Skip to main content
Log in

Influence of coronary bifurcation angle on atherosclerosis

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Hemodynamics plays a crucial role in the development and progression of coronary atherosclerosis, which is prone to occur in branch bifurcation. An individual aortic-coronary artery model and three changed bifurcation angle models are constructed by Mimics and Freeform based on computed tomography angiography. The influence of different coronary bifurcation angles between left main (LM), left anterior descending (LAD), and left circumflex (LCX) on the blood flow field and related hemodynamic parameters are studied. It is shown that a wider bifurcation angle between LAD and LCX can cause a wider low-wall shear stress area, leading to atherosclerosis. Similarly, a decreased angle between LM and LAD is predisposed to prevent atherosclerosis. The results help to better understand the hemodynamic causes of atherosclerosis with various bifurcation angles in coronary arteries and to provide guidance for clinical assessment and prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Burzotta, F., Lassen, J.F., Banning, A.P., et al.: Percutaneous coronary intervention in left main coronary artery disease: the 13th consensus document from the European Bifurcation Club. EuroIntervention 14, 112–120 (2018)

    Article  Google Scholar 

  2. Ajayi, N.O., Lazarus, L., Vanker, E.A., et al.: The impact of left main coronary artery morphology on the distribution of atherosclerotic lesions in its branches. Folia Morphol. 72, 197–201 (2013)

    Article  Google Scholar 

  3. Ragosta, M.: Left main coronary artery disease: importance, diagnosis, assessment, and management. Curr. Probl. Cardiol. 40, 93–126 (2015)

    Article  Google Scholar 

  4. Lefèvre, T., Girasis, C., Lassen, J.F.: Differences between the left main and other bifurcations. EuroIntervention J. EuroPCR Collab. Work. Group Interv. Cardiol. Eur. Soc. Cardiol. 11, 106–110 (2015)

    Google Scholar 

  5. Pflederer, T., Ludwig, J., Ropers, D., et al.: Measurement of coronary artery bifurcation angles by multidetector computed tomography. Invest. Radiol. 41, 793–798 (2006)

    Article  Google Scholar 

  6. Malvè, M., Gharib, A.M., Yazdani, S.K., et al.: Tortuosity of coronary bifurcation as a potential local risk factor for atherosclerosis: CFD steady state study based on in vivo dynamic CT measurements. Ann. Biomed. Eng. 43, 82–93 (2015)

    Article  Google Scholar 

  7. Konishi, T., Funayama, N., Yamamoto, T., et al.: Relationship between left main and left anterior descending arteries bifurcation angle and coronary artery calcium score in chronic kidney disease: a 3-dimensional analysis of coronary computed tomography. PLoS ONE 13, e0198566 (2018)

    Article  Google Scholar 

  8. Cui, Y., Zeng, W., Yu, J., et al.: Quantification of left coronary bifurcation angles and plaques by coronary computed tomography angiography for prediction of significant coronary stenosis: a preliminary study with dual-source CT. PLoS ONE 12, e0174352 (2017)

    Article  Google Scholar 

  9. Cademartiri, F., La Grutta, L., Malagó, R., et al.: Assessment of left main coronary artery atherosclerotic burden using 64-slice CT coronary angiography: correlation between dimensions and presence of plaques. Radiol. Med. (Torino) 114, 358–369 (2009)

    Article  Google Scholar 

  10. Yamada, R., Tremmel, J.A., Tanaka, S., et al.: Functional versus anatomic assessment of myocardial bridging by intravascular ultrasound: impact of arterial compression on proximal atherosclerotic plaque. J. Am. Heart Assoc. 5, e001735 (2016)

    Article  Google Scholar 

  11. Malcolm, A.D., Roach, M.R.: Flow disturbances at the apex and lateral angles of a variety of bifurcation models and their role in development and manifestations of arterial disease. Stroke 10, 335–343 (1979)

    Article  Google Scholar 

  12. Chaichana, T., Sun, Z., Jewkes, J.: Computation of hemodynamics in the left coronary artery with variable angulations. J. Biomech. 44, 1869–1878 (2011)

    Article  Google Scholar 

  13. Chiastra, C., Gallo, D., Tasso, P., et al.: Healthy and diseased coronary bifurcation geometries influence near-wall and intravascular flow: a computational exploration of the hemodynamic risk. J. Biomech. 58, 79–88 (2017)

    Article  Google Scholar 

  14. Doutel, E., Pinto, S.I.S., Campos, J., et al.: Link between deviations from Murray’s Law and occurrence of low wall shear stress regions in the left coronary artery. J. Theor. Biol. 402, 89–99 (2016)

    Article  MathSciNet  Google Scholar 

  15. Sun, Z., Cao, Y.: Multislice CT angiography assessment of left coronary artery: correlation between bifurcation angle and dimensions and development of coronary artery disease. Eur. J. Radiol. 79, e90–e95 (2011)

    Article  Google Scholar 

  16. Malvè, M., García, A., Ohayon, J., et al.: Unsteady blood flow and mass transfer of a human left coronary artery bifurcation: FSI versus CFD. Int. Commun. Heat Mass Transf. 39, 745–751 (2012)

    Article  Google Scholar 

  17. Chen, X., Gao, Y., Lu, B., et al.: Hemodynamics in coronary arterial tree of serial stenoses. PLoS ONE 11, e0163715 (2016)

    Article  Google Scholar 

  18. Bahrami, S., Norouzi, M.: A numerical study on hemodynamics in the left coronary bifurcation with normal and hypertension conditions. Biomech. Model. Mechanobiol. 17, 1785–1796 (2018)

    Article  Google Scholar 

  19. Zaromytidou, M., Siasos, G., Coskun, A.U., et al.: Intravascular hemodynamics and coronary artery disease: new insights and clinical implications. Hell. J. Cardiol. 57, 389–400 (2016)

    Article  Google Scholar 

  20. Rikhtegar, F., Knight, J.A., Olgac, U., et al.: Choosing the optimal wall shear parameter for the prediction of plaque location—a patient-specific computational study in human left coronary arteries. Atherosclerosis 221, 432–437 (2012)

    Article  Google Scholar 

  21. He, X., Ku, D.N.: Pulsatile flow in the human left coronary artery bifurcation: average conditions. J. Biomech. Eng. 118, 74–82 (1996)

    Article  Google Scholar 

  22. Grøttum, P., Svindland, A., Wallrøe, L.: Localization of atherosclerotic lesions in the bifurcation of the main left coronary artery. Atherosclerosis 47, 55–62 (1983)

    Article  Google Scholar 

  23. Liu, H., Liang, F., Wong, J., et al.: Multi-scale modeling of hemodynamics in the cardiovascular system. Acta Mech. Sin. 31, 446–464 (2015)

    Article  MathSciNet  Google Scholar 

  24. Kim, H.J., Vignon-Clementel, I.E., Coogan, J.S., et al.: Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann. Biomed. Eng. 38, 3195–3209 (2010)

    Article  Google Scholar 

  25. Kashefi, A., Mahdinia, M., Firoozabadi, B., et al.: Multidimensional modeling of the stenosed carotid artery: a novel CAD approach accompanied by an extensive lumped model. Acta Mech. Sin. 30, 259–273 (2014)

    Article  MathSciNet  Google Scholar 

  26. Moghadam, M.E., Vignon-Clementel, I.E., Figliola, R., et al.: A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. J. Comput. Phys. 244, 63–79 (2013)

    Article  MathSciNet  Google Scholar 

  27. Tran, J.S., Schiavazzi, D.E., Ramachandra, A.B., et al.: Automated tuning for parameter identification and uncertainty quantification in multi-scale coronary simulations. Comput. Fluids 142, 128–138 (2017)

    Article  MathSciNet  Google Scholar 

  28. Kung, E.O., Les, A.S., Figueroa, C.A., et al.: In vitro validation of finite element analysis of blood flow in deformable models. Ann. Biomed. Eng. 39, 1947–1960 (2011)

    Article  Google Scholar 

  29. Kung, E., Kahn, A.M., Burns, J.C., et al.: In vitro validation of patient-specific hemodynamic simulations in coronary aneurysms caused by Kawasaki disease. Cardiovasc. Eng. Technol. 5, 189–201 (2014)

    Article  Google Scholar 

  30. Duanmu, Z., Yin, M., Fan, X., et al.: A patient-specific lumped-parameter model of coronary circulation. Sci. Rep. 8, 874 (2018)

    Article  Google Scholar 

  31. Lan, H., Updegrove, A., Wilson, N.M., et al.: A re-engineered software interface and workflow for the open-source simvascular cardiovascular modeling package. J. Biomech. Eng. 140, 024501 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the Specialized Research Fund for the Doctoral Program of Higher Education (Grant 20131103110025), the Key Program of Science and Technology Plan of Beijing Municipal Education Commission (Grant KZ201710005006), and the National Natural Science Foundation of China (Grant 81601557).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaomiao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zhao, S., Li, Y. et al. Influence of coronary bifurcation angle on atherosclerosis. Acta Mech. Sin. 35, 1269–1278 (2019). https://doi.org/10.1007/s10409-019-00878-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00878-7

Keywords

Navigation