Skip to main content

Polymer Nanocomposite Matrix-Based Nanoproducts

  • Reference work entry
  • First Online:
Handbook of Consumer Nanoproducts

Abstract

In this chapter, a review of several researches is done on the development and characterization of polymer nanocomposites. Polymer nanocomposite is a promising multidisciplinary material research activity that could expand the use of polymers for various industrial applications and also in environment to remove pollutants. Polymer nanocomposites are a radical alternate to conventional polymer composites, where large amount of fillers are added to improve the properties. For polymer composite applications, the use of natural fibers is preferred to efficiently reduce the dependence on petrochemical-based plastics. The utilization of renewable materials has attracted researchers because of its easy availability and low cost. They can potentially remove the harmful effects of petroleum-based materials and thus show a greener path in the fields of application of composites. In recent years were used developing nanotechnological methods based on adsorption capabilities of cellulosic nanoparticles for monitoring hazardous substances in the environment. Along the examples are the benefits and implications of sustainable design and the use of nanocellulose in environmental applications. The discussion will be focused on structural, mechanical, as well as degradation of cellulose. Nanocellulose, wood polymer nanocomposites have renewability, availability, light weight, low cost, and most importantly minimum environmental impact (Ecofriendly) and have little effect on animal/human health. The general properties of cellulose include extensive ability of chemical modification and very high aspect ratio leading to the formation of versatile semi-crystalline fibers which is the unique characteristic of nano-materials as reinforcing agents. There is the presence of strong and complex network of hydrogen bonds which are stabilized by the ordered regions of chain packages of cellulose that resembles nanocrystalline rods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdul Khalil HPS, Davoudpour Y, Islam MN et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665

    Article  CAS  Google Scholar 

  2. Adeosun SO, Lawal GI, Balogun SA, Akpan EI (2012) Review of green polymer nanocomposites. J Miner Mater Charact Eng 11:385–416

    Google Scholar 

  3. Alexander M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation,properties and uses of a new class of materials. Mate Sci Eng R Rep 28(1–2):1–63. https://doi.org/10.1016/S0927-796X(00)00012-7

  4. Angeles BM, Concepcion M, Cristina C, Ana B, Noemi M, Carlos N (2018) Chapter 5: nanocellulose for industrial use: cellulose nanofibers (CNF), cellulose nanocrystals (CNS), and bacterial cellulose (BC). In: Chaudhery MH (ed) Handbook of nanomaterials for industrial applications, 1st edn. Elsevier, Newark

    Google Scholar 

  5. Ashori A (2008) Wood–plastic composites as promising green-composites for automotive industries. Bioresour Technol 99:4661–4667

    Article  CAS  Google Scholar 

  6. Czaja W, Romanovicz D, Brown M (2004) Structural investigations of microbial cellulose produced in stationary and agiatated culture. Cellulose 11:403–411. https://doi.org/10.1023/B:CELL.0000046412.11983.61

  7. Deka BK, Maji TK (2011) Effect of TiO2 and nanoclay on the properties of wood polymer nanocomposite. Compos Part A 42:2117–2125

    Article  CAS  Google Scholar 

  8. Deka BK, Maji TK (2012) Effect of nanoclay and ZnO on the physical and chemical properties of wood polymer nanocomposite. J Appl Polym Sci 124:2919–2929

    Article  CAS  Google Scholar 

  9. Deka BK, Maji TK (2013) Effect of SiO2 and nanoclay on the properties of wood polymer nanocomposite. Polym Bull 70:403–417

    Article  CAS  Google Scholar 

  10. Evans BR, O’Neill HM, Malyvanh VP, Lee I, Woodward J (2003) Palladium bacterial cellulose membranes for fuel cells. Biosens Bioelectron 18:917–923

    Article  CAS  Google Scholar 

  11. Eyholzer C, Bordeanu N, Lopez-Suevos F, Rentsch D, Zimmermann T, Oksman K (2010) Preparation and characterization of water-re-dispersible nano-fibrillated cellulose in pow-der form. Cellulose 17(I1):19–30. Chapter 7, https://doi.org/10.1016/B978-0-12-816787-8.00007-7, Chaudhery MH, editor. Handbook of functionalized nanomaterials for industrial applications. First edition. Elsevier Publications; (2020)

  12. Guhados G, Wan WK, Hutter JL (2005) Measurement of the elastic modulus of single cellulose fibers using atomic force microscopy. Langmuir 21:6642–6646

    Article  CAS  Google Scholar 

  13. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  14. Hokkanen S, Repo E, Sillanpää M (2013) Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chem Eng J 223:40–47

    Article  CAS  Google Scholar 

  15. Hokkanen S, Repo E, Suopajärvi T et al (2014) Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose 21:1471–1487

    Article  CAS  Google Scholar 

  16. Hossein M, Zadeha B, Shahdadia H (2015) Nanocellulose coated with various free fatty acids can adsorb fumonisin B1. Colloids Surf 134:26–30. Chapter 18, Chaudhery MH, Mishra AK. editor, Nanotechnology in Environmental Science, 2 Volumes, John Wiley & Sons, (2019)

    Google Scholar 

  17. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40:1511–1575

    Article  CAS  Google Scholar 

  18. Jin L, Wei Y, Xu Q et al (2014) Cellulose nanofibers prepared from TEMPO-oxidation of Kraft pulp and its flocculation effect on kaolin clay. J Appl Polym Sci 131:1–8

    Article  Google Scholar 

  19. Jin L, Li W, Xu Q, Sun Q (2015) Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes. Cellulose 22:2443–2456

    Article  CAS  Google Scholar 

  20. Johnson MR, Tucker N, Barnes S (2003) Impact performance of miscanthus/novamont mater bi biocomposites. Polym Test 22:209–215

    Article  CAS  Google Scholar 

  21. Juntaro J, Pommet M, Kalinka G, Mantalaris A, Shaffer MSP, Bismarck A (2008) Creating hierarchical structures in renewable composites by attaching bacterial cellulose onto sisal fibers. Adv Mater 20:3122–3126

    Article  CAS  Google Scholar 

  22. Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576

    Article  CAS  Google Scholar 

  23. Kardam A, Raj KR, Srivastava S, Srivastava MM (2014) Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Techn Environ Policy 16:385–393

    Article  CAS  Google Scholar 

  24. Klemm D, Schumann D, Kramer F, Hesler N, Koth D, Sultanova B (2009) Nanocellulose materials – different cellulose, different functionality. Macromol Symp 280:60–71

    Article  CAS  Google Scholar 

  25. Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  26. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  CAS  Google Scholar 

  27. Lavoine N, Desloges I, Dufresne A, Bras J (2012a) Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  CAS  Google Scholar 

  28. Lavoine N, Desloges I, Dufresne A, Bras J (2012b) Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  CAS  Google Scholar 

  29. Leszczy’nska A, Njuguna J, Pielichowski K, Banerjee JR (2007) Polymer/montmorillonitenano- composites with improved thermal properties. Part II. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixes. Thermochim Acta 454:1–22

    CAS  Google Scholar 

  30. Liimatainen H, Sirviö J, Sundman O et al (2012a) Use of nanoparticular and soluble anionic celluloses in coagulation-flocculation treatment of kaolin suspension. Water Res 46:2159–2166

    Article  CAS  Google Scholar 

  31. Liimatainen H, Visanko M, Sirviö JA et al (2012b) Enhancement of the nanofibrillation of wood cellulose through sequential periodate–chlorite oxidation. Biomacromolecules 13:1592–1597

    Article  CAS  Google Scholar 

  32. Liimatainen H, Visanko M, Sirviö J et al (2013) Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment. Cellulose 20:741–749

    Article  CAS  Google Scholar 

  33. Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262

    Article  CAS  Google Scholar 

  34. Islama MS, Hamdana S, Talibb ZA, Ahmeda AS, Rahmana MR (2012) Tropical wood polymer nanocomposite (WPNC): the impact of nanoclay on dynamic mechanical thermal properties. Compos Sci Technol 72:1995–2001

    Article  CAS  Google Scholar 

  35. Misra SK, Valappil SP, Roy I, Boccaccini AR (2006) Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications. Biomacromolecules 7:2249–2258

    Article  CAS  Google Scholar 

  36. Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano- scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A Mater Sci Process 78:547–552

    Article  CAS  Google Scholar 

  37. Nasrollahzadh M, Sajjadi M, Sajadi SM, Issaabdi Z (2019) Green nanotechnology. In: An introduction to green nanotechnology. Academic, London, pp 145–198. Chapter 1, Chaudhery MH, editor. The ELSI Handbook of Nanotechnology: Risk, Safety, ELSI and Commercialization, John Wiley & Sons, (2020)

    Chapter  Google Scholar 

  38. Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20:1849–1852

    Article  CAS  Google Scholar 

  39. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49: 3187–3204. Raberg U, Hafren J (2008) Biodegradation and appearance of plastic treated solid wood. Int Biodeterior Biodegrad 62:210–213

    Google Scholar 

  40. Peng Y, Gardner DJ, Han Y (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19(1):91–102. Chapter 7, https://doi.org/10.1016/B978-0-12-816787-8.00007-7, Chaudhery MH, editor. Handbook of functionalized nanomaterials for industrial applications. First edition. Elsevier Publications; (2020)

  41. Rajalaxmi D, Jiang N, Leslie G, Ragauskas AJ (2010) Synthesis of novel water-soluble sulfonated cellulose. Carbohydr Res 345:284–290

    Article  CAS  Google Scholar 

  42. Ruiz-Palomero C, Soriano ML, Valcárcel M (2016) Sulfonated nanocellulose for the efficient dispersive micro solid-phase extraction and determination of silver nanoparticles in food products. J Chromatogr A 1428:352–358

    Article  CAS  Google Scholar 

  43. Saito T, Isogai A (2005) Ion-exchange behavior of carboxylate groups in fibrous cellulose oxidized by the TEMPO-mediated system. Carbohydr Polym 61:183–190

    Article  CAS  Google Scholar 

  44. Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–659

    Article  CAS  Google Scholar 

  45. Sato A, Wang R, Ma HY, Hsiao BS, Chu B (2011) Novel nanofibrous scaffolds for water filtration with bacteria and virus removal capability. J Electron Microsc 60(3):201–209. Chapter 18, Chaudhery MH, Mishra AK.editor, Nanotechnology in Environmental Science, 2 Volumes, John Wiley & Sons, (2019)

    Google Scholar 

  46. Scott G (2000) Green- polymers. Polym Degrad Stab 68:1–7

    Article  CAS  Google Scholar 

  47. Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36:1766–1782. Chapter 7, https://doi.org/10.1016/B978-0-12-816787-8.00007-7, Chaudhery MH, editor. Handbook of functionalized nanomaterials for industrial applications. First edition. Elsevier Publications; (2020)

  48. Singha AS, Thakur VK (2009) Chemical resistance, mechanical and physical properties of biofibers-based polymer composites. Polym-Plast Technol Eng 48:736–744

    Article  CAS  Google Scholar 

  49. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    Article  CAS  Google Scholar 

  50. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  51. Sirviö J, Honka A, Liimatainen H et al (2011) Synthesis of highly cationic water-soluble cellulose derivative and its potential as novel biopolymeric flocculation agent. Carbohydr Polym 86:266–270

    Article  CAS  Google Scholar 

  52. Sukanchan P, Chaudhery MH (2020) Chapter 1: modern manufacturing and nanomaterial perspective. In: Chaudhery MH (ed) Handbook of manufacturing applications of nanomaterials, 1st edn. Elsevier. https://doi.org/10.1016/B978-0-12-821381-0.00001-6

    Chapter  Google Scholar 

  53. Thakur VK, Vennerberg D, Madbouly SA, Kessler MR (2014) Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. RSC Adv 4:6677–6684

    Article  CAS  Google Scholar 

  54. Tunc S, Duman O (2011) Preparation of active antimicrobial methyl cellulose/carvacol/montmorilloonite films and investigation of carvacol release. LWT Food Sci Technol 44:465–472

    Article  CAS  Google Scholar 

  55. Yu X, Tong S, Ge M, Wu L, Zuo J, Cao C, Song W (2013) Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J Environ Sci 25:933–994

    Article  CAS  Google Scholar 

  56. Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

AI-Jawhari, I.F.H. (2022). Polymer Nanocomposite Matrix-Based Nanoproducts. In: Handbook of Consumer Nanoproducts. Springer, Singapore. https://doi.org/10.1007/978-981-16-8698-6_21

Download citation

Publish with us

Policies and ethics