Skip to main content

Iron and Neuropathies

  • Chapter
  • First Online:
Brain-Iron Cross Talk

Part of the book series: Nutritional Neurosciences ((NN))

Abstract

Iron is an indispensable element for metabolic reactions as it is involved in protein synthesis, brain functions, nerve conduction, and myelination. Therefore, balanced iron metabolism in body is an unmet need of the body to perform its various functions properly. Iron overload and deficiency both conditions can affect vital pathways of the living system which could lead to different types of neuropathies. Iron overload is associated with demyelination which reduces the nerve conduction velocity. Hence, reduction in nerve conduction both motor and sensory can cause central and peripheral neuropathy. Furthermore, excess iron is toxic to body which produces reactive oxygen species that is a cause of many types of optic neuropathies. Some genetic problems associated with iron storage genes can cause neurodegeneration with brain iron accumulation (NBIA). Iron is accumulated in NBIA diseases in basal ganglia and iron patches can also be seen on the skin which is a cause of neuropathy. Iron deficiency could also induce neuropathy as iron is involved in myelination. Low-iron diet induces inflammatory responses which are involved in the onset of peripheral neuropathy. Low iron in the body can be a cause of a condition called restless leg syndrome which is a sensorimotor disorder in which there is a strong urge to move legs in resting conditions. So, here it is concluded that iron should be considered as the main marker while studying different types of neuropathies. In this chapter the relationship between iron and neuropathies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Amero, K. K., & Bosley, T. M. (2006). Increased relative mitochondrial DNA content in leucocytes of patients with NAION. The British Journal of Ophthalmology, 90(7), 823–825.

    Article  CAS  Google Scholar 

  • Akyol, A., Kiylioglu, N., Kadikoylu, G., et al. (2003). Iron deficiency anemia and restless legs syndrome: Is there an electrophysiological abnormality? Clinical Neurology and Neurosurgery, 106(1), 23–27.

    Article  Google Scholar 

  • Allen, R. P. (2007). Controversies and challenges in defining the etiology and pathophysiology of restless legs syndrome. The American Journal of Medicine, 120(1 Suppl 1), S13–S21.

    Article  Google Scholar 

  • Altamura, S., & Muckenthaler, M. U. (2009). Iron toxicity in diseases of aging: Alzheimer's disease, Parkinson's disease and atherosclerosis. Journal of Alzheimer's Disease, 16(4), 879–895.

    Article  Google Scholar 

  • Arnold, L. M., Bennett, R. M., Crofford, L. J., et al. (2019). AAPT diagnostic criteria for fibromyalgia. The Journal of Pain, 20(6), 611–628.

    Article  Google Scholar 

  • Arout, C. A., Sofuoglu, M., Bastian, L. A., et al. (2018). Gender differences in the prevalence of fibromyalgia and in concomitant medical and psychiatric disorders: A national veterans health administration study. Journal of Women's Health (2002), 27(8), 1035–1044.

    Article  Google Scholar 

  • Aslan, M., Horoz, M., & Çelik, H. (2011). Evaluation of oxidative status in iron deficiency anemia through total antioxidant capacity measured using an automated method. Turkish Journal of Haematology, 28(1), 42–46.

    Article  Google Scholar 

  • Barbeito, A. G., Garringer, H. J., Baraibar, M. A., et al. (2009). Abnormal iron metabolism and oxidative stress in mice expressing a mutant form of the ferritin light polypeptide gene. Journal of Neurochemistry, 109(4), 1067–1078.

    Article  CAS  Google Scholar 

  • Bastia, J. K., Bhoi, S. K., Kalita, J., et al. (2015). Neuropathy in a cohort of restless leg syndrome patients. Journal of Clinical Neuroscience, 22(8), 1314–1318.

    Article  Google Scholar 

  • Bastian, T. W., von Hohenberg, W. C., Georgieff, M. K., et al. (2019). Chronic energy depletion due to iron deficiency impairs dendritic mitochondrial motility during hippocampal neuron development. The Journal of Neuroscience, 39(5), 802–813.

    Article  CAS  Google Scholar 

  • Baum, P., Kosacka, J., Estrela-Lopis, I., et al. (2016). The role of nerve inflammation and exogenous iron load in experimental peripheral diabetic neuropathy (PDN). Metabolism, 65(4), 391–405.

    Article  CAS  Google Scholar 

  • Baum, P., Toyka, K. V., Blüher, M., et al. (2021). Inflammatory mechanisms in the pathophysiology of diabetic peripheral neuropathy (DN)-new aspects. International Journal of Molecular Sciences, 22(19), 10835.

    Article  CAS  Google Scholar 

  • Baxter, R. V., Ben Othmane, K., Rochelle, J. M., et al. (2002). Ganglioside-induced differentiation-associated protein-1 is mutant in Charcot-Marie-Tooth disease type 4A/8q21. Nature Genetics, 30(1), 21–22.

    Article  CAS  Google Scholar 

  • Baygutalp, F., Altintaş, D., & Ayhan, K. U. L. (2020). Frequency of iron deficiency and iron deficiency anemia in fibromyalgia syndrome. SDÜ Tıp Fakültesi Dergisi, 27(1), 113–118.

    Google Scholar 

  • Bazzichi, L., Giannaccini, G., Betti, L., et al. (2006). Alteration of serotonin transporter density and activity in fibromyalgia. Arthritis Research & Therapy, 8(4), R99.

    Article  Google Scholar 

  • Beard, J. L., & Connor, J. R. (2003). Iron status and neural functioning. Annual Review of Nutrition, 23, 41–58.

    Article  CAS  Google Scholar 

  • Beard, J. L., Wiesinger, J. A., & Jones, B. C. (2006). Cellular iron concentrations directly affect the expression levels of norepinephrine transporter in PC12 cells and rat brain tissue. Brain Research, 1092(1), 47–58.

    Article  CAS  Google Scholar 

  • Bianco, L. E., Wiesinger, J., & Earley, C. J. (2008). Iron deficiency alters dopamine uptake and response to L-DOPA injection in Sprague-Dawley rats. Journal of Neurochemistry, 106(1), 205–215.

    Article  CAS  Google Scholar 

  • Biel, D., Steiger, T. K., & Bunzeck, N. (2021). Age-related iron accumulation and demyelination in the basal ganglia are closely related to verbal memory and executive functioning. Scientific Reports, 11(1), 9438.

    Article  CAS  Google Scholar 

  • Bjørklund, G., Dadar, M., Chirumbolo, S., et al. (2018). Fibromyalgia and nutrition: Therapeutic possibilities? Biomedicine & Pharmacotherapy, 103, 531–538.

    Article  Google Scholar 

  • Boomershine, C. S., Koch, T. A., & Morris, D. (2018). A blinded, randomized, placebo-controlled study to investigate the efficacy and safety of ferric carboxymaltose in iron-deficient patients with fibromyalgia. Rheumatology and Therapy, 5(1), 271–281.

    Article  Google Scholar 

  • Callaghan, B. C., Cheng, H. T., Stables, C. L., et al. (2012). Diabetic neuropathy: Clinical manifestations and current treatments. Lancet Neurology, 11(6), 521–534.

    Article  Google Scholar 

  • Callaghan, B. C., Gao, L., Li, Y., et al. (2018). Diabetes and obesity are the main metabolic drivers of peripheral neuropathy. Annals of Clinical Translational Neurology, 5(4), 397–405.

    Article  Google Scholar 

  • Cepeda-Lopez, A. C., Aeberli, I., & Zimmermann, M. B. (2010). Does obesity increase risk for iron deficiency? A review of the literature and the potential mechanisms. International Journal for Vitamin and Nutrition Research, 80(4–5), 263–270.

    Article  CAS  Google Scholar 

  • Chan, C. K., & Vanhoutte, P. M. (2013). Hypoxia, vascular smooth muscles and endothelium. Acta Pharmaceutica Sinica B, 3(1), 1–7.

    Article  Google Scholar 

  • Cozzi, A., Rovelli, E., Frizzale, G., et al. (2010). Oxidative stress and cell death in cells expressing L-ferritin variants causing neuroferritinopathy. Neurobiology of Disease, 37(1), 77–85.

    Article  CAS  Google Scholar 

  • Cozzi, A., Santambrogio, P., Corsi, B., et al. (2006). Characterization of the l-ferritin variant 460InsA responsible of a hereditary ferritinopathy disorder. Neurobiology of Disease, 23(3), 644–652.

    Article  CAS  Google Scholar 

  • Curtis, A. R., Fey, C., Morris, C. M., et al. (2001). Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nature Genetics, 28(4), 350–354.

    Article  CAS  Google Scholar 

  • Degirmenci, Y., & Kececi, H. (2011). Electrophysiologıcal changes in iron deficiency anemia. Neurologia Croatica, 60, 1.

    Google Scholar 

  • Delima, R. D., Chua, A. C., Tirnitz-Parker, J. E., et al. (2012). Disruption of hemochromatosis protein and transferrin receptor 2 causes iron-induced liver injury in mice. Hepatology, 56(2), 585–593.

    Article  CAS  Google Scholar 

  • Doppler, K., Rittner, H. L., Deckart, M., & Sommer, C. (2015). Reduced dermal nerve fiber diameter in skin biopsies of patients with fibromyalgia. Pain, 156(11), 2319–2325.

    Article  CAS  Google Scholar 

  • Dunaief, J. L. (2006). Iron induced oxidative damage as a potential factor in age-related macular degeneration: The Cogan lecture. Investigative Ophthalmology & Visual Science, 47(11), 4660–4664.

    Article  Google Scholar 

  • Ekbom, K. A. (1960). Restless legs syndrome. Neurology, 10, 868–783.

    Article  CAS  Google Scholar 

  • Farkas, R. H., Chowers, I., Hackam, A. S., et al. (2004). Increased expression of iron-regulating genes in monkey and human glaucoma. Investigative Ophthalmology & Visual Science, 45(5), 1410–1417.

    Article  Google Scholar 

  • Fernández-Real, J. M., & Manco, M. (2014). Effects of iron overload on chronic metabolic diseases. The Lancet Diabetes and Endocrinology, 2(6), 513–526.

    Article  Google Scholar 

  • Ferreira, A., Neves, P., & Gozzelino, R. (2019). Multilevel impacts of iron in the brain: The cross talk between neurophysiological mechanisms, cognition, and social behavior. Pharmaceuticals (Basel), 12(3), 126.

    Article  CAS  Google Scholar 

  • Fitzcharles, M. A., Ste-Marie, P. A., & Pereira, J. X. (2013). Canadian fibromyalgia guidelines committee. Fibromyalgia: Evolving concepts over the past 2 decades. CMAJ, 185(13), E645–E651.

    Article  Google Scholar 

  • Ford, E. S., & Cogswell, M. E. (1999). Diabetes and serum ferritin concentration among U.S. adults. Diabetes Care, 22(12), 1978–1983.

    Article  CAS  Google Scholar 

  • Furness, P. J., Vogt, K., Ashe, S., et al. (2018). What causes fibromyalgia? An online survey of patient perspectives. Health Psychology Open, 5(2), 2055102918802683.

    Article  Google Scholar 

  • Gerding, W. M., Koetting, J., Epplen, J. T., et al. (2009). Hereditary motor and sensory neuropathy caused by a novel mutation in LITAF. Neuromuscular Disorders, 19(10), 701–703.

    Article  Google Scholar 

  • González-Domínguez, Á., Visiedo-García, F. M., Domínguez-Riscart, J., et al. (2020). Iron metabolism in obesity and metabolic syndrome. International Journal of Molecular Sciences, 21(15), 5529.

    Article  Google Scholar 

  • Goralska, M., Nagar, S., Fleisher, L. N., et al. (2005). Differential degradation of ferritin H- and L-chains: Accumulation of L-chain-rich ferritin in lens epithelial cells. Investigative Ophthalmology & Visual Science, 46(10), 3521–3529.

    Article  Google Scholar 

  • Guclu, H., & Doganlar, Z. B. (2018). Distinguishing non-arteritic ischemic optic neuropathy from optic neuritis with serum vitamin B12, ferritin and folic acid level. Beyoglu Eye Journal, 3(2), 52–57.

    Google Scholar 

  • Hare, D., Ayton, S., Bush, A., et al. (2013). A delicate balance: Iron metabolism and diseases of the brain. Frontiers in Aging Neuroscience, 5, 34.

    Article  Google Scholar 

  • Harisudan, S., Prasanna, K. B., & Sharavanan, T. K. (2019). Prevalence of peripheral neuropathy among anaemic patients. Journal Medical Science Clinical Research, 7(9), 243–246.

    Google Scholar 

  • Heidari, M., Gerami, S. H., Bassett, B., et al. (2016a). Pathological relationships involving iron and myelin may constitute a shared mechanism linking various rare and common brain diseases. Rare Diseases, 4(1), e1198458.

    Article  Google Scholar 

  • Heidari, M., Johnstone, D. M., Bassett, B., et al. (2016b). Brain iron accumulation affects myelin-related molecular systems implicated in a rare neurogenetic disease family with neuropsychiatric features. Molecular Psychiatry, 21(11), 1599–1607.

    Article  CAS  Google Scholar 

  • Huang, J., Jones, D., Luo, B., et al. (2011). Iron overload and diabetes risk: A shift from glucose to fatty acid oxidation and increased hepatic glucose production in a mouse model of hereditary hemochromatosis. Diabetes, 60(1), 80–87.

    Article  CAS  Google Scholar 

  • Itoh, K., Negishi, H., Obayashi, C., et al. (1993). Infantile neuroaxonal dystrophy—Immunohistochemical and ultrastructural studies on the central and peripheral nervous systems in infantile neuroaxonal dystrophy. The Kobe Journal of Medical Sciences, 39(4), 133–146.

    CAS  Google Scholar 

  • Johnstone, D., & Milward, E. A. (2010). Genome-wide microarray analysis of brain gene expression in mice on a short-term high iron diet. Neurochemistry International, 56(6–7), 856–863.

    Article  CAS  Google Scholar 

  • Kabakus, N., Ayar, A., Yoldas, T. K., et al. (2002). Reversal of iron deficiency anemia-induced peripheral neuropathy by iron treatment in children with iron deficiency anemia. Journal of Tropical Pediatrics, 48(4), 204–209.

    Article  Google Scholar 

  • Kacer, B., Hattenbach, L. O., Hörle, S., et al. (2001). Central retinal vein occlusion and nonarteritic ischemic optic neuropathy in 2 patients with mild iron deficiency anemia. Ophthalmologica, 215(2), 128–131.

    Article  CAS  Google Scholar 

  • Kalra S, Coetzee A, Kalra PA, et al (2020) Rubrometabolic syndrome. Minerva Endocrinol doi: https://doi.org/10.23736/S0391-1977.20.03353-2. Epub ahead of print.

  • Kernan, K. F., & Carcillo, J. A. (2017). Hyperferritinemia and inflammation. International Immunology, 29(9), 401–409.

    Article  CAS  Google Scholar 

  • Khattar, N., Triebswetter, C., Kiely, M., et al. (2021). Investigation of the association between cerebral iron content and myelin content in normative aging using quantitative magnetic resonance neuroimaging. NeuroImage, 239, 118267.

    Article  CAS  Google Scholar 

  • Kirkham, T. H., Wrigley, P. F., & Holt, J. M. (1971). Central retinal vein occlusion complicating iron deficiency anaemia. The British Journal of Ophthalmology, 55(11), 777–780.

    Article  CAS  Google Scholar 

  • Kirkwood, B. J., & Rees, I. H. (2011). Central corneal iron line arising from hyperopic orthokeratology. Clinical & Experimental Optometry, 94(4), 376–379.

    Article  Google Scholar 

  • Klingelhoefer, L., Bhattacharya, K., & Reichmann, H. (2016). Restless legs syndrome. Clinical Medicine (London, England), 16(4), 379–382.

    Article  Google Scholar 

  • Kortuem, K., Geiger, L. K., & Levin, L. A. (2000). Differential susceptibility of retinal ganglion cells to reactive oxygen species. Investigative Ophthalmology & Visual Science, 41(10), 3176–3182.

    CAS  Google Scholar 

  • Kosmidis, M. L., Koutsogeorgopoulou, L., Alexopoulos, H., et al. (2014). Reduction of intraepidermal nerve fiber density (IENFD) in the skin biopsies of patients with fibromyalgia: A controlled study. Journal of the Neurological Sciences, 347(1–2), 143–147.

    Article  Google Scholar 

  • Lee, D. H., Liu, D. Y., Jacobs, D. R., Jr., et al. (2006). Common presence of non-transferrin-bound iron among patients with type 2 diabetes. Diabetes Care, 29(5), 1090–1095.

    Article  CAS  Google Scholar 

  • Lee, S. H., Kim, J. W., Shin, S. H., et al. (2009). HFE gene mutations, serum ferritin level, transferrin saturation, and their clinical correlates in a Korean population. Digestive Diseases and Sciences, 54(4), 879–886.

    Article  CAS  Google Scholar 

  • Legangneux, E., Mora, J. J., Spreux-Varoquaux, O., et al. (2001). Cerebrospinal fluid biogenic amine metabolites, plasma-rich platelet serotonin and [3H]imipramine reuptake in the primary fibromyalgia syndrome. Rheumatology (Oxford), 40(3), 290–296.

    Article  CAS  Google Scholar 

  • Levi, S., & Taveggia, C. (2014). Iron homeostasis in peripheral nervous system, still a black box? Antioxidants & Redox Signaling, 21(4), 634–648.

    Article  CAS  Google Scholar 

  • Levin, L. A., & Geszvain, K. M. (1998). Expression of ceruloplasmin in the retina: Induction after optic nerve crush. Investigative Ophthalmology & Visual Science, 39(1), 157–163.

    CAS  Google Scholar 

  • Llewelyn, J. G. (2003). The diabetic neuropathies: Types, diagnosis and management. Journal of Neurology, Neurosurgery, and Psychiatry, 74(Suppl 2), ii15–ii19.

    Google Scholar 

  • Loh, A., Hadziahmetovic, M., & Dunaief, J. L. (2009). Iron homeostasis and eye disease. Biochimica et Biophysica Acta, 1790(7), 637–649.

    Article  CAS  Google Scholar 

  • Mietto, B. S., Jhelum, P., Schulz, K., et al. (2021). Schwann cells provide iron to axonal mitochondria and its role in nerve regeneration. The Journal of Neuroscience, 41(34), 7300–7313.

    Article  CAS  Google Scholar 

  • Morath, D. J., & Mayer-Pröschel, M. (2001). Iron modulates the differentiation of a distinct population of glial precursor cells into oligodendrocytes. Developmental Biology, 237(1), 232–243.

    Article  CAS  Google Scholar 

  • Morath, D. J., & Mayer-Pröschel, M. (2002). Iron deficiency during embryogenesis and consequences for oligodendrocyte generation in vivo. Developmental Neuroscience, 24(2–3), 197–207.

    Article  CAS  Google Scholar 

  • Morse, A. C., Beard, J. L., & Jones, B. C. (1999). A genetic developmental model of iron deficiency: Biological aspects. Proceedings of the Society for Experimental Biology and Medicine, 220(3), 147–152.

    Article  CAS  Google Scholar 

  • Noack, R., Frede, S., Albrecht, P., et al. (2012). Charcot-Marie-Tooth disease CMT4A: GDAP1 increases cellular glutathione and the mitochondrial membrane potential. Human Molecular Genetics, 21(1), 150–162.

    Article  Google Scholar 

  • O’Keeffe, S. T. (1996). Restless legs syndrome. A review. Archives of Internal Medicine, 156(3), 243–248.

    Article  Google Scholar 

  • Ortancil, O., Sanli, A., Eryuksel, R., et al. (2010). Association between serum ferritin level and fibromyalgia syndrome. European Journal of Clinical Nutrition, 64(3), 308–312.

    Article  CAS  Google Scholar 

  • Ortiz, E., Pasquini, J. M., Thompson, K., Felt, B., Butkus, G., Beard, J., & Connor, J. R. (2004). Effect of manipulation of iron storage, transport, or availability on myelin composition and brain iron content in three different animal models. Journal of Neuroscience Research, 77(5), 681–689.

    Article  CAS  Google Scholar 

  • Pamuk, G. E., Pamuk, O. N., Set, T., et al. (2008). An increased prevalence of fibromyalgia in iron deficiency anemia and thalassemia minor and associated factors. Clinical Rheumatology, 27(9), 1103–1108.

    Article  Google Scholar 

  • Pareyson, D., & Marchesi, C. (2009). Diagnosis, natural history, and management of Charcot-Marie-tooth disease. Lancet Neurology, 8(7), 654–667.

    Article  CAS  Google Scholar 

  • Pareyson, D., Reilly, M. M., Schenone, A., et al. (2011). Ascorbic acid in Charcot-Marie-tooth disease type 1A (CMT-TRIAAL and CMT-TRAUK): A double-blind randomised trial. Lancet Neurology, 10(4), 320–328.

    Article  CAS  Google Scholar 

  • Pique, K., Taber, W., Thompson, A., et al. (2021). Isolated optic neuropathy due to folate deficiency with associated iron overload. BML Case Reports, 14(7), e242399.

    Article  Google Scholar 

  • Qi, X., Lewin, A. S., Sun, L., et al. (2007). Suppression of mitochondrial oxidative stress provides long-term neuroprotection in experimental optic neuritis. Investigative Ophthalmology & Visual Science, 48(2), 681–691.

    Article  Google Scholar 

  • Quinn, C., Uzbeck, M., Saleem, I., et al. (2011). Iron status and chronic kidney disease predict restless legs syndrome in an older hospital population. Sleep Medicine, 12(3), 295–301.

    Article  Google Scholar 

  • Rajpathak, S. N., Crandall, J. P., Wylie-Rosett, J., et al. (2009). The role of iron in type 2 diabetes in humans. Biochimica et Biophysica Acta, 1790(7), 671–681.

    Article  CAS  Google Scholar 

  • Rensvold, J. W., Krautkramer, K. A., Dowell, J. A., et al. (2016). Iron deprivation induces transcriptional regulation of mitochondrial biogenesis. The Journal of Biological Chemistry, 291(40), 20827–20837.

    Article  CAS  Google Scholar 

  • Riaz, N., & Guerinot, M. L. (2021). All together now: Regulation of the iron deficiency response. Journal of Experimental Botany, 72(6), 2045–2055.

    Article  CAS  Google Scholar 

  • Russell, I. J., Vaeroy, H., Javors, M., et al. (1992). Cerebrospinal fluid biogenic amine metabolites in fibromyalgia/fibrositis syndrome and rheumatoid arthritis. Arthritis and Rheumatism, 35(5), 550–556.

    Article  CAS  Google Scholar 

  • Sahay, M., Kalra, S., Tiwaskar, M., et al. (2017). Indian college of physicians position statement on anemia in metabolic syndrome. The Journal of the Association of Physicians of India, 65(6), 60–73.

    Google Scholar 

  • Said, G. (2013). Diabetic neuropathy. Handbook of Clinical Neurology, 115, 579–589.

    Article  Google Scholar 

  • Scherer, S. S., & Wrabetz, L. (2008). Molecular mechanisms of inherited demyelinating neuropathies. Glia, 56(14), 1578–1589.

    Article  Google Scholar 

  • Sharma, G., Gupta, S., Atri, S. K., et al. (2021). Reversible alteration of nerve conduction velocity in iron deficient anemic patients in response to treatment. Journal of Advances in Medicine and Medical Research, 30(7), 40–44.

    Article  Google Scholar 

  • Street, V. A., Bennett, C. L., Goldy, J. D., et al. (2003). Mutation of a putative protein degradation gene LITAF/SIMPLE in Charcot-Marie-Tooth disease 1C. Neurology, 60(1), 22–26.

    Article  CAS  Google Scholar 

  • Swaminathan, A., Kumarasamy, S., Shanmugam, S., et al. (2016). Motor nerve conduction parameters in patients with iron deficiency anemia. National Journal of Physiology Pharmacy and Pharmacology, 6(6), 567.

    Article  CAS  Google Scholar 

  • Swanson, K. I., Schlieve, C. R., Lieven, C. J., et al. (2005). Neuroprotective effect of sulfhydryl reduction in a rat optic nerve crush model. Investigative Ophthalmology & Visual Science, 46(10), 3737–3741.

    Article  Google Scholar 

  • Thompson, K. J., Shoham, S., & Connor, J. R. (2001). Iron and neurodegenerative disorders. Brain Research Bulletin, 55(2), 155–164.

    Article  CAS  Google Scholar 

  • Tripathi, R., Borisuth, N. S., Tripathi, B. J., et al. (1992). Quantitative and qualitative analyses of transferrin in aqueous humor from patients with primary and secondary glaucomas. Investigative Ophthalmology & Visual Science, 33(10), 2866–2873.

    CAS  Google Scholar 

  • Vital, A., & Vital, C. (2012). Mitochondria and peripheral neuropathies. Journal of Neuropathology and Experimental Neurology, 71(12), 1036–1046.

    Article  CAS  Google Scholar 

  • Walter, P. B., Knutson, M. D., Paler-Martinez, A., et al. (2002). Iron deficiency and iron excess damage mitochondria and mitochondrial DNA in rats. Proceedings of the National Academy of Sciences of the USA, 99(4), 2264–2269.

    Article  CAS  Google Scholar 

  • Wan, L., Nie, G., Zhang, J., et al. (2012). Overexpression of human wild-type amyloid-β protein precursor decreases the iron content and increases the oxidative stress of neuroblastoma SH-SY5Y cells. Journal of Alzheimer's Disease, 30(3), 523–530.

    Article  CAS  Google Scholar 

  • Williams, S. M., Eleftheriadou, A., Alam, U., et al. (2019). Cardiac autonomic neuropathy in obesity, the metabolic syndrome and prediabetes: A narrative review. Diabetes Therapy, 10(6), 1995–2021.

    Article  Google Scholar 

  • Wong, R. W., Richa, D. C., Hahn, P., et al. (2007). Iron toxicity as a potential factor in AMD. Retina, 27(8), 997–1003.

    Article  Google Scholar 

  • Wu, W., Yuan, J., Shen, Y., et al. (2020). Iron overload is related to elevated blood glucose levels in obese children and aggravates high glucose-induced endothelial cell dysfunction in vitro. BMJ Open Diabetes Research & Care, 8(1), e001426.

    Article  Google Scholar 

  • Youdim, M. B., Ben-Shachar, D., & Yehuda, S. (1989). Putative biological mechanisms of the effect of iron deficiency on brain biochemistry and behavior. The American Journal of Clinical Nutrition, 50(3 Suppl), 607–615. discussion 615-617.

    Article  CAS  Google Scholar 

  • Zhao, L., Hadziahmetovic, M., Wang, C., et al. (2015). Cp/Heph mutant mice have iron-induced neurodegeneration diminished by deferiprone. Journal of Neurochemistry, 135(5), 958–974.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Afzal, A., Sadir, S., Batool, Z., Liaquat, L., Haider, S. (2023). Iron and Neuropathies. In: Mohamed, W., Brogazzi, N.L., Kostrzewa, R.M. (eds) Brain-Iron Cross Talk. Nutritional Neurosciences. Springer, Singapore. https://doi.org/10.1007/978-981-19-7327-7_13

Download citation

Publish with us

Policies and ethics