Skip to main content

The Cellular and Molecular Mechanisms of Ovarian Aging

  • Chapter
  • First Online:
Ovarian Aging

Abstract

The initial primordial follicle pool size and the activation and depletion rates determine fertility potential. Generally, primordial follicles have three states: resting, growth, and atresia/degeneration. Over-activation and abnormal atresia of primordial follicles are leading causes of ovarian aging [1]. Therefore, this section focuses on the molecular mechanisms of primordial follicle activation (PFA) and follicular atresia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ford EA, et al. Advances in human primordial follicle activation and premature ovarian insufficiency. Reproduction. 2020;159(1):R15–r29.

    Article  CAS  PubMed  Google Scholar 

  2. Hsueh AJ, et al. Intraovarian control of early folliculogenesis. Endocr Rev. 2015;36(1):1–24.

    Article  CAS  PubMed  Google Scholar 

  3. Durlinger AL, et al. Control of primordial follicle recruitment by anti-mullerian hormone in the mouse ovary. Endocrinology. 1999;140(12):5789–96.

    Article  CAS  PubMed  Google Scholar 

  4. Durlinger AL, et al. Anti-mullerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology. 2002;143(3):1076–84.

    Article  CAS  PubMed  Google Scholar 

  5. Carlsson IB, et al. Anti-Müllerian hormone inhibits initiation of growth of human primordial ovarian follicles in vitro. Hum Reprod. 2006;21(9):2223–7.

    Article  CAS  PubMed  Google Scholar 

  6. Gigli I, et al. Evidence for a role for anti-mullerian hormone in the suppression of follicle activation in mouse ovaries and bovine ovarian cortex grafted beneath the chick chorioallantoic membrane. Mol Reprod Dev. 2005;71(4):480–8.

    Article  CAS  PubMed  Google Scholar 

  7. Reddy P, et al. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science. 2008;319(5863):611–3.

    Article  CAS  PubMed  Google Scholar 

  8. Jagarlamudi K, et al. Oocyte-specific deletion of Pten in mice reveals a stage-specific function of PTEN/PI3K signaling in oocytes in controlling follicular activation. PLoS One. 2009;4(7):e6186.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fan HY, et al. Targeted disruption of Pten in ovarian granulosa cells enhances ovulation and extends the life span of luteal cells. Mol Endocrinol. 2008;22(9):2128–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Castrillon DH, et al. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science. 2003;301(5630):215–8.

    Article  CAS  PubMed  Google Scholar 

  11. Liu L, et al. Infertility caused by retardation of follicular development in mice with oocyte-specific expression of Foxo3a. Development. 2007;134(1):199–209.

    Article  CAS  PubMed  Google Scholar 

  12. Pelosi E, et al. Constitutively active Foxo3 in oocytes preserves ovarian reserve in mice. Nat Commun. 2013;4:1843.

    Article  PubMed  Google Scholar 

  13. Uhlenhaut NH, et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell. 2009;139(6):1130–42.

    Article  CAS  PubMed  Google Scholar 

  14. Schmidt D, et al. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development. 2004;131(4):933–42.

    Article  CAS  PubMed  Google Scholar 

  15. Park M, et al. Positive cross talk between FOXL2 and antimüllerian hormone regulates ovarian reserve. Fertil Steril. 2014;102(3):847–855.e1.

    Article  CAS  PubMed  Google Scholar 

  16. Sacchi S, et al. The anti-Müllerian hormone (AMH) induces forkhead box L2 (FOXL2) expression in primary culture of human granulosa cells in vitro. J Assist Reprod Genet. 2017;34(9):1131–6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Adhikari D, et al. Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Hum Mol Genet. 2010;19(3):397–410.

    Article  CAS  PubMed  Google Scholar 

  18. Adhikari D, et al. Disruption of Tsc2 in oocytes leads to overactivation of the entire pool of primordial follicles. Mol Hum Reprod. 2009;15(12):765–70.

    Article  CAS  PubMed  Google Scholar 

  19. Xiang C, et al. Hippo signaling pathway reveals a spatio-temporal correlation with the size of primordial follicle pool in mice. Cell Physiol Biochem. 2015;35(3):957–68.

    Article  CAS  PubMed  Google Scholar 

  20. Kawamura K, et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci U S A. 2013;110(43):17474–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Suzuki N, et al. Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Hum Reprod. 2015;30(3):608–15.

    Article  PubMed  Google Scholar 

  22. Driancourt MA, et al. Roles of KIT and KIT LIGAND in ovarian function. Rev Reprod. 2000;5(3):143–52.

    Article  CAS  PubMed  Google Scholar 

  23. John GB, et al. Kit signaling via PI3K promotes ovarian follicle maturation but is dispensable for primordial follicle activation. Dev Biol. 2009;331(2):292–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu L, et al. Phosphorylation and inactivation of glycogen synthase kinase-3 by soluble kit ligand in mouse oocytes during early follicular development. J Mol Endocrinol. 2007;38(1–2):137–46.

    Article  CAS  PubMed  Google Scholar 

  25. Kim SY, et al. Cell autonomous phosphoinositide 3-kinase activation in oocytes disrupts normal ovarian function through promoting survival and overgrowth of ovarian follicles. Endocrinology. 2015;156(4):1464–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li J, et al. Activation of dormant ovarian follicles to generate mature eggs. Proc Natl Acad Sci U S A. 2010;107(22):10280–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gorre N, et al. mTORC1 Signaling in oocytes is dispensable for the survival of primordial follicles and for female fertility. PLoS One. 2014;9(10):e110491.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fortune JE, Yang MY, Muruvi W. In vitro and in vivo regulation of follicular formation and activation in cattle. Reprod Fertil Dev. 2011;23(1):15–22.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yu N, Roy SK. Development of primordial and prenatal follicles from undifferentiated somatic cells and oocytes in the hamster prenatal ovary in vitro: effect of insulin. Biol Reprod. 1999;61(6):1558–67.

    Article  CAS  PubMed  Google Scholar 

  30. Jin X, et al. Anti-apoptotic action of stem cell factor on oocytes in primordial follicles and its signal transduction. Mol Reprod Dev. 2005;70(1):82–90.

    Article  CAS  PubMed  Google Scholar 

  31. Aaltonen J, et al. Human growth differentiation factor 9 (GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis. J Clin Endocrinol Metab. 1999;84(8):2744–50.

    CAS  PubMed  Google Scholar 

  32. Robles R, et al. The aryl hydrocarbon receptor, a basic helix-loop-helix transcription factor of the PAS gene family, is required for normal ovarian germ cell dynamics in the mouse. Endocrinology. 2000;141(1):450–3.

    Article  CAS  PubMed  Google Scholar 

  33. Benedict JC, et al. Physiological role of the aryl hydrocarbon receptor in mouse ovary development. Toxicol Sci. 2000;56(2):382–8.

    Article  CAS  PubMed  Google Scholar 

  34. McGee E, et al. Preantral ovarian follicles in serum-free culture: suppression of apoptosis after activation of the cyclic guanosine 3′,5′-monophosphate pathway and stimulation of growth and differentiation by follicle-stimulating hormone. Endocrinology. 1997;138(6):2417–24.

    Article  CAS  PubMed  Google Scholar 

  35. Vendola KA, et al. Androgens stimulate early stages of follicular growth in the primate ovary. J Clin Invest. 1998;101(12):2622–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chun SY, et al. Gonadotropin suppression of apoptosis in cultured preovulatory follicles: mediatory role of endogenous insulin-like growth factor I. Endocrinology. 1994;135(5):1845–53.

    Article  CAS  PubMed  Google Scholar 

  37. Chun SY, et al. Interleukin-1 beta suppresses apoptosis in rat ovarian follicles by increasing nitric oxide production. Endocrinology. 1995;136(7):3120–7.

    Article  CAS  PubMed  Google Scholar 

  38. Watanabe R, Sasaki S, Kimura N. Activation of autophagy in early neonatal mice increases primordial follicle number and improves lifelong fertility†. Biol Reprod. 2020;102(2):399–411.

    Article  PubMed  Google Scholar 

  39. Choi JY, et al. The role of autophagy in follicular development and atresia in rat granulosa cells. Fertil Steril. 2010;93(8):2532–7.

    Article  PubMed  Google Scholar 

  40. Watanabe R, Kimura N. Non-suckling starvation of neonatal mice promotes primordial follicle formation with activation of ovarian autophagy. J Reprod Dev. 2018;64(1):89–94.

    Article  CAS  PubMed  Google Scholar 

  41. Escobar ML, et al. Combined apoptosis and autophagy, the process that eliminates the oocytes of atretic follicles in immature rats. Apoptosis. 2008;13(10):1253.

    Article  CAS  PubMed  Google Scholar 

  42. Gao H, et al. Inhibition of NF-κB promotes autophagy via JNK signaling pathway in porcine granulosa cells. Biochem Biophys Res Commun. 2016;473(1):311–6.

    Article  CAS  PubMed  Google Scholar 

  43. Heyer WD, Ehmsen KT, Liu J. Regulation of homologous recombination in eukaryotes. Annu Rev Genet. 2010;44:113–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ashwood-Smith MJ, Edwards RG. DNA repair by oocytes. Mol Hum Reprod. 1996;2(1):46–51.

    Article  CAS  PubMed  Google Scholar 

  45. Holt JE, Lane SI, Jones KT. The control of meiotic maturation in mammalian oocytes. Curr Top Dev Biol. 2013;102:207–26.

    Article  CAS  PubMed  Google Scholar 

  46. Maltaris T, et al. The effect of cancer treatment on female fertility and strategies for preserving fertility. Eur J Obstet Gynecol Reprod Biol. 2007;130(2):148–55.

    Article  PubMed  Google Scholar 

  47. Carroll J, Marangos P. The DNA damage response in mammalian oocytes. Front Genet. 2013;4:117.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Collins JK, Jones KT. DNA damage responses in mammalian oocytes. Reproduction. 2016;152(1):R15–22.

    Article  CAS  PubMed  Google Scholar 

  49. Banu SK, et al. Identifying a novel role for X-prolyl aminopeptidase (Xpnpep) 2 in CrVI-induced adverse effects on germ cell nest breakdown and follicle development in rats. Biol Reprod. 2015;92(3):67.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jia Y, et al. Quercetin attenuates cadmium-induced oxidative damage and apoptosis in granulosa cells from chicken ovarian follicles. Reprod Toxicol. 2011;31(4):477–85.

    Article  CAS  PubMed  Google Scholar 

  51. Peretz J, et al. Bisphenol a and reproductive health: update of experimental and human evidence, 2007-2013. Environ Health Perspect. 2014;122(8):775–86.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Martinez-Marchal A, et al. The DNA damage response is required for oocyte cyst breakdown and follicle formation in mice. PLoS Genet. 2020;16(11):e1009067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Turan V, Oktay K. BRCA-related ATM-mediated DNA double-strand break repair and ovarian aging. Hum Reprod Update. 2020;26(1):43–57.

    Article  CAS  PubMed  Google Scholar 

  54. Xu J, et al. Bisphenol a induces apoptosis and G2-to-M arrest of ovarian granulosa cells. Biochem Biophys Res Commun. 2002;292(2):456–62.

    Article  CAS  PubMed  Google Scholar 

  55. Lee SG, et al. Bisphenol a exposure during adulthood causes augmentation of follicular atresia and luteal regression by decreasing 17beta-estradiol synthesis via downregulation of aromatase in rat ovary. Environ Health Perspect. 2013;121(6):663–9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Liu Y, et al. Methoxychlor exposure induces oxidative stress and affects mouse oocyte meiotic maturation. Mol Reprod Dev. 2016;83(9):768–79.

    Article  CAS  PubMed  Google Scholar 

  57. Liu JC, et al. Di (2-ethylhexyl) phthalate exposure impairs meiotic progression and DNA damage repair in fetal mouse oocytes in vitro. Cell Death Dis. 2017;8(8):e2966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu X, Craig ZR. Environmentally relevant exposure to dibutyl phthalate disrupts DNA damage repair gene expression in the mouse ovary. Biol Reprod. 2019;

    Google Scholar 

  59. Bedoschi GM, Navarro PA, Oktay KH. Novel insights into the pathophysiology of chemotherapy-induced damage to the ovary. Panminerva Med. 2019;61(1):68–75.

    Article  PubMed  Google Scholar 

  60. Oktem O, Oktay K. Quantitative assessment of the impact of chemotherapy on ovarian follicle reserve and stromal function. Cancer. 2007;110(10):2222–9.

    Article  CAS  PubMed  Google Scholar 

  61. Oktem O, Oktay K. A novel ovarian xenografting model to characterize the impact of chemotherapy agents on human primordial follicle reserve. Cancer Res. 2007;67(21):10159–62.

    Article  CAS  PubMed  Google Scholar 

  62. Riley T, et al. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol. 2008;9(5):402–12.

    Article  CAS  PubMed  Google Scholar 

  63. Winship AL, et al. The importance of DNA repair for maintaining oocyte quality in response to anti-cancer treatments, environmental toxins and maternal ageing. Hum Reprod Update. 2018;

    Google Scholar 

  64. Morita Y, et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med. 2000;6(10):1109–14.

    Article  CAS  PubMed  Google Scholar 

  65. Suh EK, et al. p63 protects the female germ line during meiotic arrest. Nature. 2006;444(7119):624–8.

    Article  CAS  PubMed  Google Scholar 

  66. Kim DA, Suh EK. Defying DNA double-strand break-induced death during prophase I meiosis by temporal TAp63alpha phosphorylation regulation in developing mouse oocytes. Mol Cell Biol. 2014;34(8):1460–73.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Budani MC, Tiboni GM. Ovotoxicity of cigarette smoke: a systematic review of the literature. Reprod Toxicol. 2017;72:164–81.

    Article  PubMed  Google Scholar 

  68. Cheng SF, et al. Nicotine exposure impairs germ cell development in human fetal ovaries cultured in vitro. Aging (Albany NY). 2018;10(7):1556–74.

    Article  CAS  PubMed  Google Scholar 

  69. Ni Y, et al. Prenatal ethanol exposure induces susceptibility to premature ovarian insufficiency. J Endocrinol. 2019;

    Google Scholar 

  70. Liu Y, et al. Ethanol promotes apoptosis in rat ovarian granulosa cells via the Bcl-2 family dependent intrinsic apoptotic pathway. Cell Mol Biol (Noisy-le-Grand). 2018;64(1):118–25.

    Article  PubMed  Google Scholar 

  71. Xu W, et al. Effects of alcohol on mitochondrial functions of cumulus cells in mice. Cell Reprogram. 2017;19(2):123–31.

    Article  CAS  PubMed  Google Scholar 

  72. Faut M, et al. Metabolism of ethanol to acetaldehyde and increased susceptibility to oxidative stress could play a role in the ovarian tissue cell injury promoted by alcohol drinking. Toxicol Ind Health. 2009;25(8):525–38.

    Article  CAS  PubMed  Google Scholar 

  73. Srivastava VK, et al. Effects of alcohol on intraovarian nitric oxide synthase and steroidogenic acute regulatory protein in the prepubertal female rhesus monkey. J Stud Alcohol Drugs. 2007;68(2):182–91.

    Article  PubMed  Google Scholar 

  74. Titus S, et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci Transl Med. 2013;5(172):172ra21.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhu K, et al. Identification of a human subcortical maternal complex. Mol Hum Reprod. 2015;21(4):320–9.

    Article  CAS  PubMed  Google Scholar 

  76. He DJ, et al. Maternal gene Ooep may participate in homologous recombination-mediated DNA double-strand break repair in mouse oocytes. Zool Res. 2018;39(6):387–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Govindaraj V, et al. BRCA-1 gene expression and comparative proteomic profile of primordial follicles from young and adult Buffalo (Bubalus bubalis) ovaries. Anim Biotechnol. 2017;28(2):94–103.

    Article  CAS  PubMed  Google Scholar 

  78. Kerr JB, et al. DNA damage-induced primordial follicle oocyte apoptosis and loss of fertility require TAp63-mediated induction of puma and Noxa. Mol Cell. 2012;48(3):343–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Marangos P, et al. DNA damage-induced metaphase I arrest is mediated by the spindle assembly checkpoint and maternal age. Nat Commun. 2015;6:8706.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang D, et al. Increased DNA damage and repair deficiency in granulosa cells are associated with ovarian aging in rhesus monkey. J Assist Reprod Genet. 2015;32(7):1069–78.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wang X, et al. Long noncoding RNA HCP5 participates in premature ovarian insufficiency by transcriptionally regulating MSH5 and DNA damage repair via YB1. Nucleic Acids Res. 2020;48(8):4480–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang W, et al. PDGFRalpha/beta-PI3K-Akt pathway response to the interplay of mitochondrial dysfunction and DNA damage in Aroclor 1254-exposed porcine granulosa cells. Environ Pollut. 2020;263(Pt A):114534.

    Article  CAS  PubMed  Google Scholar 

  83. Wang W, et al. Cytotoxicity and DNA damage caused from diazinon exposure by inhibiting the PI3K-AKT pathway in porcine ovarian granulosa cells. J Agric Food Chem. 2019;67(1):19–31.

    Article  CAS  PubMed  Google Scholar 

  84. Wang W, et al. Toxic effects and possible mechanisms following malathion exposure in porcine granulosa cells. Environ Toxicol Pharmacol. 2018;64:172–80.

    Article  CAS  PubMed  Google Scholar 

  85. Zhang TY, et al. Effects of ochratoxin a exposure on DNA damage in porcine granulosa cells in vitro. Toxicol Lett. 2020;330:167–75.

    Article  CAS  PubMed  Google Scholar 

  86. Soleimani R, et al. Mechanisms of chemotherapy-induced human ovarian aging: double strand DNA breaks and microvascular compromise. Aging (Albany NY). 2011;3(8):782–93.

    Article  PubMed  Google Scholar 

  87. Zhai QY, et al. Exposure to zinc oxide nanoparticles during pregnancy induces oocyte DNA damage and affects ovarian reserve of mouse offspring. Aging (Albany NY). 2018;10(8):2170–89.

    Article  CAS  PubMed  Google Scholar 

  88. Stanley JA, et al. A fetal whole ovarian culture model for the evaluation of CrVI-induced developmental toxicity during germ cell nest breakdown. Toxicol Appl Pharmacol. 2015;289(1):58–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu J, et al. Changes in DNA methylation of oocytes and granulosa cells assessed by HELMET during Folliculogenesis in mouse ovary. Acta Histochem Cytochem. 2018;51(2):93–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Goto H, et al. Effect of bovine age on the proliferative activity, global DNA methylation, relative telomere length and telomerase activity of granulosa cells. Zygote. 2013;21(3):256–64.

    Article  CAS  PubMed  Google Scholar 

  91. Yan J, et al. Effect of vitrification at the germinal vesicle stage on the global methylation status in mouse oocytes subsequently matured in vitro. Chin Med J. 2014;127(23):4019–24.

    PubMed  Google Scholar 

  92. Huntriss J, et al. Expression of mRNAs for DNA methyltransferases and methyl-CpG-binding proteins in the human female germ line, preimplantation embryos, and embryonic stem cells. Mol Reprod Dev. 2004;67(3):323–36.

    Article  CAS  PubMed  Google Scholar 

  93. Kawai T, Richards JS, Shimada M. The cell type-specific expression of Lhcgr in mouse ovarian cells: evidence for a DNA-demethylation-dependent mechanism. Endocrinology. 2018;159(5):2062–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–5.

    Article  CAS  PubMed  Google Scholar 

  95. Yue MX, et al. Abnormal DNA methylation in oocytes could be associated with a decrease in reproductive potential in old mice. J Assist Reprod Genet. 2012;29(7):643–50.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Yu B, et al. DNA methylome and transcriptome sequencing in human ovarian granulosa cells links age-related changes in gene expression to gene body methylation and 3′-end GC density. Oncotarget. 2015;6(6):3627–43.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Eberharter A, Becker PB. Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep. 2002;3(3):224–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bannister AJ, Kouzarides T. The CBP co-activator is a histone acetyltransferase. Nature. 1996;384(6610):641–3.

    Article  CAS  PubMed  Google Scholar 

  99. Ogryzko VV, et al. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell. 1996;87(5):953–9.

    Article  CAS  PubMed  Google Scholar 

  100. Legube G, Trouche D. Regulating histone acetyltransferases and deacetylases. EMBO Rep. 2003;4(10):944–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sengupta N, Seto E. Regulation of histone deacetylase activities. J Cell Biochem. 2004;93(1):57–67.

    Article  CAS  PubMed  Google Scholar 

  102. Fischle W, Wang Y, Allis CD. Histone and chromatin cross-talk. Curr Opin Cell Biol. 2003;15(2):172–83.

    Article  CAS  PubMed  Google Scholar 

  103. Nowak SJ, Corces VG. Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet. 2004;20(4):214–20.

    Article  CAS  PubMed  Google Scholar 

  104. Cheung P, et al. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell. 2000;5(6):905–15.

    Article  CAS  PubMed  Google Scholar 

  105. Lo WS, et al. Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol Cell. 2000;5(6):917–26.

    Article  CAS  PubMed  Google Scholar 

  106. Clayton AL, Mahadevan LC. MAP kinase-mediated phosphoacetylation of histone H3 and inducible gene regulation. FEBS Lett. 2003;546(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  107. Graff J, Tsai LH. Histone acetylation: molecular mnemonics on the chromatin. Nat Rev Neurosci. 2013;14(2):97–111.

    Article  PubMed  Google Scholar 

  108. Peleg S, et al. Altered histone acetylation is associated with age-dependent memory impairment in mice. Science. 2010;328(5979):753–6.

    Article  CAS  PubMed  Google Scholar 

  109. Manosalva I, Gonzalez A. Aging alters histone H4 acetylation and CDC2A in mouse germinal vesicle stage oocytes. Biol Reprod. 2009;81(6):1164–71.

    Article  CAS  PubMed  Google Scholar 

  110. Ashktorab H, et al. Global histone H4 acetylation and HDAC2 expression in colon adenoma and carcinoma. Dig Dis Sci. 2009;54(10):2109–17.

    Article  CAS  PubMed  Google Scholar 

  111. Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469(7330):343–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ocampo A, et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell. 2016;167(7):1719–1733.e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. DeManno DA, et al. Follicle-stimulating hormone promotes histone H3 phosphorylation on serine-10. Mol Endocrinol. 1999;13(1):91–105.

    Article  CAS  PubMed  Google Scholar 

  114. Ruiz-Cortes ZT, et al. Estrogen mediates phosphorylation of histone H3 in ovarian follicle and mammary epithelial tumor cells via the mitotic kinase. Aurora B Mol Endocrinol. 2005;19(12):2991–3000.

    Article  CAS  PubMed  Google Scholar 

  115. Salvador LM, et al. Follicle-stimulating hormone stimulates protein kinase A-mediated histone H3 phosphorylation and acetylation leading to select gene activation in ovarian granulosa cells. J Biol Chem. 2001;276(43):40146–55.

    Article  CAS  PubMed  Google Scholar 

  116. Clark BJ, et al. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem. 1994;269(45):28314–22.

    Article  CAS  PubMed  Google Scholar 

  117. Kiriakidou M, et al. Expression of steroidogenic acute regulatory protein (StAR) in the human ovary. J Clin Endocrinol Metab. 1996;81(11):4122–8.

    CAS  PubMed  Google Scholar 

  118. Christenson LK, Stouffer RL, Strauss JF 3rd. Quantitative analysis of the hormone-induced hyperacetylation of histone H3 associated with the steroidogenic acute regulatory protein gene promoter. J Biol Chem. 2001;276(29):27392–9.

    Article  CAS  PubMed  Google Scholar 

  119. Hiroi H, et al. Temporal and spatial changes in transcription factor binding and histone modifications at the steroidogenic acute regulatory protein (stAR) locus associated with stAR transcription. Mol Endocrinol. 2004;18(4):791–806.

    Article  CAS  PubMed  Google Scholar 

  120. Smith CL, Hager GL. Transcriptional regulation of mammalian genes in vivo. A tale of two templates. J Biol Chem. 1997;272(44):27493–6.

    Article  CAS  PubMed  Google Scholar 

  121. Richards JS. Hormonal control of gene expression in the ovary. Endocr Rev. 1994;15(6):725–51.

    Article  CAS  PubMed  Google Scholar 

  122. Zhang Y, Dufau ML. Dual mechanisms of regulation of transcription of luteinizing hormone receptor gene by nuclear orphan receptors and histone deacetylase complexes. J Steroid Biochem Mol Biol. 2003;85(2–5):401–14.

    Article  CAS  PubMed  Google Scholar 

  123. Zhang Y, Dufau ML. EAR2 and EAR3/COUP-TFI regulate transcription of the rat LH receptor. Mol Endocrinol. 2001;15(11):1891–905.

    Article  CAS  PubMed  Google Scholar 

  124. Zhang Y, Dufau ML. Silencing of transcription of the human luteinizing hormone receptor gene by histone deacetylase-mSin3A complex. J Biol Chem. 2002;277(36):33431–8.

    Article  CAS  PubMed  Google Scholar 

  125. McGinnis LK, Luense LJ, Christenson LK. MicroRNA in ovarian biology and disease. Cold Spring Harb Perspect Med. 2015;5(9):a022962.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Tesfaye D, et al. MicroRNAs: tiny molecules with a significant role in mammalian follicular and oocyte development. Reproduction. 2018;155(3):R121–35.

    Article  CAS  PubMed  Google Scholar 

  127. Zhang H, et al. microRNA 376a regulates follicle assembly by targeting Pcna in fetal and neonatal mouse ovaries. Reproduction. 2014;148(1):43–54.

    Article  CAS  PubMed  Google Scholar 

  128. Zhang J, et al. miR-143 is critical for the formation of primordial follicles in mice. Front Biosci (Landmark Ed). 2013;18:588–97.

    Article  CAS  PubMed  Google Scholar 

  129. Yang S, et al. Expression patterns and regulatory functions of microRNAs during the initiation of primordial follicle development in the neonatal mouse ovary. Biol Reprod. 2013;89(5):126.

    Article  CAS  PubMed  Google Scholar 

  130. Sontakke SD, et al. Characterization of microRNAs differentially expressed during bovine follicle development. Reproduction. 2014;148(3):271–83.

    Article  CAS  PubMed  Google Scholar 

  131. Salilew-Wondim D, et al. The expression pattern of microRNAs in granulosa cells of subordinate and dominant follicles during the early luteal phase of the bovine estrous cycle. PLoS One. 2014;9(9):e106795.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Hatzirodos N, et al. Transcriptome profiling of granulosa cells of bovine ovarian follicles during growth from small to large antral sizes. BMC Genomics. 2014;15:24.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Martinez RM, et al. Extracellular microRNAs profile in human follicular fluid and IVF outcomes. Sci Rep. 2018;8(1):17036.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Machtinger R, et al. Extracellular microRNAs in follicular fluid and their potential association with oocyte fertilization and embryo quality: an exploratory study. J Assist Reprod Genet. 2017;34(4):525–33.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Gay S, et al. MiR-202 controls female fecundity by regulating medaka oogenesis. PLoS Genet. 2018;14(9):e1007593.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Uhde K, et al. MicroRNA expression in bovine cumulus cells in relation to oocyte quality. Noncoding. RNA. 2017;3(1)

    Google Scholar 

  137. Jiajie T, et al. Conserved miR-10 family represses proliferation and induces apoptosis in ovarian granulosa cells. Sci Rep. 2017;7:41304.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Sirotkin AV, et al. Involvement of microRNA Mir15a in control of human ovarian granulosa cell proliferation, apoptosis, steroidogenesis, and response to FSH. MicroRNA (Shariqah, United Arab Emirates). 2014;3(1):29–36.

    CAS  PubMed  Google Scholar 

  139. Zhou J, et al. The let-7g microRNA promotes follicular granulosa cell apoptosis by targeting transforming growth factor-beta type 1 receptor. Mol Cell Endocrinol. 2015;409:103–12.

    Article  CAS  PubMed  Google Scholar 

  140. Lin F, et al. miR-26b promotes granulosa cell apoptosis by targeting ATM during follicular atresia in porcine ovary. PLoS One. 2012;7(6):e38640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Liu J, et al. MicroRNA-26b functions as a proapoptotic factor in porcine follicular granulosa cells by targeting Sma-and mad-related protein 4. Biol Reprod. 2014;91(6):146.

    Article  PubMed  Google Scholar 

  142. Liu J, et al. Conserved miR-26b enhances ovarian granulosa cell apoptosis through HAS2-HA-CD44-Caspase-3 pathway by targeting HAS2. Sci Rep. 2016;6:21197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Du X, et al. Androgen receptor and miRNA-126* axis controls follicle-stimulating hormone receptor expression in porcine ovarian granulosa cells. Reproduction. 2016;152(2):161–9.

    Article  CAS  PubMed  Google Scholar 

  144. Tu F, et al. miR-34a targets the inhibin beta B gene, promoting granulosa cell apoptosis in the porcine ovary. Genet Mol Res. 2014;13(2):2504–12.

    Article  CAS  PubMed  Google Scholar 

  145. Nie M, et al. miR-23a and miR-27a promote human granulosa cell apoptosis by targeting SMAD5. Biol Reprod. 2015;93(4):98.

    Article  PubMed  Google Scholar 

  146. Yang X, et al. Differentially expressed plasma microRNAs in premature ovarian failure patients and the potential regulatory function of mir-23a in granulosa cell apoptosis. Reproduction. 2012;144(2):235–44.

    Article  CAS  PubMed  Google Scholar 

  147. Hong L, et al. miR-106a increases granulosa cell viability and is downregulated in women with diminished ovarian reserve. J Clin Endocrinol Metab. 2018;103(6):2157–66.

    Article  PubMed  Google Scholar 

  148. Chen X, et al. Downregulation of microRNA146a inhibits ovarian granulosa cell apoptosis by simultaneously targeting interleukin1 receptorassociated kinase and tumor necrosis factor receptorassociated factor 6. Mol Med Rep. 2015;12(4):5155–62.

    Article  CAS  PubMed  Google Scholar 

  149. Wang C, et al. MicroRNA-125a-5p induces mouse granulosa cell apoptosis by targeting signal transducer and activator of transcription 3. Menopause. 2016;23(1):100–7.

    Article  PubMed  Google Scholar 

  150. Xiong F, et al. miR-22 inhibits mouse ovarian granulosa cell apoptosis by targeting SIRT1. Biol Open. 2016;5(3):367–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Liu J, et al. MiR-92a inhibits porcine ovarian granulosa cell apoptosis by targeting Smad7 gene. FEBS Lett. 2014;588(23):4497–503.

    Article  CAS  PubMed  Google Scholar 

  152. Yao W, et al. miR-181b-induced SMAD7 downregulation controls granulosa cell apoptosis through TGF-beta signaling by interacting with the TGFBR1 promoter. J Cell Physiol. 2018;233(9):6807–21.

    Article  CAS  PubMed  Google Scholar 

  153. Sirotkin AV, et al. Identification of microRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen. J Cell Physiol. 2009;219(2):415–20.

    Article  CAS  PubMed  Google Scholar 

  154. Toms D, et al. Progesterone receptor expression in granulosa cells is suppressed by microRNA-378-3p. Mol Cell Endocrinol. 2015;399:95–102.

    Article  CAS  PubMed  Google Scholar 

  155. Xu S, et al. Micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase. Endocrinology. 2011;152(10):3941–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Yin M, et al. Transactivation of micrornA-320 by microRNA-383 regulates granulosa cell functions by targeting E2F1 and SF-1 proteins. J Biol Chem. 2014;289(26):18239–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wang L, et al. MicroRNA-764-3p regulates 17beta-estradiol synthesis of mouse ovarian granulosa cells by targeting steroidogenic factor-1. In Vitro Cell Dev Biol Anim. 2016;52(3):365–73.

    Article  PubMed  Google Scholar 

  158. Dai A, et al. MicroRNA-133b stimulates ovarian estradiol synthesis by targeting Foxl2. FEBS Lett. 2013;587(15):2474–82.

    Article  CAS  PubMed  Google Scholar 

  159. Wu S, et al. MicroRNA-132 promotes estradiol synthesis in ovarian granulosa cells via translational repression of Nurr1. Reprod Biol Endocrinol. 2015;13:94.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Nakagawa S, et al. The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice. Development. 2014;141(23):4618–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Xu XF, et al. Differential expression of long noncoding RNAs in human cumulus cells related to embryo developmental potential: a microarray analysis. Reprod Sci. 2015;22(6):672–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Xiong Y, et al. Cyclophosphamide promotes the proliferation inhibition of mouse ovarian granulosa cells and premature ovarian failure by activating the lncRNA-Meg3-p53-p66Shc pathway. Gene. 2017;596:1–8.

    Article  CAS  PubMed  Google Scholar 

  163. Gao Q, et al. Long non-coding RNAs regulate effects of beta-crystallin B2 on mouse ovary development. Mol Med Rep. 2016;14(5):4223–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Miao X, et al. Co-expression analysis and identification of fecundity-related long non-coding RNAs in sheep ovaries. Sci Rep. 2016;6:39398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Li Y, et al. Up-regulation of long noncoding RNA SRA promotes cell growth, inhibits cell apoptosis, and induces secretion of Estradiol and progesterone in ovarian granular cells of mice. Med Sci Monit. 2018;24:2384–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wang J, et al. Long noncoding RNA growth arrest-specific 5 promotes proliferation and survival of female germline stem cells in vitro. Gene. 2018;653:14–21.

    Article  CAS  PubMed  Google Scholar 

  167. Kimura AP, et al. A long noncoding RNA, lncRNA-Amhr2, plays a role in Amhr2 gene activation in mouse ovarian granulosa cells. Endocrinology. 2017;158(11):4105–21.

    Article  CAS  PubMed  Google Scholar 

  168. Li X, Yang L, Chen L-L. The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 2018;71(3):428–42.

    Article  CAS  PubMed  Google Scholar 

  169. Cheng J, et al. Circular RNA expression profiling of human granulosa cells during maternal aging reveals novel transcripts associated with assisted reproductive technology outcomes. PLoS One. 2017;12(6)

    Google Scholar 

  170. Jia W, Xu B, Wu J. Circular RNA expression profiles of mouse ovaries during postnatal development and the function of circular RNA epidermal growth factor receptor in granulosa cells. Metabolism-Clinical and Experimental. 2018;85:192–204.

    Article  CAS  PubMed  Google Scholar 

  171. Cai H, et al. Identification and characterization of human ovary-derived circular RNAs and their potential roles in ovarian aging. Aging-Us. 2018;10(9):2511–34.

    Article  CAS  Google Scholar 

  172. Maciejowski J, de Lange T. Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol. 2017;18(3):175–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Shay JW. Telomeres and aging. Curr Opin Cell Biol. 2018;52:1–7.

    Article  CAS  PubMed  Google Scholar 

  174. Schmidt JC, Cech TR. Human telomerase: biogenesis, trafficking, recruitment, and activation. Genes Dev. 2015;29(11):1095–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Thilagavathi J, Venkatesh S, Dada R. Telomere length in reproduction. Andrologia. 2013;45(5):289–304.

    Article  CAS  PubMed  Google Scholar 

  176. Brenner CA, et al. Alternative splicing of the telomerase catalytic subunit in human oocytes and embryos. Mol Hum Reprod. 1999;5(9):845–50.

    Article  CAS  PubMed  Google Scholar 

  177. Wright DL, et al. Characterization of telomerase activity in the human oocyte and preimplantation embryo. Mol Hum Reprod. 2001;7(10):947–55.

    Article  CAS  PubMed  Google Scholar 

  178. Turner S, Hartshorne GM. Telomere lengths in human pronuclei, oocytes and spermatozoa. Mol Hum Reprod. 2013;19(8):510–8.

    Article  CAS  PubMed  Google Scholar 

  179. Lavranos TC, et al. Evidence for ovarian granulosa stem cells: telomerase activity and localization of the telomerase ribonucleic acid component in bovine ovarian follicles. Biol Reprod. 1999;61(2):358–66.

    Article  CAS  PubMed  Google Scholar 

  180. Yamagata Y, et al. Changes in telomerase activity in experimentally induced atretic follicles of immature rats. Endocr J. 2002;49(6):589–95.

    Article  CAS  PubMed  Google Scholar 

  181. Cheng E-H, et al. Evaluation of telomere length in cumulus cells as a potential biomarker of oocyte and embryo quality. Hum Reprod. 2013;28(4):929–36.

    Article  CAS  PubMed  Google Scholar 

  182. Li H, Simpson ER, Liu J-P. Oestrogen, telomerase, ovarian ageing and cancer. Clin Exp Pharmacol Physiol. 2010;37(1):78–82.

    Article  PubMed  Google Scholar 

  183. Hanna CW, et al. Telomere length and reproductive aging. Hum Reprod. 2009;24(5):1206–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kinugawa C, et al. Telomerase activity in normal ovaries and premature ovarian failure. Tohoku J Exp Med. 2000;190(3):231–8.

    Article  CAS  PubMed  Google Scholar 

  185. Butts S, et al. Correlation of telomere length and telomerase activity with occult ovarian insufficiency. Journal of Clinical Endocrinology & Metabolism. 2009;94(12):4835–43.

    Article  CAS  Google Scholar 

  186. Keefe DL, Marquard K, Liu L. The telomere theory of reproductive senescence in women. Curr Opin Obstet Gynecol. 2006;18(3):280–5.

    Article  PubMed  Google Scholar 

  187. Kyo S, et al. Human telomerase reverse transcriptase as a critical determinant of telomerase activity in normal and malignant endometrial tissues. Int J Cancer. 1999;80(1):60–3.

    Article  CAS  PubMed  Google Scholar 

  188. Benko AL, Olsen NJ, Kovacs WJ. Estrogen and telomerase in human peripheral blood mononuclear cells. Mol Cell Endocrinol. 2012;364(1–2):83–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Bayne S, et al. Estrogen deficiency reversibly induces telomere shortening in mouse granulosa cells and ovarian aging in vivo. Protein Cell. 2011;2(4):333–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Williams CD, et al. A prospective, randomized study of endometrial telomerase during the menstrual cycle. Journal of Clinical Endocrinology & Metabolism. 2001;86(8):3912–7.

    Article  CAS  Google Scholar 

  191. Pines A. Telomere length and telomerase activity in the context of menopause. Climacteric. 2013;16(6):629–31.

    Article  CAS  PubMed  Google Scholar 

  192. Opresko PL, Shay JW. Telomere-associated aging disorders. Ageing Res Rev. 2017;33:52–66.

    Article  CAS  PubMed  Google Scholar 

  193. Johnston IG, Williams BP. Evolutionary inference across eukaryotes identifies specific pressures Favoring mitochondrial gene retention. Cell Systems. 2016;2(2):101–11.

    Article  CAS  PubMed  Google Scholar 

  194. Greaves LC, et al. Quantification of mitochondrial DNA mutation load. Aging Cell. 2009;8(5):566–72.

    Article  CAS  PubMed  Google Scholar 

  195. Richter C. Oxidative damage to mitochondrial DNA and its relationship to ageing. Int J Biochem Cell Biol. 1995;27(7):647–53.

    Article  CAS  PubMed  Google Scholar 

  196. Lee S, et al. Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J Biol Chem. 2007;282(31):22977–83.

    Article  CAS  PubMed  Google Scholar 

  197. Seo AY, et al. New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci. 2010;123(15):2533–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Stoeckl P, et al. Partial uncoupling of oxidative phosphorylation induces premature senescence in human fibroblasts and yeast mother cells. Free Radic Biol Med. 2007;43(6):947–58.

    Article  CAS  Google Scholar 

  199. Moiseeva O, et al. Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol Cell Biol. 2009;29(16):4495–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Zwerschke W, et al. Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence. Biochem J. 2003;376:403–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Jiang P, et al. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature. 2013;493(7434):689–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Wang Y, Hekimi S. Mitochondrial dysfunction and longevity in animals: untangling the knot. Science. 2015;350(6265):1204–7.

    Article  CAS  PubMed  Google Scholar 

  203. KasapoÄŸlu I, Seli E. Mitochondrial dysfunction and ovarian aging. Endocrinology. 2020;161:2.

    Article  Google Scholar 

  204. Zhang D, et al. Mitochondria in oocyte aging: current understanding. Facts Views Vis Obgyn. 2017;9(1):29–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Tatone C, et al. Age-dependent changes in the expression of superoxide dismutases and catalase are associated with ultrastructural modifications in human granulosa cells. Mol Hum Reprod. 2006;12(11):655–60.

    Article  CAS  PubMed  Google Scholar 

  206. Duran HE, et al. The association of reproductive senescence with mitochondrial quantity, function, and DNA integrity in human oocytes at different stages of maturation. Fertil Steril. 2011;96(2):384–8.

    Article  CAS  PubMed  Google Scholar 

  207. Wakai T, et al. Mitochondrial dynamics controlled by mitofusins define organelle positioning and movement during mouse oocyte maturation. Mol Hum Reprod. 2014;20(11):1090–100.

    Article  CAS  PubMed  Google Scholar 

  208. Hales KG. The machinery of mitochondrial fusion, division, and distribution, and emerging connections to apoptosis. Mitochondrion. 2004;4(4):285–308.

    Article  CAS  PubMed  Google Scholar 

  209. Liu S, et al. Changes in the distribution of mitochondria before and after in vitro maturation of human oocytes and the effect of in vitro maturation on mitochondria distribution. Fertil Steril. 2010;93(5):1550–5.

    Article  PubMed  Google Scholar 

  210. Montier LLC, Deng JJ, Bai Y. Number matters: control of mammalian mitochondrial DNA copy number. J Genet Genomics. 2009;36(3):125–31.

    Article  CAS  Google Scholar 

  211. Monnot S, et al. Mutation dependance of the mitochondrial DNA copy number in the first stages of human embryogenesis. Hum Mol Genet. 2013;22(9):1867–72.

    Article  CAS  PubMed  Google Scholar 

  212. Chiaratti MR, Meirelles FV. Mitochondrial DNA copy number, a marker of viability for oocytes. Biol Reprod. 2010;83(1):1–2.

    Article  CAS  PubMed  Google Scholar 

  213. Faddy MJ. Follicle dynamics during ovarian ageing. Mol Cell Endocrinol. 2000;163(1–2):43–8.

    Article  CAS  PubMed  Google Scholar 

  214. Kitagawa T, et al. Rapid accumulation of deleted mitochondrial deoxyribonucleic acid in postmenopausal ovaries. Biol Reprod. 1993;49(4):730–6.

    Article  CAS  PubMed  Google Scholar 

  215. Fragouli E, Wells D. Mitochondrial DNA assessment to determine oocyte and embryo viability. Semin Reprod Med. 2015;33(6):401–9.

    Article  CAS  PubMed  Google Scholar 

  216. Ralla B, et al. Nucleic acid-based biomarkers in body fluids of patients with urologic malignancies. Crit Rev Clin Lab Sci. 2014;51(4):A2–231.

    Article  Google Scholar 

  217. Scalici E, et al. Cell-free DNA in human follicular fluid as a biomarker of embryo quality. Hum Reprod. 2014;29(12):2661–9.

    Article  CAS  PubMed  Google Scholar 

  218. Stigliani S, et al. Mitochondrial DNA content in embryo culture medium is significantly associated with human embryo fragmentation. Hum Reprod. 2013;28(10):2652–60.

    Article  CAS  PubMed  Google Scholar 

  219. Wang T, et al. Mitochondrial dysfunction and ovarian aging. Am J Reprod Immunol. 2017;77(5)

    Google Scholar 

  220. Chen HC, et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003;160(2):189–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Davies VJ, et al. Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Hum Mol Genet. 2007;16(11):1307–18.

    Article  CAS  PubMed  Google Scholar 

  222. Ishihara N, et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol. 2009;11(8):958–U114.

    Article  CAS  PubMed  Google Scholar 

  223. Udagawa O, et al. Mitochondrial fission factor Drp1 maintains oocyte quality via dynamic rearrangement of multiple organelles. Curr Biol. 2014;24(20):2451–8.

    Article  CAS  PubMed  Google Scholar 

  224. Chiang JL, et al. Mitochondria in ovarian aging and reproductive longevity. Ageing Res Rev. 2020;63:101168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Li CJ, et al. The molecular regulation in the pathophysiology in ovarian aging. Aging Dis. 2021;12(3):934–49.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Allen RG, Tresini M. Oxidative stress and gene regulation. Free Radic Biol Med. 2000;28(3):463–99.

    Article  CAS  PubMed  Google Scholar 

  227. Valko M, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.

    Article  CAS  PubMed  Google Scholar 

  228. Kohchi C, et al. ROS and Innate immunity. Anticancer Res. 2009;29(3):817–21.

    CAS  PubMed  Google Scholar 

  229. Pinegin B, et al. The role of mitochondrial ROS in antibacterial immunity. J Cell Physiol. 2018;233(5):3745–54.

    Article  CAS  PubMed  Google Scholar 

  230. Cossenza M, et al. Nitric oxide in the nervous system: biochemical, developmental, and neurobiological aspects. Vitam Horm. 2014;96:79–125.

    Article  CAS  PubMed  Google Scholar 

  231. Costa TJ, et al. The homeostatic role of hydrogen peroxide, superoxide anion and nitric oxide in the vasculature. Free Radic Biol Med. 2021;162:615–35.

    Article  CAS  PubMed  Google Scholar 

  232. Nakao A, et al. Role of oxidative stress and ca(2+) Signaling in psychiatric disorders. Front Cell Dev Biol. 2021;9:615569.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Cutler RG. Antioxidants and longevity of mammalian species. Basic Life Sci. 1985;35:15–73.

    CAS  PubMed  Google Scholar 

  234. Iantomasi T, et al. Age and GSH metabolism in rat cerebral cortex, as related to oxidative and energy parameters. Mech Ageing Dev. 1993;70(1–2):65–82.

    Article  CAS  PubMed  Google Scholar 

  235. Barja G. Mitochondrial free radical production and aging in mammals and birds. Ann N Y Acad Sci. 1998;854:224–38.

    Article  CAS  PubMed  Google Scholar 

  236. Ungvari Z, et al. Dysregulation of mitochondrial biogenesis in vascular endothelial and smooth muscle cells of aged rats. Am J Phys Heart Circ Phys. 2008;294(5):H2121–8.

    CAS  Google Scholar 

  237. Schriner SE, et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science. 2005;308(5730):1909–11.

    Article  CAS  PubMed  Google Scholar 

  238. Age-dependent white matter inflammation and cognitive impairment in the TgAPP21 rat model of Alzheimer disease. Neurology. 2018;91(5):242.

    Google Scholar 

  239. Lyon MS, et al. Inflammation, immunity, and amyotrophic lateral sclerosis: I. Etiology and pathology Muscle Nerve. 2019;59(1):10–22.

    Article  PubMed  Google Scholar 

  240. Tilg H, et al. Gut, inflammation and osteoporosis: basic and clinical concepts. Gut. 2008;57(5):684–94.

    Article  CAS  PubMed  Google Scholar 

  241. Nahrendorf M, Swirski FK, Immunology. Neutrophil-macrophage communication in inflammation and atherosclerosis. Science. 2015;349(6245):237–8.

    Article  CAS  PubMed  Google Scholar 

  242. Granger CB, Kochar A. Understanding and targeting inflammation in acute myocardial infarction: an elusive goal. J Am Coll Cardiol. 2018;72(2):199–201.

    Article  PubMed  Google Scholar 

  243. Kim HJ, et al. The effect of age on cyclooxygenase-2 gene expression: NF-kappaB activation and IkappaBalpha degradation. Free Radic Biol Med. 2000;28(5):683–92.

    Article  CAS  PubMed  Google Scholar 

  244. Cohen HJ, et al. The association of plasma IL-6 levels with functional disability in community-dwelling elderly. J Gerontol A Biol Sci Med Sci. 1997;52(4):M201–8.

    Article  CAS  PubMed  Google Scholar 

  245. Bruunsgaard H, Pedersen M, Pedersen BK. Aging and proinflammatory cytokines. Curr Opin Hematol. 2001;8(3):131–6.

    Article  CAS  PubMed  Google Scholar 

  246. Juarranz MG, et al. Vasoactive intestinal peptide modulates proinflammatory mediator synthesis in osteoarthritic and rheumatoid synovial cells. Rheumatology (Oxford). 2004;43(4):416–22.

    Article  CAS  PubMed  Google Scholar 

  247. Cerqueira FM, Laurindo FR, Kowaltowski AJ. Mild mitochondrial uncoupling and calorie restriction increase fasting eNOS, akt and mitochondrial biogenesis. PLoS One. 2011;6(3):e18433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Stanquini LA, et al. Repeated treatment with nitric oxide synthase inhibitor attenuates learned helplessness development in rats and increases hippocampal BDNF expression. Acta Neuropsychiatrica. 2018;30(3):127–36.

    Article  PubMed  Google Scholar 

  249. Chen WH, et al. Effects of 7-nitroindazole, a selective neural nitric oxide synthase inhibitor, on context-shock associative learning in a two-process contextual fear conditioning paradigm. Neurobiol Learn Mem. 2016;134:287–93.

    Article  CAS  PubMed  Google Scholar 

  250. Evans JL, Goldfine ID. Aging and insulin resistance: just say iNOS. Diabetes. 2013;62(2):346–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Yeo WS, et al. Erratum to: mass spectrometric analysis of protein tyrosine nitration in aging and neurodegenerative diseases. Mass Spectrom Rev. 2015;34(4):491.

    Article  PubMed  Google Scholar 

  252. Yu WJ, et al. Decrease of neuronal nitric oxide synthase in the cerebellum of aged rats. Neurosci Lett. 2000;291(1):37–40.

    Article  CAS  PubMed  Google Scholar 

  253. Shi L, et al. Long-term moderate oxidative stress decreased ovarian reproductive function by reducing follicle quality and progesterone production. PLoS One. 2016;11(9):e0162194.

    Article  PubMed  PubMed Central  Google Scholar 

  254. Loukides JA, et al. Human follicular fluids contain tissue macrophages. J Clin Endocrinol Metab. 1990;71(5):1363–7.

    Article  CAS  PubMed  Google Scholar 

  255. Duran Reyes G, Gomez Melendez MR, Hicks Gomez JJ. Importance of free radicals during the reproduction cycle. Ginecol Obstet Mex. 1998;66:371–6.

    CAS  PubMed  Google Scholar 

  256. Tiwari M, et al. Calcium Signaling during meiotic cell cycle regulation and apoptosis in mammalian oocytes. J Cell Physiol. 2017;232(5):976–81.

    Article  CAS  PubMed  Google Scholar 

  257. Tripathi A, et al. Intracellular levels of hydrogen peroxide and nitric oxide in oocytes at various stages of meiotic cell cycle and apoptosis. Free Radic Res. 2009;43(3):287–94.

    Article  CAS  PubMed  Google Scholar 

  258. Ushio-Fukai M, Alexander RW. Reactive oxygen species as mediators of angiogenesis signaling: role of NAD(P)H oxidase. Mol Cell Biochem. 2004;264(1–2):85–97.

    Article  CAS  PubMed  Google Scholar 

  259. Kim YM, et al. ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis. Am J Physiol Cell Physiol. 2017;312(6):C749–64.

    Article  PubMed  PubMed Central  Google Scholar 

  260. Sugino N, et al. Superoxide dismutase expression in the human corpus luteum during the menstrual cycle and in early pregnancy. Mol Hum Reprod. 2000;6(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  261. Sugino N, et al. Suppression of intracellular superoxide dismutase activity by antisense oligonucleotides causes inhibition of progesterone production by rat luteal cells. Biol Reprod. 1999;61(4):1133–8.

    Article  CAS  PubMed  Google Scholar 

  262. Sato EF, et al. Dynamic aspects of ovarian superoxide dismutase isozymes during the ovulatory process in the rat. FEBS Lett. 1992;303(2–3):121–5.

    CAS  PubMed  Google Scholar 

  263. Miyazaki T, et al. In vivo administration of allopurinol affects ovulation and early embryonic development in rabbits. Am J Obstet Gynecol. 1989;161(6 Pt 1):1709–14.

    Article  CAS  PubMed  Google Scholar 

  264. Margolin Y, Behrman HR. Xanthine oxidase and dehydrogenase activities in rat ovarian tissues. Am J Phys. 1992;262(2 Pt 1):E173–8.

    CAS  Google Scholar 

  265. Sugino N, et al. Withdrawal of ovarian steroids stimulates prostaglandin F2alpha production through nuclear factor-kappaB activation via oxygen radicals in human endometrial stromal cells: potential relevance to menstruation. J Reprod Dev. 2004;50(2):215–25.

    Article  CAS  PubMed  Google Scholar 

  266. Sheikpranbabu S, et al. Pigment epithelium-derived factor inhibits vascular endothelial growth factor-and interleukin-1beta-induced vascular permeability and angiogenesis in retinal endothelial cells. Vasc Pharmacol. 2010;52(1–2):84–94.

    Article  CAS  Google Scholar 

  267. Riley JC, Behrman HR. In vivo generation of hydrogen peroxide in the rat corpus luteum during luteolysis. Endocrinology. 1991;128(4):1749–53.

    Article  CAS  PubMed  Google Scholar 

  268. Sawada M, Carlson JC. Superoxide radical production in plasma membrane samples from regressing rat corpora lutea. Can J Physiol Pharmacol. 1989;67(5):465–71.

    Article  CAS  PubMed  Google Scholar 

  269. Kodaman PH, Aten RF, Behrman HR. Lipid hydroperoxides evoke antigonadotropic and antisteroidogenic activity in rat luteal cells. Endocrinology. 1994;135(6):2723–30.

    Article  CAS  PubMed  Google Scholar 

  270. Behrman HR, Aten RF. Evidence that hydrogen peroxide blocks hormone-sensitive cholesterol transport into mitochondria of rat luteal cells. Endocrinology. 1991;128(6):2958–66.

    Article  CAS  PubMed  Google Scholar 

  271. Minegishi K, et al. Reactive oxygen species mediate leukocyte-endothelium interactions in prostaglandin F2alpha -induced luteolysis in rats. Am J Physiol Endocrinol Metab. 2002;283(6):E1308–15.

    Article  CAS  PubMed  Google Scholar 

  272. Yasui K, et al. Superoxide dismutase (SOD) as a potential inhibitory mediator of inflammation via neutrophil apoptosis. Free Radic Res. 2005;39(7):755–62.

    Article  CAS  PubMed  Google Scholar 

  273. Liang HL, et al. MnTMPyP, a cell-permeant SOD mimetic, reduces oxidative stress and apoptosis following renal ischemia-reperfusion. Am J Physiol Renal Physiol. 2009;296(2):F266–76.

    Article  CAS  PubMed  Google Scholar 

  274. Liu Y, et al. Age-related changes in the mitochondria of human mural granulosa cells. Hum Reprod. 2017;32(12):2465–73.

    Article  CAS  PubMed  Google Scholar 

  275. Zhen X, et al. Increased incidence of mitochondrial cytochrome C oxidase 1 gene mutations in patients with primary ovarian insufficiency. PLoS One. 2015;10(7):e0132610.

    Article  PubMed  PubMed Central  Google Scholar 

  276. Maraldi T, et al. NADPH oxidase-4 and MATER expressions in granulosa cells: relationships with ovarian aging. Life Sci. 2016;162:108–14.

    Article  CAS  PubMed  Google Scholar 

  277. Qian Y, et al. Implication of differential peroxiredoxin 4 expression with age in ovaries of mouse and human for ovarian aging. Curr Mol Med. 2016;16(3):243–51.

    Article  CAS  PubMed  Google Scholar 

  278. Lim J, Luderer U. Oxidative damage increases and antioxidant gene expression decreases with aging in the mouse ovary. Biol Reprod. 2011;84(4):775–82.

    Article  CAS  PubMed  Google Scholar 

  279. Wang S, et al. Single-cell transcriptomic atlas of primate ovarian aging. Cell. 2020;180(3):585–600 e19.

    Article  CAS  PubMed  Google Scholar 

  280. Lim J, et al. Glutamate cysteine ligase modifier subunit (Gclm) null mice have increased ovarian oxidative stress and accelerated age-related ovarian failure. Endocrinology. 2015;156(9):3329–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Gellersen B, Brosens J. Cyclic AMP and progesterone receptor cross-talk in human endometrium: a decidualizing affair. J Endocrinol. 2003;178(3):357–72.

    Article  CAS  PubMed  Google Scholar 

  282. Guan L, et al. FoxO3 inactivation promotes human cholangiocarcinoma tumorigenesis and chemoresistance through Keap1-Nrf2 signaling. Hepatology. 2016;63(6):1914–27.

    Article  CAS  PubMed  Google Scholar 

  283. Li Z, et al. Forkhead transcription factor FOXO3a protein activates nuclear factor kappaB through B-cell lymphoma/leukemia 10 (BCL10) protein and promotes tumor cell survival in serum deprivation. J Biol Chem. 2012;287(21):17737–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Leitao B, et al. Silencing of the JNK pathway maintains progesterone receptor activity in decidualizing human endometrial stromal cells exposed to oxidative stress signals. FASEB J. 2010;24(5):1541–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Geng Y, et al. Sodium fluoride activates ERK and JNK via induction of oxidative stress to promote apoptosis and impairs ovarian function in rats. J Hazard Mater. 2014;272:75–82.

    Article  CAS  PubMed  Google Scholar 

  286. Mishra B, et al. Very low doses of heavy oxygen ion radiation induce premature ovarian failure. Reproduction. 2017;154(2):123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Sobinoff AP, et al. Scrambled and fried: cigarette smoke exposure causes antral follicle destruction and oocyte dysfunction through oxidative stress. Toxicol Appl Pharmacol. 2013;271(2):156–67.

    Article  CAS  PubMed  Google Scholar 

  288. Liu J, et al. Silica nanoparticle exposure inducing granulosa cell apoptosis and follicular atresia in female Balb/c mice. Environ Sci Pollut Res Int. 2018;25(4):3423–34.

    Article  CAS  PubMed  Google Scholar 

  289. Zhou S, et al. Ovarian dysfunction induced by chronic whole-body PM2.5 exposure. Small. 2020;16(33):e2000845.

    Article  PubMed  Google Scholar 

  290. Jiang X, et al. Lead exposure activates the Nrf2/Keap1 pathway, aggravates oxidative stress, and induces reproductive damage in female mice. Ecotoxicol Environ Saf. 2021;207:111231.

    Article  CAS  PubMed  Google Scholar 

  291. Hu X, et al. Accelerated ovarian failure induced by 4-vinyl cyclohexene diepoxide in Nrf2 null mice. Mol Cell Biol. 2006;26(3):940–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Liu X, et al. Lycopene ameliorates oxidative stress in the aging chicken ovary via activation of Nrf2/HO-1 pathway. Aging (Albany NY). 2018;10(8):2016–36.

    Article  CAS  PubMed  Google Scholar 

  293. Yan Z, et al. Curcumin exerts a protective effect against premature ovarian failure in mice. J Mol Endocrinol. 2018;60(3):261–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Mahran YF, et al. Carvacrol and thymol modulate the cross-talk between TNF-alpha and IGF-1 Signaling in radiotherapy-induced ovarian failure. Oxidative Med Cell Longev. 2019;2019:3173745.

    Article  Google Scholar 

  295. Ozcan P, et al. Can coenzyme Q10 supplementation protect the ovarian reserve against oxidative damage? J Assist Reprod Genet. 2016;33(9):1223–30.

    Article  PubMed  PubMed Central  Google Scholar 

  296. Miao Y, et al. The protective role of melatonin in porcine oocyte meiotic failure caused by the exposure to benzo(a)pyrene. Hum Reprod. 2018;33(1):116–27.

    Article  CAS  PubMed  Google Scholar 

  297. Nelson SM, Telfer EE, Anderson RA. The ageing ovary and uterus: new biological insights. Hum Reprod Update. 2013;19(1):67–83.

    Article  CAS  PubMed  Google Scholar 

  298. Sakakura T, Nishizuka Y. Thymic control mechanism in ovarian development: reconstitution of ovarian dysgenesis in thymectomized mice by replacement with thymic and other lymphoid tissues. Endocrinology. 1972;90(2):431–7.

    Article  CAS  PubMed  Google Scholar 

  299. Bukovsky A, et al. Postnatal androgenization induces premature aging of rat ovaries. Steroids. 2000;65(4):190–205.

    Article  CAS  PubMed  Google Scholar 

  300. Theocharis AD, et al. Extracellular matrix structure. Adv Drug Deliv Rev. 2016;97:4–27.

    Article  CAS  PubMed  Google Scholar 

  301. McArthur ME, et al. Identification and immunolocalization of decorin, versican, perlecan, nidogen, and chondroitin sulfate proteoglycans in bovine small-antral ovarian follicles. Biol Reprod. 2000;63(3):913–24.

    Article  CAS  PubMed  Google Scholar 

  302. Huet C, et al. Extracellular matrix regulates ovine granulosa cell survival, proliferation and steroidogenesis: relationships between cell shape and function. J Endocrinol. 2001;169(2):347–60.

    Article  CAS  PubMed  Google Scholar 

  303. Petrova TV, Koh GY. Biological functions of lymphatic vessels. Science. 2020;369:6500.

    Article  Google Scholar 

  304. Abdel-Ghani MA, Shimizu T, Suzuki H. Expression pattern of vascular endothelial growth factor in canine folliculogenesis and its effect on the growth and development of follicles after ovarian organ culture. Reprod Domest Anim. 2014;49(5):734–9.

    Article  CAS  PubMed  Google Scholar 

  305. Brown HM, Robker RL, Russell DL. Development and hormonal regulation of the ovarian lymphatic vasculature. Endocrinology. 2010;151(11):5446–55.

    Article  CAS  PubMed  Google Scholar 

  306. Calderon ML, De Perez GR, Ramirez Pinilla MP. Morphology of the ovary of Caiman crocodilus (Crocodylia: Alligatoridae). Ann Anat. 2004;186(1):13–24.

    Article  PubMed  Google Scholar 

  307. Huang Y, et al. Inflamm-aging: a new mechanism affecting premature ovarian insufficiency. J Immunol Res. 2019;2019:8069898.

    Article  PubMed  PubMed Central  Google Scholar 

  308. Yang Z, et al. TLRs, macrophages, and NK cells: our understandings of their functions in uterus and ovary. Int Immunopharmacol. 2011;11(10):1442–50.

    Article  CAS  PubMed  Google Scholar 

  309. Zhang Z, et al. Inflammaging is associated with shifted macrophage ontogeny and polarization in the aging mouse ovary. Reproduction. 2020;159(3):325–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Bukovsky A. Immune system involvement in the regulation of ovarian function and augmentation of cancer. Microsc Res Tech. 2006;69(6):482–500.

    Article  PubMed  Google Scholar 

  311. Bukovsky A. Ovarian stem cell niche and follicular renewal in mammals. Anat Rec (Hoboken). 2011;294(8):1284–306.

    Article  CAS  PubMed  Google Scholar 

  312. Ye H, et al. The effect of the immune system on ovarian function and features of ovarian germline stem cells. Springerplus. 2016;5(1):990.

    Article  PubMed  PubMed Central  Google Scholar 

  313. Casanova-Acebes M, et al. Innate immune cells as homeostatic regulators of the hematopoietic niche. Int J Hematol. 2014;99(6):685–94.

    Article  CAS  PubMed  Google Scholar 

  314. Van De Bor V, et al. Companion blood cells control ovarian stem cell niche microenvironment and homeostasis. Cell Rep. 2015;13(3):546–60.

    Article  PubMed  Google Scholar 

  315. Sikora E, Bielak-Zmijewska A, Mosieniak G. A common signature of cellular senescence; does it exist? Ageing Res Rev. 2021;71:101458.

    Article  CAS  PubMed  Google Scholar 

  316. Shen L, et al. CCL5 secreted by senescent theca-interstitial cells inhibits preantral follicular development via granulosa cellular apoptosis. J Cell Physiol. 2019;234(12):22554–64.

    Article  CAS  PubMed  Google Scholar 

  317. Berkholtz CB, Shea LD, Woodruff TK. Extracellular matrix functions in follicle maturation. Semin Reprod Med. 2006;24(4):262–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Wang X, et al. Sandwich configuration of type I collagen suppresses progesterone production in primary cultured porcine granulosa cells by reducing gene expression of cytochrome P450 cholesterol side-chain cleavage enzyme. Arch Biochem Biophys. 2000;376(1):117–23.

    Article  CAS  PubMed  Google Scholar 

  319. Briley SM, et al. Reproductive age-associated fibrosis in the stroma of the mammalian ovary. Reproduction. 2016;152(3):245–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Robinson RS, et al. Angiogenesis and vascular function in the ovary. Reproduction. 2009;138(6):869–81.

    Article  CAS  PubMed  Google Scholar 

  321. Ferrara N, et al. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat Med. 1998;4(3):336–40.

    Article  CAS  PubMed  Google Scholar 

  322. Hazzard TM, Xu F, Stouffer RL. Injection of soluble vascular endothelial growth factor receptor 1 into the preovulatory follicle disrupts ovulation and subsequent luteal function in rhesus monkeys. Biol Reprod. 2002;67(4):1305–12.

    Article  CAS  PubMed  Google Scholar 

  323. Qiu Y, et al. Ovarian VEGF(165)b expression regulates follicular development, corpus luteum function and fertility. Reproduction. 2012;143(4):501–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Chen J, et al. Decreased blood vessel density and endothelial cell subset dynamics during ageing of the endocrine system. EMBO J. 2021;40(1):e105242.

    Article  CAS  PubMed  Google Scholar 

  325. Cui XY, Zhan JK, Liu YS. Roles and functions of antisense lncRNA in vascular aging. Ageing Res Rev. 2021:101480.

    Google Scholar 

  326. Oren R, et al. Whole organ blood and lymphatic vessels imaging (WOBLI). Sci Rep. 2018;8(1):1412.

    Article  PubMed  PubMed Central  Google Scholar 

  327. Goodell MA, Rando TA. Stem cells and healthy aging. Science. 2015;350(6265):1199–204.

    Article  CAS  PubMed  Google Scholar 

  328. Yamakawa H, et al. Stem cell aging in skeletal muscle regeneration and disease. Int J Mol Sci. 2020;21(5)

    Google Scholar 

  329. de Haan G, Lazare SS. Aging of hematopoietic stem cells. Blood. 2018;131(5):479–87.

    Article  PubMed  Google Scholar 

  330. Ye H, et al. Ovarian stem cell nests in reproduction and ovarian aging. Cell Physiol Biochem. 2017;43(5):1917–25.

    Article  CAS  PubMed  Google Scholar 

  331. Johnson J, et al. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell. 2005;122(2):303–15.

    Article  CAS  PubMed  Google Scholar 

  332. Zou K, et al. Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat Cell Biol. 2009;11(5):631–6.

    Article  CAS  PubMed  Google Scholar 

  333. White YA, et al. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med. 2012;18(3):413–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Guo K, et al. Germ stem cells are active in postnatal mouse ovary under physiological conditions. Mol Hum Reprod. 2016;22(5):316–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Zhang H, et al. Experimental evidence showing that no mitotically active female germline progenitors exist in postnatal mouse ovaries. Proc Natl Acad Sci U S A. 2012;109(31):12580–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Lei L, Spradling AC. Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles. Proc Natl Acad Sci U S A. 2013;110(21):8585–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Park ES, Woods DC, Tilly JL. Bone morphogenetic protein 4 promotes mammalian oogonial stem cell differentiation via Smad1/5/8 signaling. Fertil Steril. 2013;100(5):1468–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Zhou L, et al. Production of fat-1 transgenic rats using a post-natal female germline stem cell line. Mol Hum Reprod. 2014;20(3):271–81.

    Article  CAS  PubMed  Google Scholar 

  339. Wu C, et al. Tracing and characterizing the development of transplanted female germline stem cells in vivo. Mol Ther. 2017;25(6):1408–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Li J, et al. Ovarian germline stem cells (OGSCs) and the hippo Signaling pathway association with physiological and pathological ovarian aging in mice. Cell Physiol Biochem. 2015;36(5):1712–24.

    Article  CAS  PubMed  Google Scholar 

  341. Zhang, X., et al., AKT3 is a pivotal molecule of Cadherin-22 and GDNF family receptor-alpha1 signal pathways regulating self-renewal in female germline stem cells. Stem Cells, 2019. 37(8): p. 1095–1107.

    Google Scholar 

  342. Wang N, et al. Genetic studies in mice directly link oocytes produced during adulthood to ovarian function and natural fertility. Sci Rep. 2017;7(1):10011.

    Article  PubMed  PubMed Central  Google Scholar 

  343. Niikura Y, Niikura T, Tilly JL. Aged mouse ovaries possess rare premeiotic germ cells that can generate oocytes following transplantation into a young host environment. Aging (Albany NY). 2009;1(12):971–8.

    Article  CAS  PubMed  Google Scholar 

  344. Bernardes de Jesus, B. and M.A. Blasco, Assessing cell and organ senescence biomarkers. Circ Res, 2012. 111(1): p. 97–109.

    Google Scholar 

  345. Li J, et al. Atorvastatin decreases C-reactive protein-induced inflammatory response in pulmonary artery smooth muscle cells by inhibiting nuclear factor-kappaB pathway. Cardiovasc Ther. 2010;28(1):8–14.

    Article  CAS  PubMed  Google Scholar 

  346. Manfredini V, et al. Simvastatin treatment prevents oxidative damage to DNA in whole blood leukocytes of dyslipidemic type 2 diabetic patients. Cell Biochem Funct. 2010;28(5):360–6.

    Article  CAS  PubMed  Google Scholar 

  347. Aoki C, et al. Fluvastatin upregulates endothelial nitric oxide synthase activity via enhancement of its phosphorylation and expression and via an increase in tetrahydrobiopterin in vascular endothelial cells. Int J Cardiol. 2012;156(1):55–61.

    Article  PubMed  Google Scholar 

  348. Roos CM, et al. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell. 2016;15(5):973–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Bussian TJ, et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature. 2018;562(7728):578–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Jeon OH, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med. 2017;23(6):775–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Justice JN, et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine. 2019;40:554–63.

    Article  PubMed  PubMed Central  Google Scholar 

  352. van Deursen JM. The role of senescent cells in ageing. Nature. 2014;509(7501):439–46.

    Article  PubMed  PubMed Central  Google Scholar 

  353. Demaria M, et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 2017;7(2):165–76.

    Article  CAS  PubMed  Google Scholar 

  354. Zhang B, et al. The senescence-associated secretory phenotype is potentiated by feedforward regulatory mechanisms involving Zscan4 and TAK1. Nat Commun. 2018;9(1):1723.

    Article  PubMed  PubMed Central  Google Scholar 

  355. Marjoribanks J, Lethaby A, Farquhar C. Surgery versus medical therapy for heavy menstrual bleeding. Cochrane Database Syst Rev. 2016;1:D003855.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, T. et al. (2023). The Cellular and Molecular Mechanisms of Ovarian Aging. In: Wang, S. (eds) Ovarian Aging. Springer, Singapore. https://doi.org/10.1007/978-981-19-8848-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8848-6_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8847-9

  • Online ISBN: 978-981-19-8848-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics