Skip to main content

Ecology of Nitrogen-Fixing Bacteria for Sustainable Development of Non-legume Crops

  • Chapter
  • First Online:
Nitrogen Fixing Bacteria: Sustainable Growth of Non-legumes

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 36))

Abstract

Plants provide a substantial ecological niche for bacteria. The symbiotic association between legume and rhizobia contributed World’s largest share of biologically fixed nitrogen. This review explains the rational of using nitrogen-fixing bacteria in sustainable agriculture particularly from the genetic engineering in non-legumes for root nodule development to rhizobia and non-legume interaction covering mode of entry. Associative and entophytic role of nitrogen fixation bacteria in various cereal and non-cereal crops is well established and their functional molecules are covered in the chapter. This review attempts to discuss present challenges, future visions and missions to achieve improvement in soil fertility and crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal M, Dheeman S, Dubey RC, Kumar P, Maheshwari DK, Bajpai VK (2017) Differential antagonistic responses of Bacillus pumilus MSUA3 against Rhizoctonia solani and Fusarium oxysporum causing fungal diseases in Fagopyrum esculentum Moench. Microbiol Res 205:40–47

    Article  PubMed  Google Scholar 

  • Akkermans AD, Abdulkadir S, Trinick MJ (1978) N2-fixing root nodules in Ulmaceae: Parasponia or (and) Trema spp. Plant Soil 49(3):711–715

    Article  CAS  Google Scholar 

  • Baliyan N, Dhiman S, Dheeman S, Kumar S, Arora NK, Maheshwari DK (2021) Optimization of gibberellic acid production in endophytic Bacillus cereus using response surface methodology and its use as plant growth regulator in chickpea. J Plant Growth Regul 1:11. https://doi.org/10.1007/s00344-021-10492-2

    Article  CAS  Google Scholar 

  • Balsanelli E, Serrato RV, De Baura VA, Sassaki G, Yates MG, Rigo LU et al (2010) Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization. Environ Microbiol 12(8):2233–2244

    CAS  PubMed  Google Scholar 

  • Barbosa JZ, Hungria M, da Silva Sena JV, Poggere G, dos Reis AR, Corrêa RS (2021) Meta-analysis reveals benefits of co-inoculation of soybean with Azospirillum brasilense and Bradyrhizobium spp. in Brazil. Appl Soil Ecol 163:103913

    Article  Google Scholar 

  • Becking JH (1982) Nitrogen fixation in nodulated plants other than legumes. Adv Agric Microbiol 1:89–110

    Google Scholar 

  • Beijerinck MW (1901) Über oligonitrophile mikroben, centralblatt für bakteriologie parasitenkunde, infektionskrankheiten und hygiene. Abteilung II 7:561–582

    Google Scholar 

  • Beyan SM, Wolde-Meskel E, Dakora FD (2018) An assessment of plant growth and N2 fixation in soybean genotypes grown in uninoculated soils collected from different locations in Ethiopia. Symbiosis 75(3):189–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Böhm M, Hurek T, Reinhold-Hurek B (2007) Twitching motility is essential for endophytic rice colonization by the N2-fixing endophyte Azoarcus sp. strain BH72. Mol Plant-Microbe Interact 20(5):526–533

    Article  PubMed  Google Scholar 

  • Bourion V, Heulin-Gotty K, Aubert V, Tisseyre P, Chabert-Martinello M, Pervent M et al (2018) Co-inoculation of a pea core-collection with diverse rhizobial strains shows competitiveness for nodulation and efficiency of nitrogen fixation are distinct traits in the interaction. Front Plant Sci 8:2249

    Article  PubMed  PubMed Central  Google Scholar 

  • Bueno Batista M, Dixon R (2019) Manipulating nitrogen regulation in diazotrophic bacteria for agronomic benefit. Biochem Soc Trans 47(2):603–614

    Article  PubMed  PubMed Central  Google Scholar 

  • Burdman S, Dulguerova G, Okon Y, Jurkevitch E (2001) Purification of the major outer membrane protein of Azospirillum brasilense, its affinity to plant roots, and its involvement in cell aggregation. Mol Plant-Microbe Interact 14(4):555–561

    Article  CAS  PubMed  Google Scholar 

  • Caires EF, Bini AR, Barão LFC, Haliski A, Duart VM, Ricardo KDS (2021) Seed inoculation with Azospirillum brasilense and nitrogen fertilization for no-till cereal production. Agron J 113(1):560–576

    Article  CAS  Google Scholar 

  • Cassán F, Coniglio A, López G, Molina R, Nievas S, de Carlan CLN, Donadio F, Torres D, Rosas S, Pedrosa FO, de Souza E (2020) Everything you must know about Azospirillum and its impact on agriculture and beyond. Biol Fertil Soils 56(4):461–479

    Article  Google Scholar 

  • Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz J Microbiol 38(1):124–130

    Article  Google Scholar 

  • Chelius MK, Triplett EW (2000) Immunolocalization of dinitrogenase reductase produced by Klebsiella pneumoniae in association with Zea mays L. Appl Environ Microbiol 66(2):783–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47(4):289–297

    Article  CAS  PubMed  Google Scholar 

  • Cocking EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252(1):169–175

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dakora FD, Matiru V, Kanu AS (2015) Rhizosphere ecology of lumichrome and riboflavin, two bacterial signal molecules eliciting developmental changes in plants. Front Plant Sci 6:700

    Article  PubMed  PubMed Central  Google Scholar 

  • Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64(4):847–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day JM, Döbereiner J (1976) Physiological aspects of N2-fixation by Azospirillum from Digitaria roots. Soil Biol Biochem 8(1):45–50

    Article  CAS  Google Scholar 

  • Dheeman S, Maheshwari DK, Baliyan N (2017) Bacterial endophytes for ecological intensification of agriculture. In: Maheshwari DK (ed) Endophytes: biology and biotechnology. Springer, Cham, pp 193–231

    Chapter  Google Scholar 

  • Dhiman S, Kumar S, Baliyan N, Dheeman S, Maheshwari DK (2021) Cattle dung manure microbiota as a substitute for mineral nutrients and growth management practices in plants. In: Maheshwari DK, Dheeman S (eds) Endophytes: mineral nutrient management, vol 3. Springer, Cham, pp 77–103

    Chapter  Google Scholar 

  • Dubois M, Broeck LV, Inzé D (2018) The pivotal role of ethylene in plant growth. Trends Plant Sci 23:311–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egamberdieva D, Jabborova D, Wirth S (2013) Alleviation of salt stress in legumes by coinoculation with Pseudomonas and Rhizobium. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 291–303

    Chapter  Google Scholar 

  • Elmerich C (2007) Historical perspective: from bacterization to endophytes. In: Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Dordrecht, pp 1–20

    Chapter  Google Scholar 

  • Etesami H (2022) Root nodules of legumes: a suitable ecological niche for isolating nonrhizobial bacteria with biotechnological potential in agriculture. Curr Res Biotech 4:78–86

    Article  CAS  Google Scholar 

  • Galindo FS, Rodrigues WL, Fernandes GC, Boleta EHM, Jalal A, Rosa PAL et al (2022) Enhancing agronomic efficiency and maize grain yield with Azospirillum brasilense inoculation under Brazilian savannah conditions. Eur J Agron 134:126471

    Article  CAS  Google Scholar 

  • Gilbert JH (1891) Results of experiments at Rothamsted on the question of the fixation of free nitrogen. Nature 45:32–33

    Article  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21(5):383–393

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190(1):63–68

    Article  CAS  PubMed  Google Scholar 

  • Gourion B, Berrabah F, Ratet P, Stacey G (2015) Rhizobium–legume symbioses: the crucial role of plant immunity. Trends Plant Sci 20(3):186–194

    Article  CAS  PubMed  Google Scholar 

  • Griesmann M, Chang Y, Liu X, Song Y, Haberer G, Crook MB et al (2018) Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 361(6398):eaat1743

    Article  PubMed  Google Scholar 

  • Gyaneshwar P, Naresh Kumar G, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245(1):83–93

    Article  CAS  Google Scholar 

  • Hurek T, Handley LL, Reinhold-Hurek B, Piché Y (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant-Microbe Interact 15(3):233–242

    Article  CAS  PubMed  Google Scholar 

  • Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant-Microbe Interact 17(10):1078–1085

    Article  CAS  PubMed  Google Scholar 

  • Ivleva NB, Groat J, Staub JM, Stephens M (2016) Expression of active subunit of nitrogenase via integration into plant organelle genome. PLoS One 11(8):e0160951

    Article  PubMed  PubMed Central  Google Scholar 

  • James EK, Gyaneshwar P, Mathan N, Barraquio QL, Reddy PM, Iannetta PPM, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant-Microbe Interact 15(9):894–906

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286(5776):885–886

    Article  CAS  Google Scholar 

  • Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J et al (2006) Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol 24(11):1384–1390

    Article  Google Scholar 

  • Kumar K, Goh KM (2002) Management practices of antecedent leguminous and nonleguminous crop residues in relation to winter wheat yields, nitrogen uptake, soil nitrogen mineralization and simple nitrogen balance. Eur J Agron 16(4):295–308

    Article  CAS  Google Scholar 

  • Ma W, Sebestianova SB, Sebestian J, Burd GI, Guinel FC, Glick BR (2003) Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium spp. Antonie Van Leeuwenhoek 83(3):285–291

    Article  CAS  PubMed  Google Scholar 

  • Mabrouk Y, Hemissi I, Salem IB, Mejri S, Saidi M, Belhadj O (2018) Potential of rhizobia in improving nitrogen fixation and yields of legumes. Symbiosis 107:73495

    Google Scholar 

  • Maheshwari DK (2010) Plant growth and health promoting bacteria, vol 18. Springer Science & Business Media

    Google Scholar 

  • Maheshwari DK (2017) Conclusion. In: Maheshwari DK (ed) Endophytes: biology and biotechnology. Sustainable development and biodiversity, vol 15. Springer, Cham

    Chapter  Google Scholar 

  • Maheshwari DK, Dheeman S, Annapurna K (2017) Endophytes as contender of plant productivity and protection: an introduction. In: Maheshwari DK, Annapurna K (eds) Endophytes: crop productivity and protection. Sustainable development and biodiversity, vol 16. Springer, Cham

    Chapter  Google Scholar 

  • Mano H, Morisaki H (2008) Endophytic bacteria in the rice plant. Microbes Environ 23(2):109–117

    Article  PubMed  Google Scholar 

  • McGuiness PN, Reid JB, Foo E (2019) The role of gibberellins and brassinosteroids in nodulation and arbuscular mycorrhizal associations. Front Plant Sci 10:269

    Article  PubMed  PubMed Central  Google Scholar 

  • Mia MB, Shamsuddin ZH (2010) Rhizobium as a crop enhancer and biofertilizer for increased cereal production. Afr J Biotechnol 9(37):6001–6009

    Google Scholar 

  • Möllerová J (1990) Nitrogen fixation: hundred years after. Folia Geobot Phytotax 25:256. https://doi.org/10.1007/BF02913022

    Article  Google Scholar 

  • Mostafa MA, Mahmoud Z (1951) Bacterial isolates from root nodules of Zygophyllaceae. Nature 167:446–447

    Article  CAS  PubMed  Google Scholar 

  • Okon Y, Heytler PG, Hardy RWF (1983) N2 fixation by Azospirillum brasilense and its incorporation into host Setaria italica. Appl Environ Microbiol 46(3):694–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Op den Camp RH, Polone E, Fedorova E, Roelofsen W, Squartini A, Op den Camp HJ, Bisseling T, Geurts R (2012) Non-legume Parasponia andersonii deploys a broad rhizobium host range strategy resulting in largely variable symbiotic effectiveness. Mol Plant-Microbe Interact 25(7):954–963

    Article  Google Scholar 

  • Pandey P, Kang SC, Maheshwari DK (2005) Isolation of endophytic plant growth promoting Burkholderia sp. MSSP from root nodules of Mimosa pudica. Curr Sci 89:177–180

    CAS  Google Scholar 

  • Pedrosa FO, Oliveira ALM, Guimarães VF, Etto RM, Souza EM, Furmam FG et al (2020) The ammonium excreting Azospirillum brasilense strain HM053: a new alternative inoculant for maize. Plant Soil 451(1):45–56

    Article  CAS  Google Scholar 

  • Pedrosa KM, de Almeida HA, Ramos MB, de Faria Lopes S (2021) Plants with similar characteristics drive their use by local populations in the semi-arid region of Brazil. Environ Dev Sustain 23(11):16834–16847

    Article  Google Scholar 

  • Perrine-Walker FM, Gartner E, Hocart CH, Becker A, Rolfe BG (2007) Rhizobium-initiated rice growth inhibition caused by nitric oxide accumulation. Mol Plant-Microbe Interact 20(3):283–292

    Article  CAS  PubMed  Google Scholar 

  • Reinhold BB, Chan SY, Reuber TL, Marra A, Walker GC, Reinhold VN (1994) Detailed structural characterization of succinoglycan, the major exopolysaccharide of Rhizobium meliloti Rm1021. J Bacteriol 176:1997–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Life in grasses: Diazotrophic endophytes. Trends Microbiol 6(4):139–144

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1):305–339

    Article  CAS  Google Scholar 

  • Rogers C, Oldroyd GE (2014) Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. J Exp Bot 65(8):1939–1946

    Article  CAS  PubMed  Google Scholar 

  • Roncato-Maccari LD, Ramos HJO, Pedrosa FO, Alquini Y, Chubatsu LS, Yates MG, Rig L, Steffens MB, Souza EM (2003) Root colonization, systemic spreading and contribution of Herbaspirillum seropedicae to growth of rice seedling. Symbiosis 35:261–270

    Google Scholar 

  • Sabet YS (1946) Bacterial root nodules in the Zygophyllaceae. Nature 157(3994):656–657

    Article  CAS  PubMed  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111(5):743–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and nif mutant strains. Mol Plant-Microbe Interact 14(3):358–366

    Article  CAS  PubMed  Google Scholar 

  • Sindhu SS, Gupta SK, Dadarwal KR (1999) Antagonistic effect of Pseudomonas spp. on pathogenic fungi and enhancement of growth of green gram (Vigna radiata). Biol Fertil Soils 29(1):62–68

    Article  CAS  Google Scholar 

  • Smercina DN, Evans SE, Friesen ML, Tiemann LK (2019) To fix or not to fix: controls on free-living nitrogen fixation in the rhizosphere. Appl Environ Microbiol 85(6):e02546–e02518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soyano T, Liu M, Kawaguchi M, Hayashi M (2021) Leguminous nodule symbiosis involves recruitment of factors contributing to lateral root development. Curr Opin Plant Biol 59:102000

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3(4):a001438

    Article  PubMed  PubMed Central  Google Scholar 

  • Swarnalakshmi K, Yadav V, Tyagi D, Dhar DW, Kannepalli A, Kumar S (2020) Significance of plant growth promoting rhizobacteria in grain legumes: growth promotion and crop production. Plants 9(11):1596

    Article  CAS  PubMed Central  Google Scholar 

  • Trinick MJ (1973) Symbiosis between Rhizobium and the non-legume, Trema aspera. Nature 244(5416):459–460

    Article  Google Scholar 

  • Udvardi M, Poole PS (2013) Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol 64:781–805

    Article  CAS  PubMed  Google Scholar 

  • Van Puyvelde S, Cloots L, Engelen K, Das F, Marchal K, Vanderleyden J, Spaepen S (2011) Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response. Microb Ecol 61(4):723–728

    Article  PubMed  Google Scholar 

  • van Velzen R, Holmer R, Bu F, Rutten L, van Zeijl A, Liu W et al (2018) Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses. Proc Natl Acad Sci 115(20):E4700–E4709

    PubMed  PubMed Central  Google Scholar 

  • Verma SC, Singh A, Chowdhury SP, Tripathi AK (2004) Endophytic colonization ability of two deep-water rice endophytes, Pantoea sp. and Ochrobactrum sp. using green fluorescent protein reporter. Biotechnol Lett 26(5):425–429

    Article  CAS  PubMed  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Lavakush S, Singh V (2010) Impact of plant growth promoting rhizobacteria on crop production. Int J Agric Res 5(11):954–983

    Article  Google Scholar 

  • Wardhani TA, Roswanjaya YP, Dupin S, Li H, Linders S, Hartog M et al (2019) Transforming, genome editing and phenotyping the nitrogen-fixing tropical Cannabaceae tree Parasponia andersonii. J Vis Exp 150:e59971

    Google Scholar 

  • Yang ZR, Lin Q (2005) Comparative morphology of the leaf epidermis in Schisandra (Schisandraceae). Bot J Linn Soc 148(1):39–56

    Article  Google Scholar 

  • Yanni YG, Rizk RY, El-Fattah FKA, Squartini A, Corich V, Giacomini A, de Bruijn F, Rademaker J, Maya-Flores J, Ostrom P, Vega-Hernandez M, Hollingsworth RI, Martinez-Molina E, Mateos P, Velazquez E, Wopereis J, Triplett E, Umali-Garcia M, Anarna JA, Rolfe BG, Ladha JK, Hill J, Mujoo R, Ng PK, Dazzo FB (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust J Plant Physiol 28:845–870

    CAS  Google Scholar 

  • Yi HS, Yang JW, Ryu CM (2013) ISR meets SAR outside: additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field-grown pepper. Front Plant Sci 4:122

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Not applicable.

Conflict of Interest

Author(s) declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dheeman, S., Maheshwari, D.K. (2022). Ecology of Nitrogen-Fixing Bacteria for Sustainable Development of Non-legume Crops. In: Maheshwari, D.K., Dobhal, R., Dheeman, S. (eds) Nitrogen Fixing Bacteria: Sustainable Growth of Non-legumes. Microorganisms for Sustainability, vol 36. Springer, Singapore. https://doi.org/10.1007/978-981-19-4906-7_13

Download citation

Publish with us

Policies and ethics