosis. J Am Coll Cardiol 2:25–30

    Google Scholar 

  • Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ (2008) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt (IV) prodrug-PLGA–PEG nanoparticles. Proc Natl Acad Sci U S A 105:17356–17361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dreis S, Rothweiler F, Michaelis M, Cinatl JJ, Kreuter J, Langer K (2007) Preparation, characterization and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles. Int J Pharm 341:207–214

    Article  CAS  PubMed  Google Scholar 

  • Embgenbroich M, Burgdorf S (2018) Current concepts of antigen cross-presentation. Front Immunol 9:1643

    Article  PubMed  PubMed Central  Google Scholar 

  • Esmaeili F, Ghahreman IMH, Esmaeili B, Khoshayand MR, Atyabi F, Dinarvand R (2008) PLGA nanoparticles of different surface properties: preparation and evaluation of their body distribution. Int J Pharm 349:249–255

    Article  CAS  PubMed  Google Scholar 

  • Feinberg H, Rowntree TJW, Tan SLW, Drickamer K, Weis WI, Taylor ME (2013) Common polymorphisms in human langerin change specificity for glycan ligands. J Biol Chem 288:36762–36771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fromen CA, Rahhal TB, Robbins GR, Kai MP, Shen TW, Luft JC, DeSimone JM (2016) Nanoparticle surface charge impacts distribution, uptake and lymph node trafficking by pulmonary antigen-presenting cells. Nanomedicine 12:677–687

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Closas R, Garcia-Closas M, Kogevinas M, Malats N, Silverman D, Serra C, Tardon A, Carrato A, Castano- Vinyals G, Dosemeci M, Moore L, Rothman N, Sinha R (2007) Food, nutrient and heterocyclic amine intake and the risk of bladder cancer. Eur J Cancer 43(11):1731–1740

    Article  CAS  PubMed  Google Scholar 

  • Garcion E, Lamprecht A, Heurtault B, Paillard A, Aubert-Pouessel A, Denizot B, Menei P, Benoıt JP (2006) A new generation of anticancer, drug-loaded, colloidal vectors reverses multidrug resistance in glioma and reduces tumor progression in rats. Mol Cancer Ther 5(7):1710–1722

    Article  CAS  PubMed  Google Scholar 

  • Gill KK, Nazzal S, Kaddoumi A (2011) Paclitaxel loaded PEG (5000)-DSPE micelles as pulmonary delivery platform, formulation characterization, tissue distribution, plasma pharmacokinetics, and toxicological evaluation. Eur J Pharm Biopharm 79:276–284

    Article  CAS  PubMed  Google Scholar 

  • Gros M, Amigorena S (2019) Regulation of antigen export to the cytosol during cross-presentation. Front Immunol:41

    Google Scholar 

  • Gupta M, Sharma V (2011) Targeted drug delivery system, a review. Res J Chem Sci 1:135–138

    CAS  Google Scholar 

  • Hana X, Liua J, Liua M, Xiea C, Zhana C, Gua B, Liua Y, Fenga L, Lua W (2009) NC-loaded folate-conjugated polymer micelles as tumor targeted drug delivery system, preparation and evaluation in vitro. Int J Pharm 372:125–131

    Article  Google Scholar 

  • Hao YL, Deng YJ, Chen Y, Wang XM, Jun H, Zhong SXB (2005) In vitro and in vivo studies of different liposomes containing topotecan. Arch Pharm Res 28:626–635

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa U, Sawada SI, Shimizu T, Kishida T, Otsuji E, Mazda O, Akiyoshi K (2009) Raspberry-like assembly of crosslinking nanogels for protein delivery. J Control Release 140:312–317

    Article  CAS  PubMed  Google Scholar 

  • Hogg N (2007) Red meat and colon cancer, Heme proteins and nitrite in the gut. A commentary on diet-induced endogenous formation of nitroso compounds in the GI tract. Free Radic Biol Med 43:1037–1039

    Article  CAS  PubMed  Google Scholar 

  • Houchin ML, Topp EM (2009) Physical properties of PLGA films during polymer degradation. J Appl Polym Sci 114:2848–2854

    Article  CAS  Google Scholar 

  • Hureaux J, Lagarce F, Gagnadoux F, Marie-Christine R, Moal V, Urban T, Benoit JP (2010) Toxicological study and efficacy of blank and paclitaxel-loaded lipid nanocapsules after i.v. administration in mice. Pharm Res 27:421–430

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Agarwal A, Majumder S, Lariya N, Kharya A, Himanshu A, Majumdar S, Agrawal GP (2010) Mannosylated solid lipid nanoparticles as vectors for site-specific delivery of an anti-cancer drug. J Control Release 148:359–367

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal MK, Banerjee R, Pradhan P, Bahadur D (2010) Thermal behavior of magnetically modalized poly (N-isopropylacrylamide)-chitosan based nanohydrogel. Colloids Surf B Biointerfaces 81(1):185–194

    Article  CAS  PubMed  Google Scholar 

  • Jayakumar R, Chennazhi KP, Nair SV, Rejinold N (2011) The art, method, manner, process and system of preparation of alpha chitin nanogels for drug delivery and imaging applications, Indian Patent No. 357/CHE/2011 A

    Google Scholar 

  • Jeong B, Bae YH, Kim SW (2000) In situ gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions and degradation thereof. J Biomed Mater Res 50:171–177

    Article  CAS  PubMed  Google Scholar 

  • Joshi MV Jr, Phansopkar P (2022) Superior replacement of medicinal gel with ayurvedic nanogel as a coupling medium for electrotherapeutic treatment of osteoarthritis: a review article. Cureus 1(14):e28658

    Google Scholar 

  • Kabanov AV, Vinogradov S (2009) Nanogels as pharmaceutical carriers, finite networks of infinite capabilities. Angew Chem Int Ed 48:5418–5429

    Article  CAS  Google Scholar 

  • Kayal S, Ramanujan RV (2010) Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater Sci Eng C 30:484–490

    Article  CAS  Google Scholar 

  • Kievit FM, Wang FY, Fang C, Mok H, Wang K, Silber JR, Ellenbogen RG, Zhang M (2011) Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J Control Release 152:76–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Bae SM, Na MH, Shin H, Yang YJ, Min KH, Choi KY, Kim K, Park RW, Kwon IC, Lee BH, Hoffman AS, Kim IS (2012) Facilitated intracellular delivery of peptide-guided nanoparticles in tumor tissues. J Control Release 157(3):493–499

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Park KM, Ko JY, Kwon IC, Cho HG, Kang D, Yu IT, Kim K, Na K (2008) Minimalism in fabrication of self-organized nanogels holding both anti-cancer drug and targeting moiety. Colloids Surf B Biointerfaces 63:55–63

    Article  CAS  PubMed  Google Scholar 

  • Kohli E, Han HY, Zeman AD, Vinogradov SV (2007) Formulation of biodegradable nanogel carriers with 5′-triphosphates of nucleoside analogs that display a reduced cytotoxicity and enhanced drug activity. J Control Release 121:19–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong IG, Sato A, Yuki Y, Nochi T, Takahashi H, Sawada S, Mejima M et al (2013) Nanogel-based PspA intranasal vaccine prevents invasive disease and nasal colonization by Streptococcus pneumoniae. Infect Immun 81:1625–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Anselmo AC, Banerjee A, Zakrewsky M, Mitragotri S (2015) Shape and size-dependent immune response to antigen-carrying nanoparticles. J Control Release 220:141–148

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Yoo HS (2008) Pluronic decorated nanogels with temperature responsive volume transitions, cytotoxicities and transfection efficiencies. Eur J Pharm Biopharm 70:506–513

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Yun MH, Jeong SW, Hoon C, Kim JY, Seo MH, Pai CM, Kim SO (2011) Development of docetaxel-loaded intravenous formulation, nanogel-PM using polymer-based delivery system. J Control Release 155(2):262–271

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Park SY, Kim C, Park TG (2009) Thermally triggered intracellular explosion of volume transition nanogels for necrotic cell death. J Control Release 135:89–95

    Article  CAS  PubMed  Google Scholar 

  • Li N, Wang J, Yang X, Li L (2011) Novel nanogels as drug delivery systems for poorly soluble anticancer drugs. Colloids Surf B Biointerfaces 83:237–244

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Sun J, Chen X, Wang S, Scot H, Zhan X, Zhan Q (2012) Pharmacokinetics, tissue distribution and anti-tumour efficacy of paclitaxel delivered by polyvinylpyrrolidone solid dispersion. J Pharm Pharmacol:775–782

    Google Scholar 

  • Lo JT, Chen BH, Lee TM, Han J, Li JL (2009) Self emulsifying o/w formulations of paclitaxel prepared from mixed nonionic surfactants. J Pharm Sci 99:2320–2332

    Article  Google Scholar 

  • Mohamed F, van der Walle CF (2008) Engineering biodegradable polyester particles with specific drug targeting and drug release properties. J Pharm Sci 97:71–87

    Article  CAS  PubMed  Google Scholar 

  • Muraoka D, Seo N, Hayashi T, Tahara Y, Fujii K, Tawara I, Miyahara Y, Okamori K, Yagita H, Imoto S, Yamaguchi R, Komura M, Miyano S, Goto M, Sawada S, Asai A, Ikeda H, Akiyoshi K, Harada N, Shiku H (2019) Antigen delivery targeted to tumor-associated macrophages overcomes tumor immune resistance. J Clin Invest 129:1278–1294

    Article  PubMed  PubMed Central  Google Scholar 

  • Naik S, Patel D, Chuttani K, Mishra AK, Misra A (2012) In vitro mechanistic study of cell death and in vivo performance evaluation of RGD grafted PEGgylated docetaxel liposomes in breast cancer. Nanomed Nanotechnol 8:951–962

    Article  CAS  Google Scholar 

  • Nambara K, Niikura K, Mitomo H, Ninomiya T, Takeuchi C, Wei J, Matsuo Y, Ijiro K (2016) Reverse size dependences of the cellular uptake of triangular and spherical gold nanoparticles. Langmuir 32:12559–12567

    Article  CAS  PubMed  Google Scholar 

  • Oh JK, Bencherif SA, Matyjaszewski K (2009) Atom transfer radical polymerization in inverse miniemulsion; a versatile route towards preparation and functionalization of microgel/nanogels for targeted drug delivery applications. Polymers 50:4407–4423

    Article  CAS  Google Scholar 

  • Oh NM, Oh KT, Baik HJ, Lee BR, Lee AH (2010) A self organized 3-diethylaminopropyl bearing glycol chitosan nanogel for tumor acidic pH targeting, in-vitro evaluation. Colloids Surf B Biointerfaces 78:120–126

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Chi SC, Lee WS, Lee WM, Koo YB, Yong CS, Choi HG, Woo JS (2009) Toxicity studies of Cremophor-free paclitaxel solid dispersion formulated by a supercritical anti solvent process. Arch Pharm Res 32:139–148

    Article  CAS  PubMed  Google Scholar 

  • Prakash R, Thiagarajan P (2011) Nanoemulsions for drug delivery through different routes. Res Biotech 2:9–13

    Google Scholar 

  • Prasanth VV, Chakraborthy A, Mathew ST, Mathapan R (2011) Microspheres - an overview. Int J Res Pharm Biomed Sci 2:232–238

    Google Scholar 

  • Pushpavanam K, Inamdar S, Dutta S, Bista T, Sokolowski T, Sapareto S, Rege K (2020) Plasmonic gel nanocomposites for detection of high energy electrons. J Mater Chem B 8:4930–4939

    Article  CAS  PubMed  Google Scholar 

  • Rabaeh KA, Eyadeh MM, Hailat TF, Madas BG, Aldweri FM, Almomani AM, Awad SI (2021) Improvement on the performance of chemically cross-linked fricke methylthymol-blue radiochromic gel dosimeter by addition of dimethyl sulfoxide. Radiat Meas 141:106540

    Article  CAS  Google Scholar 

  • Rejinold NS, Muthunarayanan M, Chennazhi KP, Jayakumar R (2011b) Curcumin loaded fibrinogen nanoparticles for cancer drug delivery. J Biomed Nanotechnol 7:521–534

    Article  CAS  PubMed  Google Scholar 

  • Rejinold NS, Sreerekha PR, Chennazhi KP, Nair SV, Jayakumar R (2011a) Biocompatible, biodegradable and thermo-sensitive chitosan-g-poly (N- isopropylacrylamide) nanocarrier for curcumin drug delivery. Int J Biol Macromol 49:161–172

    Article  PubMed  Google Scholar 

  • Sahu MK, Ahmad D (2010) Development and optimization of fixed dose antihypertensive combination drugs using double layer sustained release microsphere technology. Int J Pharm Biomed Res 1:114–123

    Google Scholar 

  • Salaun F, Vroman I (2009) Curcumin loaded nanocapsules, formulation and influence of the nanoencapsulation processes variables on the physico-chemical characteristics of the particles. Int J Chem React Eng 7:A55–A61

    Google Scholar 

  • Shah P, Bhalodia D, Shelat P (2010) Nanoemulsion: a pharmaceutical review. Syst Rev Pharm 3:24–32

    Article  Google Scholar 

  • Sheihet L, Garbuzenko OB, Bushman J, Gounder MK, Minko T, Kohn J (2012) Paclitaxel in tyrosine-derived nanospheres as a potential anti-cancer agent, in vivo evaluation of toxicity and efficacy in comparison with paclitaxel in Cremophor. Eur J Pharm Sci 45:320–329

    Article  CAS  PubMed  Google Scholar 

  • Shigemasa Y, Saito K, Sashiwa H, Saimoto H (1994) Enzymatic degradation of chitins and partially deacetylated chitins. Int J Biol Macromol 16:43–49

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Kishida T, Hasegawa U, Ueda Y, Imanishi J, Yamagishi H, Akiyoshi K, Otsuji E, Mazda O (2008) Nanogel DDS enables sustained release of IL-12 for tumor immunotherapy. Biochem Biophys Res Commun 367:330–335

    Article  CAS  PubMed  Google Scholar 

  • Siegel SJ, Kahn JB, Metzger K, Winey KI, Werner K, Dan N (2006) Effect of drug type on the degradation rate of PLGA matrices. Eur J Pharm Biopharm 64:287–293

    Article  CAS  PubMed  Google Scholar 

  • Sorger D, Stadtmann H, Sprengel W (2020) Fading study and readout optimization for routinely use of LiF:Mg,Ti thermoluminescent detectors for personal dosimetry. Radiat Meas 135:106342

    Article  CAS  Google Scholar 

  • Sorina AG, Adi G, Corina R (2011) Systems based on dendrimers and antitumoral drug synthesized by non-covalent method: the influence of dendrimers generation. MaterialePlastice 48:17–22

    Google Scholar 

  • Su M, Zhao M, Luo Y, Lin X, Xu L, He H, Xu H, Tang X (2011) Evaluation of the efficacy, toxicity and safety of vinorelbine incorporated in a lipid emulsion. Int J Pharm 411:188–196

    Article  CAS  PubMed  Google Scholar 

  • Sun B, Ranganathan B, Feng SS (2008) Multifunctional poly (D,L- lactide-co-glycolide)/montmorillonite PLGA/MMT nanoparticles decorated by trastuzumab for targeted chemotherapy of breast cancer. Biomaterials 29:475–486

    Article  PubMed  Google Scholar 

  • Tamura H, Nagahama H, Tokura S (2006) Preparation of hydrogel under mild conditions. Cellulose 13:357

    Article  CAS  Google Scholar 

  • Tan JPK, Zeng AQF, Chang CC, Tam KC (2008) Release kinetics of procaine hydrochloride from pH responsive nanogel, theory and experiments. Int J Pharm 357:305–313

    Article  CAS  PubMed  Google Scholar 

  • Teskac K, Kristi J (2010) The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Int J Pharm 390(1):61–69

    Article  CAS  PubMed  Google Scholar 

  • Tobio M, Gref R, Sanchez A, Langer R, Alonso MJ (1998) Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharm Res 15:270–275

    Article  CAS  PubMed  Google Scholar 

  • Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Polymeric systems for controlled drug release. Chem Rev 99:3181–3198

    Article  CAS  PubMed  Google Scholar 

  • Urbinati G, Marsaud V, Plassat V, Fattal E, Lesieur S, Michel J (2010) Renoir liposomes loaded with histone deacetylase inhibitors for breast cancer therapy. Int J Pharm 397:184–193

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov SV, Zeman AD, Batrakova EV, Kabanov AV (2005) Polyplex nanogel formulation for drug delivery of cytotoxic nucleoside analogs. J Control Release 107:143–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Wang YJ, Fan M, Luo F, Qian Z (2011) Characterization, pharmacokinetic and disposition of novel nanoscale preparations of paclitaxel. Int J Pharm 414:251–259

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Sun B, Feng M, Feng H, Gong W, Liu Q, Ge S (2015) Role of scavenger receptors in dendritic cell function. Hum Immunol 76:442–446

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Xu H, Yang X, Yang Y (2008) Drug release behavior from in situ gelatinized thermosensitive nanogel aqueous dispersions. Int J Pharm 361:189–193

    Article  CAS  PubMed  Google Scholar 

  • Wu XS, Wang N (2001) Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: biodegradation. J Biomater Sci Polym Ed 12:21–34

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Yao S, Liu Y, Sheng K, Hong J, Gong P, Dong L (2007) Size dependent properties of M-PEIs nanogels for gene delivery in cancer cells. Int J Pharm 338:291–296

    Article  CAS  PubMed  Google Scholar 

  • Yassin AEB, Anwer MK, Mowafy HA, El-Bagory IM, Bayomi MA, Alsarra IA (2010) Optimization of 5-fluorouracil solid-lipid nanoparticles: a preliminary study to treat colon cancer. J Med Sci 7:398–408

    CAS  Google Scholar 

  • Yi BG, Park OK, Jeong MS, Kwon SH, Jung JI, Lee S, Ryoo S, Kim SE, Kim JW, Moon WJ, Park K (2017) In vitro photodynamic effects of scavenger receptor targeted-photoactivatable nanoagents on activated macrophages. Int J Biol Macromol 97:181–189

    Article  CAS  PubMed  Google Scholar 

  • Yoo HS, Park TG (2004) Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release 96:273–283

    Article  CAS  PubMed  Google Scholar 

  • Yoshizawa Y, Kono Y, Ogawara KI, Kimura T, Higaki K (2011) PEG liposomalization of paclitaxel improved its in vivo disposition and anti-tumor efficacy. Int J Pharm 412:132–141

    Article  CAS  PubMed  Google Scholar 

  • Yuba E, Yamaguchi A, Yoshizaki Y, Harada A, Kono K (2017) Bioactive polysaccharide-based PH-sensitive polymers for cytoplasmic delivery of antigen and activation of antigen-specific immunity. Biomaterials 120:32–45

    Article  CAS  PubMed  Google Scholar 

  • Zhang JQ, Zhang ZR, Yang H, Tan QY, Qin SR, Qiu XL (2005) Lyophilized paclitaxel magnetoliposomes as a potential drug delivery system for breast carcinoma via parenteral administration, in vitro and in vivo studies. Pharm Res 22:573–583

    Article  CAS  PubMed  Google Scholar 

  • Zhenghong X, Lingli C, Wangwen G, Gao U, Liping L, Zhang Z, Li Y (2009) The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials 30:226–232

    Article  Google Scholar 

  • Zweers ML, Engbers GH, Grijpma DW, Feijen J (2004) In vitro degradation of nanoparticles prepared from polymers based on DL-lactide, glycolide and poly (ethylene oxide). J Control Release 100:347–351

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahu, P., Kashaw, S.K., Kashaw, V., Iyer, A.K. (2023). Functional Nanogels and Hydrogels: A Multipronged Nanotherapy in Drug Delivery and Imaging. In: Jain, K., Jain, N.K. (eds) Multifunctional And Targeted Theranostic Nanomedicines. Springer, Singapore. https://doi.org/10.1007/978-981-99-0538-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0538-6_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0537-9

  • Online ISBN: 978-981-99-0538-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics