Skip to main content

Glass–ceramics: A Potential Material for Energy Storage and Photonic Applications

  • Chapter
  • First Online:
Glasses and Glass-Ceramics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 178))

Abstract

Glass–ceramics are a class of materials with immense potential for many applications. Glass–ceramics, synthesized with appropriate composition and crystallized using a suitable heat-treatment protocol can have many important properties such as their optical, mechanical, thermal, chemical, and dielectric behavior tailored to particular values. The last decade has witnessed a global demand for improved of energy efficiency and the requirement to develop new green energy sources. Also, new, low-cost materials are needed: (i) that can better exploit light by performing existing photonic functions more efficiently and (ii) to create new devices. Glass–ceramics by virtue of their unique combination of properties can fill the need for energy storage and photonic applications. Starting with a short introduction to this class of materials, the chapter summarizes the state-of-the-art and the prospects for progress for dielectric, energy storage, and photonic applications of some recently developed novel glass–ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zanotto ED, Mauro JC (2017) The glassy state of matter: its definition and ultimate fate. J Non-Cryst Solids 471:490–495

    Article  CAS  Google Scholar 

  2. McMillan PW (1979) Glass-ceramics, 2nd edn. Academic Press, London

    Google Scholar 

  3. Réaumur RAM (1739) The art of matching a new grid of porcelain. Memories Acad Sci Paris 377–88

    Google Scholar 

  4. Stookey SD (1954) Photosensitively opacifiable glass. U.S. Pat. No. 2 684 911

    Google Scholar 

  5. Stookey SD (1953) Chemical machining of photosensitive glass. Ind Eng Chem 45:115–118

    Article  CAS  Google Scholar 

  6. Stookey SD (1959) Catalyzed crystallization of glasses in theory and practice. Ind Eng Chem 51:805

    Article  CAS  Google Scholar 

  7. Deubener J, Allix M, Davis MJ, Duran A, Höche T, Honma T, Komatsu T, Krüger S, Mitra I, Müller R, Nakane S, Pascual MJ, Schmelzer JWP, Zanotto ED, Zhou S (2018) Updated definition of glass-ceramics. J Non-Cryst Solids 501:3–10

    Article  CAS  Google Scholar 

  8. Holand W, Beall GH (2012) Glass-Ceramic technology, 2nd edn. Wiley, New Jersey

    Book  Google Scholar 

  9. Weinberg MC (1994) Glass-forming ability and glass stability in simple systems. J Non Cryst Solids 167:81–88

    Article  CAS  Google Scholar 

  10. Marghussian V (2015) Nano-Glass ceramics: processing, properties and applications, 1st edn. Elsevier, New York

    Google Scholar 

  11. Ray CS, Day DE (1990) Determining the nucleation rate curve for lithium disilicate glass by differential thermal analysis. J Am Ceram Soc 73:439–442

    Article  CAS  Google Scholar 

  12. Xu XJ, Ray CS, Day DE (1991) Nucleation and crystallization of Na2O.2CaO.3SiO2 glass by differential thermal analysis. J Am Ceram Soc 74:909–914

    Article  CAS  Google Scholar 

  13. Abyzov AS, Fokin VM, Zanotto ED (2018) Predicting homogenous nucleation rates in silicate glass formers. J Non Cryst Solids 500:231–234

    Article  CAS  Google Scholar 

  14. Khater GA, Safwat EM, Kang J, Yue Y, Khater AGA (2020) Some types of glass-ceramic materials and their applications. Int J Res 7:1–16

    Google Scholar 

  15. Rawlings R (1997) Production and properties of Silceram glass ceramics, glass-ceramic materials Ðfundamentals and applications. 115–133

    Google Scholar 

  16. Francis RR, Boccaccini A (2002) Glassceramics from mixtures of coal ash and soda-lime glass by the petrurgic method. J Mater Sci Lett 21:975–980

    Article  CAS  Google Scholar 

  17. Hing P, Sinha V, Ling PB (1997) The effects of some processing parameters on the sinterability, microstructures properties of sintered cordierite glass ceramics. J Mater Process Technol 63:604–609

    Article  Google Scholar 

  18. Lambrinou K, Van der Biest O, Boccaccini A, Taplin D (1996) Densification and crystallization behaviour of barium magnesium aluminosilicate glass powder compacts. J Eur Ceram Soc 16:1237–1244

    Article  CAS  Google Scholar 

  19. Scherer GW (1977) Sintering of low-density glasses: Part I. Theory J Am Ceram Soc 60:239–243

    Article  CAS  Google Scholar 

  20. Zanotto E, Prado M (2001) Isothermal sintering with concurrent crystallization of monodispersed and polydispersed glass particles. Part 1. Phys Chem Glasses 42:191–198

    CAS  Google Scholar 

  21. Brinker CJ, Scherer GW (1989) Sol-gel science. Academic press, New York

    Google Scholar 

  22. Davis MJ, Zanotto ED (2017) Glass-ceramics and realization of the unobtainable: property combinations that push the envelope. MRS Bull 42(3):195–199

    Article  CAS  Google Scholar 

  23. Beall GH (1971) Structure, properties and nucleation of glass-ceramics. In: Hench LL, Freiman SW (eds) Advances in nucleation and crystallization in glasses, special publ. No.5. The American Ceramic Society, Columbus, OH pp 251–261

    Google Scholar 

  24. Pincus AG (1971) Application of glass-ceramics. In: Advances in nucleation and crystallization in glasses. The American Ceramic Society, OH Spec Publ No. 5

    Google Scholar 

  25. Tashiro T, Wada M (1963) Glass-ceramics crystallized with zirconia. In: Advances in glass technology. Plenum Press, New York

    Google Scholar 

  26. Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) J Biomed Mater Res 5:117

    Article  Google Scholar 

  27. Ducheyne P, Qiu Q (1999) Biomaterials 20:2287

    Article  CAS  Google Scholar 

  28. Sanz-Herrera JA, Boccaccini AR (2011) Int J Solids Struct 48:257

    Article  CAS  Google Scholar 

  29. Gerhardt LC, Boccaccini AR (2010) Materials 3:3867

    Article  CAS  Google Scholar 

  30. Baino F, Novajra G, Vitale-Brovarone C (2015) Front. Bioeng Biotechnol 3:202

    Google Scholar 

  31. Martins F, Felgueiras C, Smitkova M, Caetano N (2019) Analysis of fossil fuel energy consumption and environmental impacts in European countries. Energies 12:964

    Google Scholar 

  32. Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  CAS  Google Scholar 

  33. Thomas LA (1972) Applications of ferroelectrics and related materials: a review of developments in Europe. Ferroelectrics 3:231–238

    Article  CAS  Google Scholar 

  34. Hao X (2013) A review on dielectric materials for energy storage applications. J Adv Dielectr 3:1330001

    Article  Google Scholar 

  35. Yang L, Kong X, Li F, Hao H, Cheng Z, Liu H, Li JF, Zhang S (2019) Perovskite Lead-free dielectrics for energy storage applications. Prog Mater Sci 102:72–108

    Article  CAS  Google Scholar 

  36. Yao ZH, Song Z, Hao H, Yu ZY, Cao MH, Zhang SJ, Lanagan MT, Liu HX (2017) Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv Mater 29:1601727

    Article  Google Scholar 

  37. Damjanovc D (1998) Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys 61:1267–1324

    Article  Google Scholar 

  38. Chauhan A, Patel S, Vaish R, Bowen CR (2015) Anti-ferroelectric ceramics for high energy density capacitors. Materials 8:8009–8031

    Article  Google Scholar 

  39. Dang ZM, Yuan JK, Yao SH, Liao RJ (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 25:6334–6365

    Article  CAS  Google Scholar 

  40. Zou K, Dan Y, Xu H, Zhang Q, Lu Y, Huang H, He Y (2019) Recent advances in lead-free dielectric materials for energy storage. MRS Bull 113:190–201

    Article  CAS  Google Scholar 

  41. Harizanova R, Slavov S, Vladislavova L, Costa LC, Avdeev G, Bocker C, Russel C (2020) Barium titanate containing glass-ceramics - The effect of phase composition and microstructure on dielectric properties. Ceram Int 15:24585–24591

    Article  Google Scholar 

  42. Karmakar B (2017) Functional glasses and glass-ceramics: processing properties and applications. Elsevier, Oxford

    Google Scholar 

  43. Kumari P, Rai R, Sharma S, Shandilya M, Tiwari A (2015) State-of-the-art of lead free ferroelectrics: a critical review. Adv Mater Lett 6:453–484

    Article  CAS  Google Scholar 

  44. Sepúlveda A, Schluep M, Renaud FG, Streitcher M, Kuehr R, Hagelüken C, Gereke AC (2010) A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling: examples from China and India. Environ Impact Assess Rev 30:28–41

    Google Scholar 

  45. Jain H (2004) Transparent ferroelectric glass-ceramics. Ferroelectrics 306:111–127

    Article  CAS  Google Scholar 

  46. Chakrabarti A, Biswas K, Molla AR (2018) Eu3+doped ferroelectric BaBi2Ta2O9 based glass-ceramic nanocomposites: crystallization kinetics and energy storage properties. J Alloys Compd 740:237–249

    Article  CAS  Google Scholar 

  47. Chakrabarti A, Molla AR (2020) Zirconia assisted crystallization of ferroelectric BaBi2Nb2O9 based glass-ceramics: Kinetics, optical and dielectrical properties. J Alloys Compd 844:156181

    Article  CAS  Google Scholar 

  48. Cross LE, Newnham RE (1987) High technology ceramics: past, present and future. In: Kingery WD, Lense E (eds) History of ferroelectrics, vol 3. The American Ceramic Society, Inc., Westerville, OH

    Google Scholar 

  49. Pan MJ, Bender BA, Lanagan MT, Cheng CT (2005) High energy density ferroelectric glass–ceramics. Ceram Trans 169:187–193

    CAS  Google Scholar 

  50. Gorzkowski EP, PanMJ BenderBA, Wu CCCM (2007) Glass-ceramics of barium strontium titanate for high energy density capacitors. J Electroceram 18:269–276

    Article  CAS  Google Scholar 

  51. ChenJ ZhangY, DengC DaiX (2009) Improvement in the microstructures and dielectric properties of barium strontium titanate glass–ceramics by AlF3/MnO2 addition. J Am Ceram Soc 92:1863–1866

    Article  Google Scholar 

  52. WangXR ZhangY, Ma T, DengCS DXM (2012) Effects of MnO2 concentration on dielectric properties of barium strontium titanate glass ceramics. Ceram Int 38S:S57–S60

    Google Scholar 

  53. Zhao Z, Liang X, Zhang T, Hu K, Li S, Zhang Y (2020) Effects of cerium doping on dielectric properties and defect mechanism of barium strontium titanate glass-ceramics. J Eur Ceram Soc 40:712–719

    Article  CAS  Google Scholar 

  54. Wei J, Jiang D, Yu W, Shang F, Chen G (2021) The effect of Hf doping on the dielectric and energy storage performance of barium titanate based glass ceramics. Ceram Int 47:11581–11586

    Article  CAS  Google Scholar 

  55. Wang J, Tang L, Shen B, Zhai J (2014) Effect of microwave processes on the energy-storage properties ofbarium strontium titanate glass ceramics. J Mater Res 29:288–293

    Article  Google Scholar 

  56. Zeng Y, Qin X, Jiang S, Zhang G, Zhang L (2011) Effect of BaF2 Addition on crystallization kinetics and dielectric properties of B2O3–Nb2O5–SrO–BaO glass-ceramics. J Am Ceram Soc 94:469–473

    Article  CAS  Google Scholar 

  57. Kamonlert A, Niyompan A, Tipakontitikul R (2011) Effect of ZrO2 addition on crystallization and properties of the glass-ceramics contained NaNbO3 crystals. Curr Appl Phys 11:S100–S105

    Article  Google Scholar 

  58. Yongsiri P, Eitssayeam S, Inthata U, Rujijanagul G, Sirisoonthorn S, Tunkasiri T, Pengpat K (2011) Fabrication of ferroelectric glass ceramics from (K0.5Na0.5)NbO3-SiO2-Al2O3 glass system. Ferroelectrics 416:144–150

    Article  CAS  Google Scholar 

  59. Chen GH, Zhang WJ, Liu XY, Zhou CR (2011) Preparation and properties of strontium barium niobate based glass-ceramics for energy storage capacitors. J Electroceram 27:78–82

    Article  Google Scholar 

  60. Zhou Y, Zhang Q, Luo J, Tang Q, Du J (2011) Structural and dielectric characterization of Gd2O3-added BaO–Na2O–Nb2O5–SiO2 glass–ceramic composites. Acta Mater 65:296–299

    CAS  Google Scholar 

  61. Liu T, Chen GH, Song J, Yuan CL (2013) Crystallization kinetics and dielectric characterization of CeO2-added BaO–SrO–Nb2O5–B2O3–SiO2 glass-ceramics. Ceram Int 39:5553–5559

    Article  CAS  Google Scholar 

  62. Zhou Y, Zhang Q, Luo J, Tang Q, Du J (2013) Structural optimization and improved discharged energy density for niobate glass-ceramics by La2O3 addition. J Am Ceram Soc 96:372–375

    Article  CAS  Google Scholar 

  63. Niyompan A, Srisurat K, Tipakontitikul R (2014) Crystallization behavior and dielectric properties of ferroelectric glass-ceramics containing BNN and NN crystals. Ferroelectrics 459:172–187

    Article  CAS  Google Scholar 

  64. Song J, Chen GH, Yuan CL, Yang Y(2014) Effect of the Sr/Ba ratio on the microstructures and dielectric properties of SrO–BaO–Nb2O5–B2O3 glass–ceramics. Mater Lett 117:9.

    Google Scholar 

  65. Niyompan A, Tipakontitikul R, Wanram S (2015) Dielectric investigation of ferroelectric glass-ceramics containing sodium niobate and barium niobium silicate crystals. Ferroelectrics 488:32–44

    Article  CAS  Google Scholar 

  66. Yang Y, Song J, Chen GH, Yuan CL, Li X, Zhou CR (2015) Effect of crystallization temperature on the dielectric property and energy density of SrO–BaO–Nb2O6–B2O3 glass–ceramics. J Non-Cryst Solids 410:96–99

    Article  CAS  Google Scholar 

  67. Zheng J, Chen GH, Yuan CL, Zhou CR, Chen X, Feng Q, Li M (2016) Dielectric characterization and energy-storage performance of lead-free niobate glass–ceramics added with La2O3. Ceram Int 42:1827–1832

    Article  CAS  Google Scholar 

  68. Chen GH, Zheng J, Yuan CL, Zhou C, Kang XL, Xu JW, Yang Y (2016) Enhanced energy storage properties of P2O5 modified niobate-based B2O3 system glass ceramic composites. Mater Lett 176:46–48

    Article  CAS  Google Scholar 

  69. Pu Y, Liu X, Dong Z, Wang P, Hu Y, Sun Z (2015) Influence of crystallization temperature on ferroelectric properties of Na0.9K0.1NbO3 glass-ceramics. J Am Ceram Soc 98:2789–2795

    Article  CAS  Google Scholar 

  70. Zheng H, Pu Y, Liu X, Wan J (2016) Correlation between dielectric properties and crystallization treatment in potassium sodium niobate glass-ceramics for energy storage application. J Alloys Compd 674:272–276

    Article  CAS  Google Scholar 

  71. Xiao S, Xiu S, Shen B, Zhai J (2016) Microstructure evolution and energy storage properties of potassium strontium niobate boroaluminosilicate glass-ceramics by microwave crystallization. J Eur Ceram Soc 36:4071–4076

    Article  CAS  Google Scholar 

  72. Wang H, Liu J, Zhai J, Shen B (2016) Ultra high energy-storage density in the barium potassium niobate-based glass-ceramics for energy-storage applications. J Am Ceram Soc 99:2909–2912

    Article  CAS  Google Scholar 

  73. Davis C III, Pertuit AL, Nino JC (2017) Effect of microwave processing on the crystallization and energy density of BaO-Na2O-Nb2O5-SiO2-B2O3 glass-ceramics. J Am Ceram Soc 100:65–73

    Article  CAS  Google Scholar 

  74. Zhou Y, Qiao Y, Tian Y, Wang K, Li G, Chai Y (2017) Improvement in structural, dielectric and energy-storage properties of lead-free niobate glass-ceramic with Sm2O3. J Eur Ceram Soc 37:995–999

    Article  CAS  Google Scholar 

  75. Yang K, Liu J, Shen B, Zhai J, Wang H (2017) Large improvement on energy storage and charge-discharge properties of Gd2O3-doped BaO-K2O-Nb2O5-SiO2 glass-ceramic dielectrics. Mater Sci Eng B 223:178–184

    Article  Google Scholar 

  76. Xiu S, Shen B, Zhai J (2017) The effects of MnO2 addition on the structure and dielectric properties of the strontium barium niobate glass-ceramics. MRS Bull 95:349–353

    Article  CAS  Google Scholar 

  77. Wang S, Tian J, Yang K, Liu J, Zhai J, Shen B (2018) Crystallization kinetics behavior and dielectric energy storage properties of strontium potassium niobate glass-ceramics with different nucleating agents. Ceram Int 44:8528–8533

    Article  CAS  Google Scholar 

  78. Liu J, Yang K, Zhai J, Shen B (2018) Effects of crystallization temperature on phase evolution and energy storage properties of BaO-Na2O-Nb2O5-SiO2-Al2O3 glass-ceramics. J Eur Ceram Soc 38(2312):2317

    Google Scholar 

  79. Xiu S, Xiao S, Zhai J (2018) Improvement of energy storage properties in niobate glass–ceramics via the adjustment of glass/ceramic ratios. J Mater Sci: Mater Electron 29:16758–16764

    Google Scholar 

  80. Liu S, Wang J, Ding J, Hao H, Zhao L, Xia S (2019) Crystallization, microstructure and dielectric properties of the SrO-BaO-Nb2O5-Al2O3-SiO2 based glass ceramics added with ZrO2. Ceram Int 45:4003–4008

    Article  CAS  Google Scholar 

  81. Tian J, Wang S, Jiang T, Chen K, Zhai J, Shen B (2019) Dielectric characterization of a novel Bi2O3-Nb2O5-SiO2-Al2O3 glass-ceramic with excellent charge-discharge properties. J Eur Ceram Soc 39:1164–1169

    Article  CAS  Google Scholar 

  82. Jiang T, Chen K, Shen B, Zhai J (2019) Enhanced energy-storage density in sodium-barium-niobate based glass-ceramics realized by doping CaF2 nucleating agent. J Mater Sci Mater Electron 30:15277–15284

    Article  CAS  Google Scholar 

  83. Ihyadn A, Lahmar A, Mezzane D, Bih L, Alimoussa A, Amjoud M, Marssi MEL, Luk’yanchuk IA (2019) Structural, electrical and energy storage properties of BaO–Na2O–Nb2O5-WO3–P2O5 glass–ceramics system. Mater Res Express 6:115203

    Google Scholar 

  84. Jiang D, Zhong Y, Shang F, Chen G (2020) Crystallization, microstructure and energy storage behavior of borate glass–ceramics. J Mater Sci: Mater Electron 31:12074–12082

    CAS  Google Scholar 

  85. Chen K, Jiang T, Shen B, Zhai J (2021) Effects of crystalline temperature on microstructures and dielectricproperties in BaO-Na2O-Bi2O3-Nb2O5-Al2O3-SiO2 glass-ceramics. Mater Sci Eng B 263:114885

    Article  CAS  Google Scholar 

  86. Chen K, Bai H, Yan F, He X, Liu X, Xie S, Shen B, Zhai J (2021) Achieving superior energy storage properties and ultrafast discharge speed in environment-friendly niobate-based glass ceramics. ACS Appl Mater Interfaces 13:4236–4243

    Article  CAS  Google Scholar 

  87. Du X, Pu Y, Li X, Peng X, Sun Z, Zhang J, Ji J, Li R, Zhang Q, Chen M (2021) Optimizing the energy storage performance of K2O–Nb2O5–SiO2 based glass-ceramics with excellent temperature stability. Ceram Int 47(8987):8995

    Google Scholar 

  88. Xie S, Liu C, Bai H, Chen K, Shen B, Zhai J (2021) Simultaneously ultra-low dielectric loss and rapid discharge time in Ta2O5 doped niobate based glass-ceramics. J Mater Sci 56(16278):16289

    Google Scholar 

  89. Tarafder A, Annapurna K, Chaliha RS, Tiwari VS, Gupta PK, Karmakar B (2009) Nanostructuring and fluorescence properties of Eu3+: LiTaO3 in Li2O-Ta2O5-SiO2-Al2O3 glass-ceramics. J Mater Sci 44(4495):4498

    Google Scholar 

  90. Tarafder A, Annapurna K, Chaliha RS, Tiwari VS, Gupta PK (1939) Karmakar B (2009) Processing and properties of Eu3+: LiTaO3 transparent glass-ceramic nanocomposites. J Am Ceram Soc 92:1934

    Article  Google Scholar 

  91. Dymshits O, Vitkin V, Alekseeva I, Khubetsov A, Tsenter M, Polishchuk A, Volokitina A, Serres JM, Mateos X, Zhilin A, Loiko P (2021) Transparent glass-ceramics based on Co2+-doped γ-GaxAl2−xO3 spinel nanocrystals for passive Q-switching of Er lasers. J Lumin 234:117993

    Article  CAS  Google Scholar 

  92. Glazunov IV, Malyarevich AM, Yumashev KV, Dymshits OS, Alekseeva IP, Tsenter MY, Bogdanov KV, Zapalova SS, Zhilin AA (2021) Linear and non-linear optical properties of transparent glass-ceramics based on Co2+-doped Zn(Al, Ga)2O4 spinel nanocrystals. J Non-Cryst Solids 557:120627

    Article  CAS  Google Scholar 

  93. Ferrari M, Righini GC (2015) Glass-ceramic materials for guided-wave optics. Int J Appl Glass Sci 6(240):248

    Google Scholar 

  94. Gangadharini U, Molla AR, Tarafder A, Karmakar B (2013) Synthesis and characterization of Eu3+-doped transparent glass-ceramics containing nanocrystalline SrIINbIVO3. J Am Ceram Soc 96(2155):2162

    Google Scholar 

  95. Champagnon B, Boukenter A, Duval E (1987) Early stages of nucleation of Zerodur glass: very low frequency Raman scattering and small angle X-ray scattering investigations. J Non-Cryst Solids (94)216:221

    Google Scholar 

  96. Łukowiak A et al (1995) Glass-ceramics for photonics: advances and perspectives. In: 2014 16th International conference on transparent optical networks (ICTON), 2014, pp 1–4. https://doi.org/10.1109/ICTON.2014.6876584

  97. Tick PA, Borrelli NF, Cornelius LK, Newhouse MA (1995) Transparent glass ceramics for 1300 nm amplifier applications. J Appl Phys 78:6367–6374

    Article  CAS  Google Scholar 

  98. Tick PA (1998) Are low-loss glass-ceramic optical waveguides possible? Opt Lett (23)1904:1905

    Google Scholar 

  99. Bhattacharya S, Acharya A (2020) Photonics. In: Bhattacharya S (ed) Metal Oxides. Elsevier, Metal Oxide Glass Nanocomposites, pp 259–263

    Google Scholar 

  100. Mortier M, Monteville A, Patriarche G, Maze G Auzel F (2001) New progresses in transparent rare-earth doped glass-ceramics. Opt Mater 16:255–267

    Google Scholar 

  101. Chiasera A, Alombert-Goget G, Ferrari M, Berneschi S, Pelli S, Boulard B, Duverger-Arfuso C (2011) Rare earth-activated glass-ceramic in planar format. Opt Eng 50:071105

    Article  Google Scholar 

  102. Dieudonn B, Boulard B, Alombert-Goget G, Chiasera A, Gao Y, Kodjikian S, Ferrari M (2013) Up- and down-conversion in Yb3+–Pr3+ co-doped fluoride glasses and glass ceramics. J Non-Cryst Solids 377:105–109

    Article  Google Scholar 

  103. Kukkonen LL, Reaney IM, Furniss D, Seddon AB (2001) Nucleation and crystallization behaviour of transparent, erbium III doped, oxyfluoride glass ceramics for active photonic devices. Phys Chem Glasses-Eur J Glass Sci Technol B 42:265–273

    CAS  Google Scholar 

  104. Goyes C, Ferrari M, Armellini C, Chiasera A, Jestin Y, Righini GC, Fonthal F, Solarte E (2009) CO2 laser annealing on erbium-activated glass-ceramic waveguides for photonics. Opt Mater 31:1310–1314

    Article  CAS  Google Scholar 

  105. Nakanishi T, Watanabe K, Ueda J, Fushimi K, Tanabe S, Hasegawa Y (2015) Enhanced light storage of SrAl2O4 glass-ceramics controlled by selective europium reduction. J Am Ceram Soc 98:423–429

    Article  CAS  Google Scholar 

  106. Ragin T, Zmojda J, Kochanowicz M, Miluski P, Jelen P, Sitarz M, Dorosz D (2015) Thermal, structural and spectroscopic properties of heavy metal oxide glass and glass-ceramics doped with Er3+ ions. In: Proceeding of SPIE 9662:96620N-1-96620N-7

    Google Scholar 

  107. Lukowiak A, Zur L, Tran TNL, Meneghetti M, Berneschi S, Conti GN, Pelli S, Trono C, Bhaktha B N S, Zonta D, Taccheo S, Righini GC, Ferrari M (2017) Sol–Gel-derived glass-ceramic photorefractive films for photonic structures. Crystals 7:61–1/7

    Google Scholar 

  108. Molla AR, Rodrigues AM, Singh SP, Lancelotti RF, Zanotto ED, Rodrigues ACM, Dousti MR, de Camargo ASS, Magon CJ, Silva IDAA (2017) Crystallization, mechanical, and optical properties of transparent, nanocrystalline gahnite glass-ceramics. J Am Ceram Soc 100:1963–1975

    Article  CAS  Google Scholar 

  109. Tran LTN, Zur L, Massella D, Derkowska-Zielinska B, Chiasera A, Varas S, Armellini C,Martucci A, Zonta D, Tran TTV, Lukowiak A, Taccheo S, Dorosz D, Righini GC, Boucher Y G, Ferrari M (2018) SiO2-SnO2:Er3+ transparent glass-ceramics: fabrication and photonic assessment. In: Proceeding of SPIE10683:106832C-1/9

    Google Scholar 

  110. Cascales C, Balda R, Lezama L, Fernández J (2018) Site symmetry and host sensitization-dependence of Eu3+ real time luminescence in tin dioxide nanoparticles. Opt Express 26:16155–16170

    Article  CAS  Google Scholar 

  111. Zur L, Tran TNL, Meneghetti M, Ferrari M (2017) Sol-gel derived SnO2-based photonic systems. In: Klein L, Aparicio M, Jitianu A (eds) Handbook of Sol-Gel Science and Technology, 2nd edn. Springer International Publishing AG, Basel, Switzerland, pp 1–19

    Google Scholar 

  112. Tran TNL, Massella D, Zur L, Chiasera A, Varas S, Armellini C, Righini G C, Lukowiak A, Zonta D, Ferrari M (2018) SiO2-SnO2:Er3+ glass-ceramic monoliths. Appl Sci 8:1335–1/8

    Google Scholar 

  113. Tran TNL (2019) Tin dioxide based photonic glass-ceramics. Ph.D. thesis, University of Trento

    Google Scholar 

  114. Berneschi S, Bhaktha SNB, Chiappini A, Chiasera A, Ferrari M, Kinowski C, Turrell S, Trono C, Brenci M, Cacciari I, Conti NG, Pelli S, Righini GC (2010) Highly photorefractive Eu3+ activated sol-gel SiO2-SnO2 thin film waveguides. In: Proceeding of SPIE7604:76040Z-1/6

    Google Scholar 

  115. Bhaktha SNB, Berneschi S, Conti NG, Righini G C, Chiappini A, Chiasera A, Ferrari M, Turrell S (2010) Spatially localized UV-induced crystallization of SnO2 in photorefractive SiO2-SnO2 thin film. In: Proceeding of SPIE7719:77191B-1/5

    Google Scholar 

  116. Manzani D, Junior JBS, Reyna AS, Neto MLS, Bautista JEQ, Ribeiro SJL, de Araujo CB (2019) Phosphotellurite glass and glass-ceramics with high TeO2 contents: thermal, structural and optical properties. Dalton Trans 48:6261–6272

    Article  CAS  Google Scholar 

  117. Tran TNL, Armellini C, Varas S, Carpentiero A, Chiappini A, Głuchowski P, Iacob E, Ischia G, Scotognella F, Bollani M, Lukowiak A, Righini GC, Ferrari M, Chiasera A (2021) Assessment of SnO2-nanocrystal-based luminescent glass-ceramic waveguides for integrated photonics. Ceram Int 47:5534–5541

    Article  CAS  Google Scholar 

  118. Marcondes LM, Santagneli SH, Manzani D, Cassanjes FC, Batista G, Mendoza VG, da Cunha CR, Poirier GY, Nalin M (2020) High tantalum oxide content in Eu3+-doped phosphate glass and glass-ceramics for photonic applications. J Alloys Compd 842:155853

    Article  CAS  Google Scholar 

  119. Singarapu B, Galusek D, Duran A, Pascual MJ (2020) Glass-ceramics processed by spark plasma sintering (SPS) for optical applications. Appl Sci 10:2791

    Article  CAS  Google Scholar 

  120. Enrichi F, Cattaruzaa E, Finotto T, Riello P, Righini GC, Trave E, Vomiero A (2020) Ag-sensitized NIR-emitting Yb3+-doped glass-ceramics. Appl Sci 10:2184

    Article  CAS  Google Scholar 

  121. Cai J, Wei X, Hu F, Cao Z, Zhao L, Chen Y, Duan C, Yin M (2016) Up-conversion luminescence and optical thermometry properties of transparent glass ceramics containing CaF2:Yb3+/Er3+ nanocrystals. Ceram Int 42:13990–13995

    Article  CAS  Google Scholar 

  122. Cao JK, Chen W, Chen L, Sun XY, Guo H (2016) Synthesis and characterization of BaLuF5: Tb3+ oxyfluoride glass ceramics as nanocomposite scintillator for X-ray imaging. Ceram Int 42:17834–17838

    Article  CAS  Google Scholar 

  123. Krishnaiah KV, Filho ESL, Ledemi Y, Nemova G, Messaddeq Y, Kashyap R (2016) Development of ytterbium-doped oxyfluoride glasses for laser cooling applications. Sci Rep 6:21905

    Article  CAS  Google Scholar 

  124. Kummara VK, Ledemi Y, Filho ESL, Nemova G, Messaddeq Y, Kashyap R (2016) Development of Yb3+-doped oxyfluoride glass-ceramics with low OH− content containing CaF2 nanocrystals for optical refrigeration. Opt Eng 56:011103

    Article  Google Scholar 

  125. Lin C, Li L, Dai S, Liu C, Zhao Z, Bocker C, Russel C (2016) Oxyfluoride glass-ceramics for transition metal ion-based photonics: broadband near-IR luminescence of nickel ion dopant and nanocrystallization mechanism. J Phys Chem C 120:4556–4563

    Article  CAS  Google Scholar 

  126. Qiu J, Jiao Q, Zhou D, Yang Z (2016) Recent progress on upconversion luminescence enhancement in rare-earth doped transparent glass-ceramics. J Rare Earths 34:341–367

    Article  CAS  Google Scholar 

  127. Ali MA, Ren J, Liu X, Qiao X, Qiu J (2017) Understanding enhanced upconversion luminescence in oxyfluoride glass-ceramics based on local structure characterizations and molecular dynamics simulations. J Phys Chem C 121:15384–15391

    Article  CAS  Google Scholar 

  128. Chen D, Liu S, Li X, Wan Z, Li S (2017) Gd-based oxyfluoride glass ceramics: Phase transformation, optical spectroscopy and upconverting temperature sensing. J Eur Ceram Soc 37:4083–4094

    Article  CAS  Google Scholar 

  129. Liu Y, Liu XY, Wang WC, Zhou B, Zhang QY (2017) Phase evolution and photoluminescence in Er3+ doped glass ceramics containing lutetium oxyfluoride nanocrystals. Ceram Int 43:13199–13205

    Article  CAS  Google Scholar 

  130. Guo Y, Zhao L, Fu Y, Dong H, Yu H (2019) Tailoring up-conversion luminescence for optical thermometry in K+/Er3+ co-doped oxyfluoride glass ceramics. J Lumin 210:247–254

    Article  CAS  Google Scholar 

  131. Zhang Y, Lei H, Li G, Zeng L, Tang J (2020) Yb3+/Er3+ co-doped transparent tellurite glass-ceramic for enhanced upconversion luminescence. Opt Mat 99:109552

    Article  CAS  Google Scholar 

  132. Troles J, Niu Y, Duverger-Arfuso C, Smektala F, Brilland L, Nazabal V, Moizan V, Desevedavy F, Houizot P (2008) Synthesis and characterization of chalcogenide glasses from the system Ga–Ge–Sb–S and preparation of a single-mode fiber at 1.55 μm. Mater Res Bull 43:976–982

    Article  CAS  Google Scholar 

  133. Zakery A, Elliott SR (2003) Optical properties and applications of chalcogenide glasses: a review. J Non-Cryst Solids 330:1–12

    Article  CAS  Google Scholar 

  134. Smektala F, Quemard C, Couderc V, Barthélémy A (2000) Non-linear optical properties of chalcogenide glasses measured by Z-scan. J Non-Cryst Solids 274:232–237

    Article  CAS  Google Scholar 

  135. Shaw LB, Cole B, Thielen PA, Sanghera JS, Aggarwal ID (2001) Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber. J Quantum Electron 48(1127):1137

    Google Scholar 

  136. Lin C, Dai S, Liu C, Song B, Xu Y, Chen F, Heo J (2012) Mechanism of the enhancement of mid-infrared emission from GeS2-Ga2S3 chalcogenide glass-ceramics doped with Tm3+. Appl Phys Lett 100:231910

    Article  Google Scholar 

  137. Lozano BW, de Araujo CB, Ledemi Y, Messaddeq Y (2013) Upconversion luminescence in Er3+ doped Ga10Ge25S65 glass and glass-ceramic excited in the near-infrared. J Appl Phys 113:083520

    Article  Google Scholar 

  138. Li Z, Li C, Qu G, Nie Q, Dai S (2014) Optical properties and crystallization behavior of 45GeS2·30Ga2S3·25Sb2S3 chalcogenide glass. J Non-Cryst Solids 383:112–115

    Article  CAS  Google Scholar 

  139. Zhang C, Zhang J, Lin C, Dai S, Chen F (2020) Improvement of third-order nonlinear properties in GeS2–Sb2S3–CsCl chalcogenide glass ceramics embedded with CsCl nano-crystals. Ceram Int 46:27990–27995

    Article  CAS  Google Scholar 

  140. Cao Z, Dai S, Ding S, Wang M, Xu L, Liu C, Lin C (2021) Chalcogenide glass ceramics: a high-performing innovative infrared acousto-optic material. J Eur Ceram Soc (in press). https://doi.org/10.1016/j.jeurceramsoc.2021.07.022

  141. Cui M, Yang A, Sun M, Lin H, Lin H, Ren J, Yang Z (2021) 2.5–5.5 μm mid-infrared emission from Ni2+-doped chalcohalide glass ceramics containing CsPbI3 perovskite nanocrystals. J Am Ceram Soc 00:1–6 (in press). https://doi.org/10.1111/jace.17941

  142. Lu X, Zhang R, Zhang Y, Zhang S, Ren J, Strizik L, Wagner T, Farrell G, Wang P (2020) Crystal-field engineering of ultrabroadband mid-infrared emission in Co2+-doped nano-chalcogenide glass composites. J Eur Ceram Soc 40:103–107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Anirban thanks University Grants Commission, India for his Junior Research Fellowship (JRF) grant. Ms. Sreedevi Menon is thankful to Board of Research in Nuclear Sciences (BRNS), DAE, India for her fellowship through the project sanction no. 58/14/03/2020-BRNS/37055. The authors are thankful to Shri Sitendu Mandal, Head, Specialty Glass Division, and Dr. Suman Kumari Mishra, Director CSIR-CGCRI for their constant support and encouragement. We are grateful to Prof. E. D. Zanotto, Federal University of Sao Carlos, Brazil, and Prof. J. M. Parker, The University of Sheffield, UK for their kind review and critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anal Tarafder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakrabarti, A., Menon, S., Tarafder, A., Molla, A.R. (2022). Glass–ceramics: A Potential Material for Energy Storage and Photonic Applications. In: Annapurna, K., Molla, A.R. (eds) Glasses and Glass-Ceramics. Advanced Structured Materials, vol 178. Springer, Singapore. https://doi.org/10.1007/978-981-19-5821-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5821-2_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5820-5

  • Online ISBN: 978-981-19-5821-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics