Skip to main content
Log in

Ferroelectric glass-ceramics

  • Glass-ceramics
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Many current technological applications are based on the electrical properties of materials. Among these, ferroelectricity, antiferroelectricity, paraelectricity, and resistivity are the most important to be studied and controlled. To overcome important drawbacks of sintered ceramics or single crystals with these characteristics, the preparation of glass-ceramics with these phases dispersed in a glass matrix is a possible solution. The formation of glass-ceramics shows great advantages—their properties (optical, electrical, mechanical, and chemical) can be controlled via the volume fraction of the dispersed active phase. Thus, the preparation and properties of glass-ceramics containing ferroelectric crystallites embedded in the glass matrix have received considerable interest. This article discusses state-of-the-art preparation of glass-ceramics with one important technological ferroelectric crystal, lithium niobate (LiNbO3). Since the preparation of LiNbO3 single crystals by traditional growth techniques is technically difficult and economically costly—and with dense ceramics, it is difficult to achieve a congruent composition—scientific research on the fabrication methods of inorganic glasses containing LiNbO3 crystallites is an important current topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.D. Stookey, US Patent 2,920,971 (1960).

  2. M. Montazerian, E.D. Zanotto, J. Biomed. Mater. Res. A 104, 1231 (2016).

    Google Scholar 

  3. E.D. Zanotto, Am. Ceram. Soc. Bull. 89, 19 (2010).

    Google Scholar 

  4. G.H. Beall, L.R. Pinckney, J. Am. Ceram. Soc. 82, 5 (1999).

    Google Scholar 

  5. W. Holand, G. Beall, Glass-Ceramic Technology, 2nd ed. (Wiley, Hoboken, NJ, 2011).

    Google Scholar 

  6. G. Beall, Annu. Rev. Mater. Sci. 22, 91 (1992).

    Google Scholar 

  7. G.H. Beall, J. Non Cryst. Solids 129, 163 (1991).

    Google Scholar 

  8. G.H. Beall, US Patent 4,386,162 (1983).

  9. W. Holand, G. Beall, Glass-ceramic Technology (Wiley, Hoboken, NJ, 2002).

    Google Scholar 

  10. G.H. Beall, M.J.M. Comte, G.O. Dale, L.R. Pinckney, C.M. Smith, R.L. Stewart, S.A. Tietje, US Patent 8,664,131 (2015).

  11. W. Höland, M. Schweiger, M. Frank, V. Rheinberger, J. Biomed. Mater. Res. 53, 297 (2000).

    Google Scholar 

  12. I. Denry, J. Holloway, J. Biomed. Mater. Res. B 70, 37 (2004).

    Google Scholar 

  13. S. Pollington, R. van Noort, J. Dent. 40, 1006 (2012).

    Google Scholar 

  14. S.E. Elsaka, A.M. Elnaghy, Dent. Mater. 32, 908 (2016).

    Google Scholar 

  15. W. Lien, H.W. Roberts, J.A. Platt, K.S. Vandewalle, T.J. Hill, T.G. Chu, Dent. Mater. 31, 928 (2015).

    Google Scholar 

  16. X. Huang, X. Zheng, G. Zhao, B. Zhong, X. Zhang, G. Wen, Mater. Chem. Phys. 143, 845 (2014).

    Google Scholar 

  17. F. Serbena, I. Mathias, C. Foerster, E.D. Zanotto, Acta Mater. 86, 216 (2015).

    Google Scholar 

  18. T. Zhao, Y. Qin, P. Zhang, B. Wang, J.-F. Yang, Ceram. Int. 40, 12449 (2014).

    Google Scholar 

  19. G. Wen, X. Zheng, L. Song, Acta Mater. 55, 3583 (2007).

    Google Scholar 

  20. J. Domingos Teixeira, M.A. Pereira, L. Boehs, C. Siligardi, V. Cantavella, A. de Oliveira, Mater. Sci. Forum 775, 599 (2014).

    Google Scholar 

  21. S. Taruta, M. Sakata, T. Yamaguchi, K. Kitajima, Ceram. Int. 34, 75 (2008).

    Google Scholar 

  22. K. Cheng, J. Wan, K. Liang, Mater. Lett. 39, 350 (1999).

    Google Scholar 

  23. T. Uno, T. Kasuga, K. Nakajima, J. Am. Ceram. Soc. 74, 3139 (1991).

    Google Scholar 

  24. H. Yang, S. Wu, J. Hu, Z. Wang, R. Wang, H. He, Mater. Des. 32, 1590 (2011).

    Google Scholar 

  25. D. Chaysuwan, K. Sirinukunwattana, K. Kanchanatawewat, G. Heness, K. Yamashita, Dent. Mater. J. 30, 358 (2011).

    Google Scholar 

  26. V. Khani, P. Alizadeh, Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 54, 104 (2013).

    Google Scholar 

  27. T. Uno, T. Kasuga, S. Nakayama, A.J. Ikushima, J. Am. Ceram. Soc. 76, 539 (1993).

    Google Scholar 

  28. M. Montazerian, P. Alizadeh, B.E. Yekta, J. Eur. Ceram. Soc. 28, 2693 (2008).

    Google Scholar 

  29. H.-C. Li, D.-G. Wang, X.-G. Meng, C.-Z. Chen, Biointerphases 9, 031014 (2014).

    Google Scholar 

  30. T. Kokubo, S. Ito, M. Shigematsu, S. Sakka, T. Yamamuro, J. Mater. Sci. 20, 2001 (1985).

    Google Scholar 

  31. T. Kasuga, K. Nakajima, Clin. Mater. 4, 285 (1989).

    Google Scholar 

  32. D.-M. Liu, H.-M. Chou, J. Mater. Sci. Mater. Med. 5, 7 (1994).

    Google Scholar 

  33. M. Dittmer, C.F. Yamamoto, C. Bocker, C. Rüssel, Solid State Sci. 13, 2146 (2011).

    Google Scholar 

  34. A. Hu, M. Li, D.M. Dali, K. Liang, Thermochim. Acta 437, 110 (2005).

    Google Scholar 

  35. M. Mirsaneh, I.M. Reaney, P.V. Hatton, P.F. James, J. Am. Ceram. Soc. 87, 240 (2004).

    Google Scholar 

  36. M. Mirsaneh, I.M. Reaney, P.F. James, P.V. Hatton, J. Am. Ceram. Soc. 89, 587 (2006).

    Google Scholar 

  37. N. Kanchanarat, S. Bandyopadhyay-Ghosh, I.M. Reaney, I.M. Brook, P.V. Hatton, J. Mater. Sci. 43, 759 (2008).

    Google Scholar 

  38. M. Hamedani, V. Marghussian, H. Sarpoolaky, J. Non Cryst. Solids 382, 112 (2013).

    Google Scholar 

  39. L.R. Pinckney, G.H. Beall, R.L. Andrus, J. Am. Ceram. Soc. 82, 2523 (1999).

    Google Scholar 

  40. O. Peitl, E.D. Zanotto, F.C. Serbena, L.L. Hench, Acta Biomater. 8, 321 (2012).

    Google Scholar 

  41. N. Xie, J. Bell, W.M. Kriven, J. Am. Ceram. Soc. 93, 2644 (2010).

    Google Scholar 

  42. J.P. Wu, R.D. Rawlings, A.R. Boccaccini, I. Dlouhy, Z. Chlup, J. Am. Ceram. Soc. 89, 2426 (2006).

    Google Scholar 

  43. S. López-Esteban, J.F. Bartolome, L.A. Di, L. Esteban-Tejeda, C. Prado, R. Lopez-Piriz, R. Torrecillas, J.S. Moya, J. Mech. Behav. Biomed. Mater. 34, 302 (2014).

    Google Scholar 

  44. Y.-M. Sung, J. Mater. Sci. Lett. 18, 1229 (1999).

    Google Scholar 

  45. M. Ashizuka, E. Ishida, J. Mater. Sci. 32, 185 (1997).

    Google Scholar 

  46. A.R. Molla, C.R. Kesavulu, R.P.S. Chakradhar, A. Tarafder, S.K. Mohanty, J.L. Rao, B. Karmakar, S.K. Biswas, J. Alloys Compd. 583, 498 (2014).

    Google Scholar 

  47. G. Beall, J. Eur. Ceram. Soc. 29, 1211 (2009).

    Google Scholar 

  48. E. Bernardo, J. Doyle, S. Hampshire, Ceram. Int. 34, 2037 (2008).

    Google Scholar 

  49. L. Fu, C. Wu, K. Grandfield, E. Unosson, J. Chang, H. Engqvist, W. Xia, J. Eur. Ceram. Soc. 36, 3487 (2016).

    Google Scholar 

  50. G. Beall, Int. J. Appl. Glass Sci. 5, 93 (2014).

    Google Scholar 

  51. G.D. Quinn, R.C. Bradt, J. Am. Ceram. Soc. 90, 673 (2007).

    Google Scholar 

  52. G. Beall, K. Chyung, R.L. Stewart, K.Y. Donaldson, H.L. Lee, S. Baskaran, D.P.H. Hasselman, J. Mater. Sci. 21, 2365 (1986).

    Google Scholar 

  53. M.N. Rahaman, A. Yao, B.S. Bal, J.P. Garino, M.D. Ries, J. Am. Ceram. Soc. 90, 1965 (2007).

    Google Scholar 

  54. P. Fratzl, R. Weinkamer, Prog. Mater. Sci. 52, 1263 (2007).

    Google Scholar 

  55. E. Munch, M.E. Launey, D.H. Alsem, E. Saiz, A.P. Tomsia, R.O. Ritchie, Science 322, 1516 (2008).

    Google Scholar 

  56. U.G. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Nat. Mater. 14, 23 (2015).

    Google Scholar 

  57. G. Mayer, Science 310, 1144 (2005).

    Google Scholar 

  58. R.C. Bradt, R.E. Newnham, J.V. Biggers, Am. Mineral. 58, 727 (1973).

    Google Scholar 

  59. D.K. Smith, W. Newkirk, Acta Crystallogr. 18, 983 (1965).

    Google Scholar 

  60. P.F. Becher, J. Am. Ceram. Soc. 74, 255 (1991).

    Google Scholar 

  61. A.G. Evans, J. Am. Ceram. Soc. 73, 187 (1990).

    Google Scholar 

  62. R.H. Hannink, P.M. Kelly, B.C. Muddle, J. Am. Ceram. Soc. 83, 461 (2000).

    Google Scholar 

  63. E. Apel, J. Deubener, A. Bernard, M. Höland, R. Müller, H. Kappert, J. Mech. Behav. Biomed. Mater. 1, 313 (2008).

    Google Scholar 

  64. R. Sarno, M. Tomozawa, J. Mater. Sci. 30, 4380 (1995).

    Google Scholar 

  65. I. Aksay, M. Trau, S. Manne, I. Honma, Science 273, 892 (1996).

    Google Scholar 

  66. Y. Shao, H.-P. Zhao, X.-Q. Feng, H. Gao, J. Mech. Phys. Solids 60, 1400 (2012).

    Google Scholar 

  67. F. Song, A. Soh, Y. Bai, Biomaterials 24, 3623 (2003).

    Google Scholar 

  68. C. Rüssel, J. Non Cryst. Solids 219, 212 (1997).

    Google Scholar 

  69. M. Albakry, M. Guazzato, M.V. Swain, J. Biomed. Mater. Res. B 71, 99 (2004).

    Google Scholar 

  70. I.L. Denry, G. Baranta, J.A. Holloway, P.K. Gupta, J. Biomed. Mater. Res. B 64B, 70 (2003).

    Google Scholar 

  71. K.H.G. Ashbee, J. Mater. Sci. 10, 911 (1975).

    Google Scholar 

  72. S. Habelitz, G. Carl, C. Rüssel, Mater. Sci. Eng. A 307, 1 (2001).

    Google Scholar 

  73. S. Habelitz, G. Carl, C. Russel, K. Marchetti, E. Roeder, D. Elfler, R. Hergt, Glass Sci. Technol. 70, 86 (1997).

    Google Scholar 

  74. M.E. Launey, M.J. Buehler, R.O. Ritchie, Annu. Rev. Mater. Res. 40, 25 (2010).

    Google Scholar 

  75. H. Peterlik, P. Roschger, K. Klaushofer, P. Fratzl, Nat. Mater. 5, 52 (2006).

    Google Scholar 

  76. W. Höland, C. Ritzberger, E. Apel, V. Rheinberger, R. Nesper, F. Krumeich, C. Monster, H. Eckert, J. Mater. Chem. 18, 1318 (2008).

    Google Scholar 

  77. G. Beall, B. Karstetter, H. Rittler, J. Am. Ceram. Soc. 50, 181 (1967).

    Google Scholar 

  78. B. Karstetter, R. Voss, J. Am. Ceram. Soc. 50, 133 (1967).

    Google Scholar 

  79. M. Dejneka, I. Dutta, C. Smith, Int. J. Appl. Glass Sci. 5, 146 (2014).

    Google Scholar 

  80. M.J. Davis, Int. J. Mater. Res. 99, 120 (2008).

    Google Scholar 

  81. F.C. Serbena, E.D. Zanotto, J. Non Cryst. Solids 358, 975 (2012).

    Google Scholar 

  82. V.R. Mastelaro, E.D. Zanotto, J. Non Cryst. Solids 247, 79 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes Graça, M.P., Valente, M.A. Ferroelectric glass-ceramics. MRS Bulletin 42, 213–219 (2017). https://doi.org/10.1557/mrs.2017.32

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.32

Navigation