Skip to main content

Study of Algorithms for Coordinating a Group of Autonomous Robots in a Formation

  • Chapter
  • First Online:
Frontiers in Robotics and Electromechanics

Abstract

This article is devoted to the study of the accuracy of maintaining formation by a group of unmanned aerial vehicles (UAVs) using a motion planning algorithm with a leader and a swarm algorithm. Accuracy is investigated depending on the errors and frequency of navigation data updates. In the leader mode, all UAVs determine their coordinates at discrete times using an external navigation system. Slave UAVs receive the coordinates of the leader at the same time points. Based on the data obtained, a given formation is achieved. In the swarm mode, all UAVs determine their coordinates at discrete times and exchange their coordinates with their neighbors using an external navigation system. The simulation takes into account models of kinematics, dynamics, and actuators, as well as models for the formation of navigation system errors. The model of movement of a group of four quadrocopters is considered. The navigation system model takes into account random errors in the form of color noise and errors of the navigation system. Delays in the communication system channels are also taken into account. The described algorithms are investigated in the article by numerical simulation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arteaga-Escamilla, C.M., Castro-Linares, R., Álvarez-Gallegos, J.: Leader-follower formation with reduction of the off-tracking and velocity estimation under visibility constraints. International J. Adv. Robot. Syst. 18(610) (2021)

    Google Scholar 

  2. Sun, F., Li, H., Zhu, W., Kurths, J.: Fixed-time formation tracking for multiple nonholonomic wheeled mobile robots based on distributed observer. Nonlinear Dyn. 106, 3331–3349 (2021)

    Article  Google Scholar 

  3. Dong, X., Yu, B., Shi, Z., Zhong, Y.: Time-varying formation control for unmanned aerial vehicles: theories and applications. IEEE Trans. Control Syst. Technol. 23(1), 340–348

    Google Scholar 

  4. Pack, D.J., DeLima, P., Toussaint, G.J., York, G.: Cooperative control of UAVs for localization of intermittently emitting mobile targets. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39(4), 959–970 (2009)

    Google Scholar 

  5. Bezruk, G., Martynova, L., Saenko, I.: Dynamic method of searching anthropogenic objects in use of seabed with autonomous underwater vehicles. SPIIRAS Proc. 3(58), 203–226 (2018)

    Article  Google Scholar 

  6. Shepeta, A.P., Nenashev, V.A.: Accuracy characteristics of object location in a two-position system of small onboard radars. Informatsionno-Upravliaiushchie Sistemy 2, 31–36 (2020)

    Google Scholar 

  7. Nenashev, V.A., Shepeta, A.P., Kryachko, A.F.: Fusion radar and optical information in multiposition on-board location systems. In: 2020 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), pp. 1–5 (2020)

    Google Scholar 

  8. Nenashev, V.A., Khanykov, I.G.: Formation of fused images of the land surface from radar and optical images in spatially distributed on-board operational monitoring systems. J. Imaging 7(251) (2021)

    Google Scholar 

  9. Nenashev, V., Khanykov, I.: Formation of a fused image of the land surface based on pixel clustering of location images in a multi-position onboard system. Inform. Autom. 20(2), 302–340 (2021)

    Google Scholar 

  10. Lewis, M.A., Tan, K.-H.: High precision formation control of mobile robots using virtual structures. Auton. Robot. 4, 387–403 (1997)

    Article  Google Scholar 

  11. Tan, K.-H., Lewis, M.: Virtual structures for high-precision cooperative mobile robotic control. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 132–139 (1996)

    Google Scholar 

  12. Morozova, N.S.: Virtual formations and virtual leaders in formation control problem for group of robots. Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya 1, 135–149 (2015)

    Google Scholar 

  13. Endo, T., Maeda, R., Matsuno, F.: Stability analysis of swarm heterogeneous robots with limited field of view. Inform. Autom. 19(5), 942–966 (2020)

    Google Scholar 

  14. Gaiduk, A.R., Martjanov, O.V., Medvedev, M.Y., Pshikhopov, V.K., Hamdan, N., Farhood, A.: Neural network based control system for robots group operating in 2-d uncertain environment. Mekhatronika, Avtomatizatsiya, Upravlenie 21(8), 470–479 (2020)

    Article  Google Scholar 

  15. Pshikhopov, V., Medvedev, M.: Group control of autonomous robots motion in uncertain environment via unstable modes. SPIIRAS Proc. 5(60), 39–63 (2018)

    Article  Google Scholar 

  16. Medvedev, M., Pshikhopov, V., Gurenko, B., Hamdan, N.: Path planning method for mobile robot with maneuver restrictions. In: 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), pp. 1–7 (2021)

    Google Scholar 

  17. Carlos, A., Hebertt, S., Joés, A.: Stability of active disturbance rejection control for uncertain systems: a Lyapunov perspective. Int. J. Robust Nonlinear Control 27, 4541–4553 (2017)

    Google Scholar 

  18. Vorotnikov, V., Vokhmyanina, A.: Feedback liniarization method for problem of control of a part of variables in uncontrolled disturbances. SPIIRAS Proc. 6(61), 61–93 (2018)

    Article  Google Scholar 

  19. Fel’dbaum, A.A.: On the distribution of roots of the characteristic equation of the control system. Avtomatika i Telemekhanika 9(4), 253–279 (1948)

    Google Scholar 

  20. Finaev, V.I., Medvedev, M.Y., Pshikhopov, V.K., Pereverzev, V.A., Soloviev, V.V.: Unmanned powerboat motion terminal control in an environment with moving obstacles. Mekhatronika, Avtomatizatsiya, Upravlenie 22(3), 145–154 (2021)

    Article  Google Scholar 

  21. Park, B.-S.; Yoo, S.-J.: Adaptive secure control for leader-follower formation of nonholonomic mobile robots in the presence of uncertainty and deception attacks. Mathematics 9 (2021)

    Google Scholar 

  22. Hirata-Acosta, J., Pliego-Jiménez, J., Cruz-Hernádez, C., Martínez-Clark, R.: Leader-follower formation control of wheeled mobile robots without attitude measurements. Appl. Sci. 11(12), 5639 (2021)

    Article  Google Scholar 

  23. Maghenem, M., Loria, A., Panteley, E.: Cascades-based leader-follower formation tracking and stabilization of multiple nonholonomic vehicles. IEEE Trans. Autom. Control, Inst. Electr. Electron. Eng. 65(8), 3639–3646 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Wang, Z., Wang, L., Zhang, H., Chen, Q., Liu, J.: Distributed regular polygon formation control and obstacle avoidance for non-holonomic wheeled mobile robots with directed communication topology. IET Control Theory Appl. 14(9), 1113–1122 (2020)

    Article  MathSciNet  Google Scholar 

  25. Sun, J., Chen, J.: A survey on Lyapunov-based methods for stability of linear time-delay systems. Front. Comp. Sci. 11, 555–567 (2017)

    Article  MATH  Google Scholar 

  26. Hu, J., Bhowmick, P., Lanzon, A.: Group coordinated control of networked mobile robots with applications to object transportation. IEEE Trans. Veh. Technol. 70(8), 8269–8274 (2021)

    Article  Google Scholar 

  27. Arnold, W.F., Laub, A.J.: Generalized eigenproblem algorithms and software for algebraic Riccati equations. Proc. IEEE 72(12), 1746–1754 (1984)

    Article  Google Scholar 

  28. Pshikhopov, V., Medvedev, M.: Multi-loop adaptive control of mobile objects in solving trajectory tracking tasks. Autom. Remote. Control. 81(11), 2078–2093 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Thornton, S.T., Marion, J.B.: Classical dynamics of particles and systems. Brooks Cole 5, 672 (2003)

    Google Scholar 

  30. Götten, F., Finger, D.F., Havermann, M., Braun, C., Marino, M., Bil, C.: Full configuration drag estimation of short-to-medium range fixed-wing UAVs and its impact on initial sizing optimization. CEAS Aeronaut. J. 12, 589–603 (2021)

    Article  Google Scholar 

  31. Milne-Thomson, L.M.: Theoretical Aerodynamics. Courier Corporation, p. 464 (2012)

    Google Scholar 

  32. Li, X., Qi, G., Zhang, L.: Time-varying formation dynamics modeling and constrained trajectory optimization of multi-quadrotor UAVs. Nonlinear Dyn. 106, 3265–3284 (2021)

    Article  Google Scholar 

  33. Medvedev, M., Pshikhopov, V.: Path planning of mobile robot group based on neural networks. Lecture Notes in Artificial Intelligence, pp. 51–62 (2020)

    Google Scholar 

  34. Ren, X.X., Yang, G.H.: Noise covariance estimation for networked linear systems under random access protocol scheduling. Neurocomputing 455(30), 68–77 (2021)

    Article  Google Scholar 

  35. Golnaraghi, F., Kuo, B.C.: Automatic Control Systems. 9th edn. Wiley, p. 944 (2010)

    Google Scholar 

  36. Diebold, F.: Elements of Forecasting, 4th edn. Thomson/South-Western, p. 366 (2007)

    Google Scholar 

  37. El-Sheimy, N., Hou, H., Niu, X.: Analysis and modeling of inertial sensors using Allan variance. IEEE Trans. Instrum. Meas. 57(1), 140–149 (2008)

    Article  Google Scholar 

  38. Consolini, L., Morbidi, F., Prattichizzo, D., Tosques, M.: Leader-follower formation control of nonholonomic mobile robots with input constraints. Automatica 44(5), 1343–1349 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Cocetti, M., Tarbouriech, S., Zaccarian, L.: High-gain dead-zone observers for linear and nonlinear plants. IEEE Control Syst. Lett. 3(2), 356–361 (2019)

    Article  MathSciNet  Google Scholar 

  40. Liu, Y., Chen, C., Wu, H., Zhang, Y., Mei, P.: Structural stability analysis and optimization of the quadrotor unmanned aerial vehicles via the concept of Lyapunov exponents. Int. J. Adv. Manuf. Technol. 94(9), 3217–3227 (2018)

    Article  Google Scholar 

  41. Ömürlü, V.E., Büyükşahin, U., Artar, R., Kirli, A., Turgut, M.N.: An experimental stationary quadrotor with variable DOF. Sadhana 38(2), 247–264 (2013)

    Google Scholar 

  42. Pshikhopov, V.K., Medvedev, M.Y., Gurenko, B.V.: Algorithms of terminal control of multi-copters. Mekhatronika, Avtomatizatsiya, Upravlenie 20(1), 44–51 (2019)

    Article  Google Scholar 

  43. Bayindir, L.: A review of swarm robotics tasks. Neurocomputing (2016)

    Google Scholar 

  44. Shi, Y.: Particle swarm optimization: developments, applications and resources. In: 2001 IEEE International Conference on Evolutionary Computing, vol. 1, pp. 81–86 (2001)

    Google Scholar 

  45. Bruce, P.C., Bruce, A.G.: Practical Statistics for Data Scientists, vol. 1. O’Reilly Media (2016)

    Google Scholar 

  46. Zhou, P., Fang, X., Fang, Y., He, R., Long, Y., Huang, G.: Beam management and self-healing for mmWave UAV mesh networks. IEEE Trans. Veh. Technol. 68(2), 1718–1732 (2019)

    Article  Google Scholar 

  47. Li, N., Cürüklü, B., Bastos, J., Sucasas, V., Fernandez, J.A.S., Rodriguez, J.: A probabilistic and highly efficient topology control algorithm for underwater cooperating AUV networks. Sensors 17, 1022 (2017)

    Article  Google Scholar 

  48. Kostjukov, V., Medvedev, M., Pshikhopov, V.: Method for optimizing of mobile robot trajectory in repeller sources field. Inform. Autom. 20(3), 690–726 (2021)

    Google Scholar 

  49. Medvedev, M., Kostjukov, V., Pshikhopov, V.: Optimization of mobile robot movement on a plane with finite number of repeller sources. SPIIRAS Proc. 19(1), 43–78 (2020)

    Article  Google Scholar 

  50. Sánchez-Ibáñez, J.R., Pérez-del-Pulgar, C.J., García-Cerezo, A.: Path planning for autonomous mobile robots: a review. Sensors 21, 7898 (2021)

    Article  Google Scholar 

  51. Mac, T.T., Copot, C., Tran, D.T., De Keyser, R.: Heuristic approaches in robot path planning: a survey. Robot. Auton. Syst. 86, 13–28 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the grant of the Southern Federal University No. SP02/S4_0708Prioritet_06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Medvedev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pshikhopov, V., Medvedev, M., Gurenko, B. (2023). Study of Algorithms for Coordinating a Group of Autonomous Robots in a Formation. In: Ronzhin, A., Pshikhopov, V. (eds) Frontiers in Robotics and Electromechanics. Smart Innovation, Systems and Technologies, vol 329. Springer, Singapore. https://doi.org/10.1007/978-981-19-7685-8_8

Download citation

Publish with us

Policies and ethics