Skip to main content

Bioceramic Dental Inserts Based on Calcium Phosphate Nano-particles

  • Chapter
  • First Online:
Nanomaterials in Dental Medicine

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 334 Accesses

Abstract

Dental inserts are perceived as a potential solution to reduce polymerization shrinkage and the associated stress in direct composite restorations. Inserts are designed to be placed inside the unpolymerized composite resin, thereby reducing the amount of resin in the restoration. Experimental inserts have been recently manufactured from hydroxyapatite (HAp) based nano-particles with an idea to combine their bioactive potential with aesthetic restorative materials. Controlled porous biphasic hydroxyapatite/tricalcium phosphate, monophasic dense hydroxyapatite and composite hydroxyapatite/zirconia dental inserts were processed and tested in the last few years for application as dentine substitutes. Obtained bioceramic inserts were of satisfied hardness and fracture toughness in the range of values for human dentine. These inserts have been shown in vitro to reduce polymerization shrinkage of insert-containing restorations and change shrinkage vectors of surrounding resin-based composite acting as a possible central stress reducer. When adhesively bonded to composites following a total-etch or self-etch protocol, controlled porous HAp-based inserts have shown certainly higher bond strengths than when bonded to glass-ionomer or self-adhesive resin cements. Optical properties (colour and translucency), considerably differ from tooth tissues, and may be masked with a 2 mm capping layer of a microhybrid or nanohybrid composite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://treaties.un.org/Pages/ViewDetails.aspx?src=IND&mtdsg_no=XXVII-17&chapter=27&clang=_en

References

  1. https://www.who.int/news-room/fact-sheets/detail/sugars-and-dental-caries. Accessed 16 Feb 2021

  2. Boushell LW, Sturdevant JR (2019). In: Ritter AV, Boushell LW, Walter R (eds) Sturdevant’s art and science of operative dentistry. Elsevier, pp 1–39

    Google Scholar 

  3. Goldberg M, Kulkarni AB, Young M, Boskey A (2011) Dentin: structure, composition and mineralization. Front Biosci (Elite Ed) 3:711–735

    Article  Google Scholar 

  4. Ferreira Zandoná AG, Ritter AV, Eidson RS (2019). In: Ritter AV, Boushell LW, Walter R (eds) Sturdevant’s art and science of operative dentistry. Elsevier, pp 40–94

    Chapter  Google Scholar 

  5. Reher V, Reher P, Peres KG, Peres MA (2021) Fall of amalgam restoration: a 10-year analysis of an Australian university dental clinic. Aust Dent J 66:61–66

    Article  CAS  Google Scholar 

  6. Laske M, Opdam NJ, Bronkhorst EM, Braspenning JC, Huysmans MC (2016) Longevity of direct restorations in Dutch dental practices. Descriptive study out of a practice based research network. J Dent 46:12–17

    Article  Google Scholar 

  7. Chen MH (2010) Update on dental nanocomposites. J Dent Res 89:549–560

    Article  CAS  Google Scholar 

  8. Ferracane JL (2011) Resin composite-state of the art. Dent Mater 27:29–38

    Article  CAS  Google Scholar 

  9. Randolph LD, Palin WM, Leloup G, Leprince JG (2016) Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties. Dent Mater 32:1586–1599

    Article  CAS  Google Scholar 

  10. Miletic V, Pongprueksa P, De Munck J, Brooks NR, Van Meerbeek B (2017) Curing characteristics of flowable and sculptable bulk-fill composites. Clin Oral Investig 21:1201–1212

    Article  Google Scholar 

  11. Salgado VE, Borba MM, Cavalcante LM, de Moraes RR, Schneider LF (2015) Effect of photoinitiator combinations on hardness, depth of cure, and color of model resin composites. J Esthet Restor Dent 27(Suppl 1):S41-48

    Article  Google Scholar 

  12. Powell LV (1992) Composite-resin materials and techniques in dentistry. Curr Opin Dent 2:128–136

    CAS  Google Scholar 

  13. Miletic V (2018) In: Miletic V (ed) Dental composite materials for direct restorations. Springer International Publishing, pp 3–9

    Google Scholar 

  14. Leprince JG, Palin WM, Vanacker J, Sabbagh J, Devaux J, Leloup G (2014) Physico-mechanical characteristics of commercially available bulk-fill composites. J Dent 42:993–1000

    Article  CAS  Google Scholar 

  15. Arbildo-Vega HI, Lapinska B, Panda S, Lamas-Lara C, Khan AS, Lukomska-Szymanska M (2020) Clinical effectiveness of bulk-fill and conventional resin composite restorations: systematic review and meta-analysis. Polymers (Basel) 12:10

    Article  Google Scholar 

  16. Bowen RL, Eichmiller FC, Marjenhoff WA (1991) Glass-ceramic inserts anticipated for ‘megafilled’ composite restorations. Research moves into the office. J Am Dent Assoc 122:71, 73, 75.

    Google Scholar 

  17. Millar BJ, Robinson PB (2006) Eight year results with direct ceramic restorations (Cerana). Br Dent J 201:515–520

    Article  CAS  Google Scholar 

  18. Santini A, Ivanovic V, Tan CL, Ibbetson R (2006) Effect of prolonged thermal cycling on microleakage around Class V cavities restored with glass-ceramic inserts with different coefficients of thermal expansion: an in vitro study. Prim Dent Care 13:147–153

    Article  Google Scholar 

  19. Strobel WO, Petschelt A, Kemmoona M, Frankenberger R (2005) Ceramic inserts do not generally improve resin composite margins. J Oral Rehabil 32:606–613

    Article  CAS  Google Scholar 

  20. Saber MH, Loomans BA, El Zohairy A, Dörfer CE, El-Badrawy W (2010) Evaluation of proximal contact tightness of Class II resin composite restorations. Oper Dent 35:37–43

    Article  Google Scholar 

  21. Carrilho M, D’Alpino PHP (2018) In: Miletic V (ed) Dental composite materials for direct restorations. Springer International Publishing, pp 291–301

    Google Scholar 

  22. Braga RR (2019) Calcium phosphates as ion-releasing fillers in restorative resin-based materials. Dent Mater 35:3–14

    Article  CAS  Google Scholar 

  23. van Dijken JWV, Pallesen U, Benetti A (2019) A randomized controlled evaluation of posterior resin restorations of an altered resin modified glass-ionomer cement with claimed bioactivity. Dent Mater 35:335–343

    Article  Google Scholar 

  24. Hirani RT, Batra R, Kapoor S (2018) Comparative evaluation of postoperative sensitivity in bulk fill restoratives: a randomized controlled trial. J Int Soc Prev Community Dent 8:534–539

    Article  Google Scholar 

  25. Tiskaya M, Shahid S, Gillam D, Hill R (2021) The use of bioactive glass (BAG) in dental composites: a critical review. Dent Mater 37:296–310

    Article  CAS  Google Scholar 

  26. Par M, Spanovic N, Mohn D, Attin T, Tauböck TT, Tarle Z (2020) Curing potential of experimental resin composites filled with bioactive glass: a comparison between Bis-EMA and UDMA based resin systems. Dent Mater 36:711–723

    Article  CAS  Google Scholar 

  27. Lezaja M, Veljović Dj, Jokic BM, Cvijovic-Alagic I, Zrilic MM, Miletic V (2013) Effect of hydroxyapatite spheres, whiskers, and nanoparticles on mechanical properties of a model BisGMA/TEGDMA composite initially and after storage. J Biomed Mater Res B Appl Biomater 101:1469–1476

    Article  Google Scholar 

  28. Farooq I, Ali S, Al-Saleh S et al (2021) Synergistic effect of bioactive inorganic fillers in enhancing properties of dentin adhesives—a review. Polymers 13:2169

    Article  CAS  Google Scholar 

  29. Lezaja M, Jokic BM, Veljovic Dj, Miletic V (2016) Shear bond strength to dentine of dental adhesives containing hydroxyapatite nano-fillers. J Adhes Sci Technol 30:2678–2689

    Article  CAS  Google Scholar 

  30. Chevalier J, Gremillard L (2009) Ceramics for medical applications: a picture for the next 20 years. J Eur Ceram Soc 29:1245–1255

    Article  CAS  Google Scholar 

  31. Bryksin AV, Brown AC, Baksh MM, Finn MG, Barker TH (2014) Learning from nature—novel synthetic biology approaches for biomaterial design. Acta Biomater 10:1761–1769

    Article  CAS  Google Scholar 

  32. Dorozhkin SV (2015) Calcium orthophosphate bioceramics. Ceram Int 41:13913–13966

    Article  CAS  Google Scholar 

  33. Veljović Dj (2020) Biokeramički materijali na bazi kalcijum-fosfata: procesiranje, svojstva i primena. Faculty of Technology and Metallurgy, University of Belgrade

    Google Scholar 

  34. Stojkovska J, Zvicer J, Andrejevic M, Janaćković Dj, Obradovic B, Veljović Dj (2021) Novel composite scaffolds based on alginate and Mg-doped calcium phosphate fillers: enhanced hydroxyapatite formation under biomimetic conditions. J Biomed Mater Res B Appl Biomater 109:2079–2090

    Article  CAS  Google Scholar 

  35. Janaćković Dj, Petrovic-Prelevic I, Lj K-G, Petrovic R, Jokanovic V, Uskokovic D (2001) Influence of synthesis parameters on the particle sizes of nanostructured calcium hydroxyapatite. Key Eng Mater 192–195:203–206

    Google Scholar 

  36. Palcevskis E, Dindune A, Kuznecova L, Lipe A, Kanepe Z (2005) Granulated composite powders on basis of hydroxyapatite and plasma-processed zirconia and alumina nanopowders. Latvian J Chem 2:128–138

    Google Scholar 

  37. Veljović Dj, Jokic B, Jankovic-Castvan I, Smiciklas I, Petrovic R, Janaćković Dj (2007) Sintering behaviour of nanosized HAP powder. Key Eng Mater 330:259–262

    Article  Google Scholar 

  38. Veljović Dj, Matic T, Stamenic T, Kojic V, Dimitrijevic-Brankovic S, Lukic MJ, Jevtic S, Radovanovic Z, Petrovic R, Janaćković Dj (2019) Mg/Cu co-substituted hydroxyapatite—biocompatibility, mechanical properties and antimicrobial activity. Ceram Int 45:22029–22039

    Article  Google Scholar 

  39. Bose S, Saha SK (2003) Synthesis of hydroxyapatite nanopowders via sucrose-templated Sol-Gel method. J Am Ceram Soc 86:1055–1057

    Article  CAS  Google Scholar 

  40. Sathiskumar S, Vanaraj S et al (2019) Green synthesis of biocompatible nanostructured hydroxyapatite from Cirrhinus mrigala fish scale—a biowaste to biomaterial. Ceram Int 45:7804–7810

    Article  CAS  Google Scholar 

  41. Veljović Dj, Jokic B, Petrovic R, Palcevskis E, Dindune A, Mihailescu IN, Janaćković Dj (2009) Processing of dense nanostructured HAP ceramics by sintering and hot pressing. Ceram Int 35:1407–1413

    Article  Google Scholar 

  42. Tang CY, Uskokovic PS, Tsui CP, Veljović Dj, Petrovic R, Janaćković Dj (2009) Influence of microstructure and phase composition on the nanoindentation characterization of bioceramic materials based on hydroxyapatite. Ceram Int 35:2171–2178

    Article  CAS  Google Scholar 

  43. Veljović Dj, Zalite I, Palcevskis E, Smiciklas I, Petrovic R, Janaćković Dj (2010) Microwave sintering of fine grained HAP and HAP/TCP bioceramics. Ceram Int 360:595–603

    Article  Google Scholar 

  44. Veljović Dj, Jancic-Hajnemann R, Balac I, Jokic B, Putic S, Petrovic R, Janaćković Dj (2011) The effect of the shape and size of the pores on the mechanical properties of porous HAP-based bioceramics. Ceram Int 37:471–479

    Article  Google Scholar 

  45. Veljović Dj, Palcevskis E, Zalite I, Petrovic R, Janaćković Dj (2013) Two-step microwave sintering—a promising technique for the processing of nanostructured bioceramics. Mater Lett 93:251–253

    Article  Google Scholar 

  46. Lezaja M, Veljović Dj, Manojlovic D, Milosevic M, Mitrovic N, Janaćković Dj, Miletic V (2015) Bond strength of restorative materials to hydroxyapatite inserts and dimensional changes of insert-containing restorations during polymerization. Dent Mater 31:171–181

    Article  CAS  Google Scholar 

  47. Ayoub G, Veljović Dj, Lezaja Zebic M, Miletic V, Palcevskis E, Petrovic R, Janaćković Dj (2018) Composite nanostructured hydroxyapatite/yttrium stabilized zirconia dental inserts—the processing and application as dentin substitutes. Ceram Int 44:18200–18208

    Article  CAS  Google Scholar 

  48. Ayoub G, Lezaja Zebic M, Miletic V, Petrovic R, Veljović Dj, Janaćković Dj (2020) Dissimilar sintered calcium phosphate dental inserts as dentine substitutes: Shear bond strength to restorative materials. J Biomed Mater Res B Appl Biomater 108:2461–2470

    Article  CAS  Google Scholar 

  49. Raynaud S, Champion E, Bernache-Assollant D, Thomas P (2002) Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomater 23:1065–1072

    Article  CAS  Google Scholar 

  50. Wang J, Shaw LL (2009) Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness. Biomater 30:6565–6572

    Article  CAS  Google Scholar 

  51. Veljović Dj, Palcevskis E, Dindune A, Putic S, Balac I, Petrovic R, Janaćković Dj (2010) Microwave sintering improves the mechanical properties of biphasic calcium phosphates from hydroxyapatite microspheres produced from hydrothermal processing. J Mater Sci 45:3175–3183

    Article  Google Scholar 

  52. Jokic B, Mitric M, Popovic M, Sima L, Petrescu SM, Petrovic R, Janaćković Dj (2011) The influence of silicon substitution on the properties of spherical- and whisker-like biphasic α-calcium-phosphate/hydroxyapatite particles. J Mater Sci Mater Med 22:2175–2185

    Article  CAS  Google Scholar 

  53. Radovanovic Z, Jokic B, Veljović Dj, Dimitrijevic S, Kojic V, Petrovic R, Janaćković Dj (2014) Antimicrobial activity and biocompatibility of Ag+ and Cu2+ doped biphasic hydroxyapatite/α-tricalcium phosphate obtained from hydrothermally synthesized Ag+ and Cu2+ doped hydroxyapatite. App Surf Sci 307:513–519

    Google Scholar 

  54. Radovanovic Z, Veljović Dj, Radovanovic L, Zalite I, Palcevskis E, Petrovic R, Janaćković Dj (2018) Ag+, Cu2+ and Zn2+ doped hydroxyapatite/tricalcium phosphate bioceramics: influence of doping and sintering technique on mechanical properties. Process Appl Ceram 12:269–277

    Google Scholar 

  55. Iwamoto N, Ruse ND (2003) Fracture toughness of human dentin. J Biomed Mater Res Part A 66:507–512

    Article  Google Scholar 

  56. Lukic M, Stojanovic Z, Skapin SD, Macek-Krzmanc M, Mitric M, Markovic S, Uskokovic D (2011) Dense fine-grained biphasic calcium phosphate (BCP) bioceramics designed by two-step sintering. J Eur Ceram Soc 31:19–27

    Article  CAS  Google Scholar 

  57. Lahiri D, Singh V, Keshri AK, Seal S, Agarwal A (2010) Carbon nanotube toughened hydroxyapatite by spark plasma sintering: Microstructural evolution and multiscale tribological properties. Carbon 48:3103–3120

    Article  CAS  Google Scholar 

  58. Bose S, Dasgupta S, Tarafder S, Bandyopadhyay A (2010) Microwave-processed nanocrystalline hydroxyapatite: simultaneous enhancement of mechanical and biological properties. Acta Biomater 6:3782–3790

    Article  CAS  Google Scholar 

  59. Veljović Dj, Colic M, Kojic V, Bogdanovic G, Kojic Z, Banjac A, Palcevskis E, Petrovic R, Janaćković Dj (2012) The effect of grain size on the biocompatibility, cell-materials interface and mechanical properties of microwave sintered bioceramics. J Biomed Mater Res Part A 100A:3059–3070

    Article  Google Scholar 

  60. Kumar R, Prakash KH, Cheang P, Khor KA (2005) Microstructure and mechanical properties of spark plasma sintered zirconia-hydroxyapatite nano-composite powders. Acta Mater 53:2327–2335

    Article  CAS  Google Scholar 

  61. Vani R, Girija EK, Elayaraja K, Parthiban SP, Kesavamoorthy R, Kalkura SN (2009) Hydrothermal synthesis of porous triphasic hydroxyapatite/(α and β) tricalcium phosphate. J Mater Sci Mater Med 20:43–48

    Article  Google Scholar 

  62. Lopes LCP, Terada RSS, Tsuzuki FM, Giannini M, Hirata R (2020) Heating and preheating of dental restorative materials-a systematic review. Clin Oral Investig 24:4225–4235

    Article  Google Scholar 

  63. Marjanovic J, Veljović Dj, Stasic JN, Savic-Stankovic T, Trifkovic B, Miletic V (2018) Optical properties of composite restorations influenced by dissimilar dentin restoratives. Dent Mater 34:737–745

    Article  CAS  Google Scholar 

  64. Miletic V, Marjanovic J, Veljović Dj, Stasic JN, Petrovic V (2019) Color stability of bulk-fill and universal composite restorations with dissimilar dentin replacement materials. J Esthet Restor Dent 31:520–528

    Article  Google Scholar 

  65. Paravina RD, Perez MM, Ghinea R (2019) Acceptability and perceptibility thresholds in dentistry: a comprehensive review of clinical and research applications. J Esthet Restor Dent 31:103–112

    Article  Google Scholar 

  66. Veljović Dj, Vukovic G, Steins I, Palcevskis E, Uskokovic PS, Petrovic R, Janaćković Dj (2013) Improvement of the mechanical properties of spark plasma sintered HAP bioceramics by decreasing the grain size and by adding multi-walled carbon nanotubes. Sci Sinter 45:233–243

    Article  Google Scholar 

  67. Oktar FN, Agathopoulos S, Ozyegin LS, Gunduz O, Demirkol N, Bozkurt Y, Salman S (2007) Mechanical properties of bovine hydroxyapatite (BHA) composites doped with SiO2, MgO, Al2O3, and ZrO2. J Mater Sci Mater Med 18:2137–2143

    Article  CAS  Google Scholar 

  68. Nie J, Zhou J, Huang X, Wang L, Liu G, Cheng J (2019) Effect of TiO2 doping on densification and mechanical properties of hydroxyapatite by microwave sintering. Ceram Int 45:13647–13655

    Article  CAS  Google Scholar 

  69. Zalite I, Grabis J, Palcevskis E, Herrmann M (2011) Plasma processed nanosized-powders of refractory compounds for obtaining fine-grained advanced ceramics. IOP Conf Ser Mater Sci Eng 18:062024

    Article  Google Scholar 

  70. Stasic JN, Selaković N, Puač N, Miletić M, Malović G, Petrović ZL, Veljović Dj, Miletic V (2019) Effects of non-thermal atmospheric plasma treatment on dentin wetting and surface free energy for application of universal adhesives. Clin Oral Investig 23:1383–1396

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djordje Veljović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Veljović, D., Miletic, V. (2023). Bioceramic Dental Inserts Based on Calcium Phosphate Nano-particles. In: Thomas, S., Baiju, R.M. (eds) Nanomaterials in Dental Medicine. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-8718-2_12

Download citation

Publish with us

Policies and ethics