Skip to main content

Impact of Bifurcation and Bifurcation Angle on the Hemodynamics of Coronary Arteries

  • Conference paper
  • First Online:
Fluid Mechanics and Fluid Power (Vol. 3) (FMFP 2021)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 771 Accesses

Abstract

Atherosclerosis is the narrowing of the blood vessels due to the deposition of atherosclerotic plaque. Hemodynamic parameters play a critical role in the development and advancement of this cardiovascular diseases (CVDs). This paper presents the effect of bifurcations on the blood flow through left coronary artery. An idealized 3D geometry of left coronary artery is used to investigate the possible effect of flow paraments such as velocity and pressure in the vicinity of arterial walls. The effect of bifurcating angle and distance between bifurcation was examined and quantified to study the blood flow through the bifurcations and its effect. The results shows that the wall shear stress (WSS) increases near the bifurcations due to flow recirculation. In the narrow artery, the effect of WSS is observed to be high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lopes, D., Agujetas, R., Puga, H., Teixeira, J., Lima, R., Alejo, J. P., & Ferrera, C. (2021). Analysis of finite element and finite volume methods for fluid-structure interaction simulation of blood flow in a real stenosed artery. International Journal of Mechanical Sciences, 207, 106650.

    Google Scholar 

  2. Mahalingam, A., Gawandalkar, U. U., Kini, G., Buradi, A., Araki, T., Ikeda, N., ... & Suri, J. S. (2016). Numerical analysis of the effect of turbulence transition on the hemodynamic parameters in human coronary arteries. Cardiovascular Diagnosis And Therapy, 6(3), 208.

    Google Scholar 

  3. Nemes, A., Forster, T., Ungi, I., Nagy, V., Vass, A., Pálinkás, A., ... & Csanády, M. (2005). The coronary flow velocity reserve measured by stress transoesophageal echocardiography evaluates the success of coronary interventions–results of a 5-year follow-up. Scandinavian Cardiovascular Journal, 39(5), 286-292.

    Google Scholar 

  4. Ku, D. N., Giddens, D. P., Zarins, C. K., & Glagov, S. (1985). Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis: An Official Journal of the American Heart Association, Inc., 5(3), 293-302.

    Google Scholar 

  5. Buradi, A., & Mahalingam, A. (2018). Effect of stenosis severity on wall shear stress based hemodynamic descriptors using multiphase mixture theory. J. Appl. Fluid Mech, 11(6), 1497-1509.

    Google Scholar 

  6. Yim P, Demarco KJ, Castro MA, Cebral J. Characterization of shear stress on the wall of the carotid artery using magnetic resonance imaging and computational fluid dynamics. Stud Health Technol Inform. 2005; 113:412–42.

    Google Scholar 

  7. Buradi, A., & Mahalingam, A. (2020). Numerical Analysis of Wall Shear Stress Parameters of Newtonian Pulsatile Blood Flow Through Coronary Artery and Correlation to Atherosclerosis. In Advances in Mechanical Engineering (pp. 107-118). Springer, Singapore.

    Google Scholar 

  8. Zarins, C. K., Giddens, D. P., Bharadvaj, B. K., Sottiurai, V. S., Mabon, R. F., & Glagov, S. (1983). Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circulation research, 53(4), 502-514.

    Google Scholar 

  9. Buradi, A., & Mahalingam, A. (2020). Impact of coronary tortuosity on the artery hemodynamics. Biocybernetics and Biomedical Engineering, 40(1), 126-147.

    Google Scholar 

  10. Marshall, I., Zhao, S., Papathanasopoulou, P., Hoskins, P., & Xu, X. Y. (2004). MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models. Journal of biomechanics, 37(5), 679-687.

    Google Scholar 

  11. Buradi, A., Morab, S., & Mahalingam, A. (2019). Effect of stenosis severity on shear-induced diffusion of red blood cells in coronary arteries. Journal of Mechanics in Medicine and Biology, 19(05), 1950034.

    Google Scholar 

  12. Kousera, C. A., Wood, N. B., Seed, W. A., Torii, R., O'regan, D., & Xu, X. Y. (2013). A numerical study of aortic flow stability and comparison with in vivo flow measurements. Journal of biomechanical engineering, 135(1), 011003.

    Google Scholar 

  13. Juan, Y. H., Tsay, P. K., Shen, W. C., Yeh, C. S., Wen, M. S., & Wan, Y. L. (2017). Comparison of the left main coronary bifurcating angle among patients with normal, non-significantly and significantly stenosed left coronary arteries. Scientific reports, 7(1), 1-8.

    Google Scholar 

  14. Khader, S. A., Ayachit, A., Pai, R., Ahmed, K. A., Rao, V. R. K., & Kamath, S. G. (2014). Haemodynamics study in subject specific carotid bifurcation using FSI. vol, 8, 1923-1928.

    Google Scholar 

  15. Raut, B. K., Patil, V. N., & Cherian, G. (2017). Coronary artery dimensions in normal Indians. Indian heart journal, 69(4), 512-514.

    Google Scholar 

  16. Jahromi, R., Pakravan, H. A., Saidi, M. S., & Firoozabadi, B. (2019). Primary stenosis progression versus secondary stenosis formation in the left coronary bifurcation: A mechanical point of view. Biocybernetics and Biomedical Engineering, 39(1), 188-198.

    Google Scholar 

  17. Andayesh, M., Shahidian, A., & Ghassemi, M. (2020). Numerical investigation of renal artery hemodynamics based on the physiological response to renal artery stenosis. Biocybernetics and Biomedical Engineering, 40(4), 1458-1468.

    Google Scholar 

  18. Abbasian, M., Shams, M., Valizadeh, Z., Moshfegh, A., Javadzadegan, A., & Cheng, S. (2020). Effects of different non-Newtonian models on unsteady blood flow hemodynamics in patient-specific arterial models with in-vivo validation. Computer methods and programs in biomedicine, 186, 105185.

    Google Scholar 

  19. Soares, A. A., Gonzaga, S., Oliveira, C., Simões, A., & Rouboa, A. I. (2017). Computational fluid dynamics in abdominal aorta bifurcation: non-Newtonian versus Newtonian blood flow in a real case study. Computer methods in biomechanics and biomedical engineering, 20(8), 822-831.

    Google Scholar 

  20. Quemada, D. (1978). Rheology of concentrated disperse systems II. A model for non-newtonian shear viscosity in steady flows. Rheologica Acta, 17(6), 632-642.

    Google Scholar 

  21. Abugattas, C., Aguirre, A., Castillo, E., & Cruchaga, M. (2020). Numerical study of bifurcation blood flows using three different non-Newtonian constitutive models. Applied Mathematical Modelling, 88, 529-549.

    Google Scholar 

  22. Liepsch, D., Moravec, S., Rastogi, A. K., & Vlachos, N. S. (1982). Measurement and calculations of laminar flow in a ninety-degree bifurcation. Journal of biomechanics, 15(7), 473-485.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulrajak Buradi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dhungana, A., Buradi, A., Dahal, P., Bora, B.J. (2023). Impact of Bifurcation and Bifurcation Angle on the Hemodynamics of Coronary Arteries. In: Bhattacharyya, S., Verma, S., Harikrishnan, A.R. (eds) Fluid Mechanics and Fluid Power (Vol. 3). FMFP 2021. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-6270-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6270-7_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6269-1

  • Online ISBN: 978-981-19-6270-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics