Skip to main content

Noninvasive Electrical Brain Stimulation of the Central Nervous System

  • Reference work entry
  • First Online:
Handbook of Neuroengineering
  • 148 Accesses

Abstract

Noninvasive electrical brain stimulation of the central nervous system spans a broad range of devices and techniques that aim to change brain function with electrical current applied through electrodes on the surface of the body. The applications of such techniques span treatment of a wide range of neuropsychiatric disorders, healing of the nervous system after an injury, and experimental manipulations to study brain function. This chapter focuses on transcranial electrical stimulation (tES) which involves electrodes placed on the scalp with the goal of passing current through the skull and directly stimulate the cortex. tES itself is divided into subtechniques that are classified by the waveform applied and/or by the application of intended use. All tES devices share certain common features including a waveform generator and electrodes that are fully disposable or include a disposable component. The device applies the waveform to the electrodes through lead wires. tES “dose” is defined by the size and position of electrodes, and waveform includes the pattern, duration, and intensity of current. Versions of low-intensity tES include transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS). Impedance measurement is largely used to monitor acceptability of electrode-skin properties. Computational FEM models of current flow support device design and programming by informing how to select dose to produce a given outcome. The evidence for tES use across varied clinical applications, spanning treatment of neuropsychiatric disorders and neurorehabilitation following injury, as well as a tool to change cognition and behavior in healthy individuals is developing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

tES:

Transcranial electrical stimulation

tDCS:

Transcranial direct current stimulation

tACS:

Transcranial alternating current stimulation

ECT:

Electroconvulsive therapy

tRNS:

Transcranial random noise stimulation

tPCS:

Transcranial pulsed current stimulation

HD:

High definition

HD-tDCS:

High-definition tDCS

AC:

Alternating current

DC:

Direct current

CES:

Cranial electrotherapy stimulation

HD-tES:

High-definition tES

HD-tACS:

High-definition tACS

EEG:

Electroencephalogram

MHC:

Multilayer hydrogel composite

ADHD:

Attention deficit hyperactivity disorder

MDD:

Major depression disorder

DLPFC:

Dorsolateral prefrontal cortex

M1:

Primary motor cortex

CSF:

Cerebrospinal fluid

FEM:

Finite element method

NSR:

Nonsignificant risk

MRI:

Magnetic resonance imaging

References

  1. Khadka, N., Harmsen, I.E., Lozano, A.M., Bikson, M.: Bio-heat model of kilohertz-frequency deep brain stimulation increases brain tissue temperature. Neuromodulation: Technology at the Neural Interface. 23, 489–495 (2020). https://doi.org/10.1111/ner.13120

    Article  Google Scholar 

  2. Paff, M., Loh, A., Sarica, C., et al.: Update on current technologies for deep brain stimulation in Parkinson’s disease. J Mov Disord. (2020). https://doi.org/10.14802/jmd.20052

  3. Deer, T.R., Grider, J.S., Lamer, T.J., et al.: A systematic literature review of spine neurostimulation therapies for the treatment of pain. Pain Med. 21, 1421–1432 (2020). https://doi.org/10.1093/pm/pnz353

    Article  Google Scholar 

  4. Khadka, N., Truong, D.Q., Williams, P., et al.: The quasi-uniform assumption for spinal cord stimulation translational research. J. Neurosci. Methods. 328, 108446 (2019). https://doi.org/10.1016/j.jneumeth.2019.108446

    Article  Google Scholar 

  5. Brunoni, A.R., Nitsche, M.A., Bolognini, N., et al.: Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul. 5, 175–195 (2012). https://doi.org/10.1016/j.brs.2011.03.002

    Article  Google Scholar 

  6. Woods, A.J., Antal, A., Bikson, M., et al.: A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin. Neurophysiol. 127, 1031–1048 (2016). https://doi.org/10.1016/j.clinph.2015.11.012

    Article  Google Scholar 

  7. Abd Hamid, A.I., Gall, C., Speck, O., et al.: Effects of alternating current stimulation on the healthy and diseased brain. Front. Neurosci. 9, 391 (2015). https://doi.org/10.3389/fnins.2015.00391

    Article  Google Scholar 

  8. Koganemaru, S., Mikami, Y., Matsuhashi, M., et al.: Cerebellar transcranial alternating current stimulation modulates human gait rhythm. Neurosci. Res. 156, 265–270 (2020). https://doi.org/10.1016/j.neures.2019.12.003

    Article  Google Scholar 

  9. Reato, D., Rahman, A., Bikson, M., Parra, L.C.: Effects of weak transcranial alternating current stimulation on brain activity-a review of known mechanisms from animal studies. Front. Hum. Neurosci. 7, 687 (2013). https://doi.org/10.3389/fnhum.2013.00687

    Article  Google Scholar 

  10. Antal, A., Herrmann, C.S.: Transcranial alternating current and random noise stimulation: possible mechanisms. Neural Plast. 2016 (2016). https://doi.org/10.1155/2016/3616807

  11. Stacey, W.C., Durand, D.M.: Noise and coupling affect signal detection and bursting in a simulated physiological neural network. J. Neurophysiol. 88, 2598–2611 (2002). https://doi.org/10.1152/jn.00223.2002

    Article  Google Scholar 

  12. Chen, C.-F., Bikson, M., Chou, L.-W., et al.: Higher-order power harmonics of pulsed electrical stimulation modulates corticospinal contribution of peripheral nerve stimulation. Sci. Rep. 7, 43619 (2017). https://doi.org/10.1038/srep43619

    Article  Google Scholar 

  13. Datta, A., Dmochowski, J.P., Guleyupoglu, B., et al.: Cranial electrotherapy stimulation and transcranial pulsed current stimulation: a computer based high-resolution modeling study. NeuroImage. 65, 280–287 (2013). https://doi.org/10.1016/j.neuroimage.2012.09.062

    Article  Google Scholar 

  14. Argyelan, M., Oltedal, L., Deng, Z.-D., et al.: Electric field causes volumetric changes in the human brain. elife. 8 (2019). https://doi.org/10.7554/eLife.49115

  15. Tor, P.-C., Bautovich, A., Wang, M.-J., et al.: A systematic review and meta-analysis of brief versus ultrabrief right unilateral electroconvulsive therapy for depression. J. Clin. Psychiatry. 76, e1092–e1098 (2015). https://doi.org/10.4088/JCP.14r09145

    Article  Google Scholar 

  16. Antal, A., Alekseichuk, I., Bikson, M., et al.: Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin. Neurophysiol. 128, 1774–1809 (2017). https://doi.org/10.1016/j.clinph.2017.06.001

    Article  Google Scholar 

  17. Aparício, L.V.M., Guarienti, F., Razza, L.B., et al.: A systematic review on the acceptability and tolerability of transcranial direct current stimulation treatment in neuropsychiatry trials. Brain Stimul. 9, 671–681 (2016)

    Article  Google Scholar 

  18. Bikson, M., Grossman, P., Thomas, C., et al.: Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 9, 641–661 (2016)

    Article  Google Scholar 

  19. Borges, H., Dufau, A., Paneri, B., et al.: Updated technique for reliable, easy, and tolerated transcranial electrical stimulation including transcranial direct current stimulation. JoVE (Journal of Visualized Experiments), e59204 (2020). https://doi.org/10.3791/59204

  20. Fregni, F., El-Hagrassy, M.M., Pacheco-Barrios, K., et al.: Evidence-based guidelines and secondary meta-analysis for the use of transcranial direct current stimulation (tDCS) in neurological and psychiatric disorders. Int. J. Neuropsychopharmacol. (2020). https://doi.org/10.1093/ijnp/pyaa051

  21. Nitsche, M.A., Nitsche, M.A., Paulus, W., Paulus, W.: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology. 527 Pt 3, 633–639 (2000). https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x. [pii]

    Article  Google Scholar 

  22. Nitsche, M.A., Cohen, L.G., Wassermann, E.M., et al.: Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 1, 206–223 (2008). https://doi.org/10.1016/j.brs.2008.06.004

    Article  Google Scholar 

  23. Truong, D.Q., Bikson, M.: Physics of transcranial direct current stimulation devices and their history. J. ECT. 34, 137–143 (2018). https://doi.org/10.1097/YCT.0000000000000531

    Article  Google Scholar 

  24. Merrill, D.R., Bikson, M., Jefferys, J.G.: Electrical stimulation of excitable tissue:design of efficacious and safe protocols. J. Neurosci. Methods. 141, 171–198 (2005)

    Article  Google Scholar 

  25. Dmochowski, J.P., Datta, A., Bikson, M., et al.: Optimized multi-electrode stimulation increases focality and intensity at target. J. Neural Eng. 8, 046011 (2011). https://doi.org/10.1088/1741-2560/8/4/046011

    Article  Google Scholar 

  26. Minhas, P., Bansal, V., Patel, J., et al.: Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS. J. Neurosci. Methods. 190, 188–197 (2010). https://doi.org/10.1016/j.jneumeth.2010.05.007

    Article  Google Scholar 

  27. DaSilva, A.F., Volz, M.S., Bikson, M., Fregni, F.: Electrode positioning and montage in transcranial direct current stimulation. Journal of Visualized Experiments, e2744 (2011). https://doi.org/10.3791/2744

  28. Paneri, B., Adair, D., Thomas, C., et al.: Tolerability of repeated application of transcranial electrical stimulation with limited outputs to healthy subjects. Brain Stimul. 9, 740–754 (2016). https://doi.org/10.1016/j.brs.2016.05.008

    Article  Google Scholar 

  29. Datta, A., Bansal, V., Diaz, J., et al.: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2, 201–207.e1 (2009). https://doi.org/10.1016/j.brs.2009.03.005

    Article  Google Scholar 

  30. Hampstead, B.M., Ehmann, M., Rahman-Filipiak, A.: Reliable use of silver chloride HD-tDCS electrodes. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation. 13, 1005–1007 (2020). https://doi.org/10.1016/j.brs.2020.04.003

    Article  Google Scholar 

  31. Bai, S., Gálvez, V., Dokos, S., et al.: Computational models of bitemporal, bifrontal and right unilateral ECT predict differential stimulation of brain regions associated with efficacy and cognitive side effects. Eur. Psychiatry. 41, 21–29 (2017). https://doi.org/10.1016/j.eurpsy.2016.09.005

    Article  Google Scholar 

  32. George, M.S., Nahas, Z., Li, X., et al.: Novel treatments of mood disorders based on brain circuitry (ECT, MST, TMS, VNS, DBS). Semin. Clin. Neuropsychiatry. 7, 293–304 (2002)

    Article  Google Scholar 

  33. George, M.S., Taylor, J.J., Short, B.: Treating the depressions with superficial brain stimulation methods. Handb. Clin. Neurol. 116, 399–413 (2013). https://doi.org/10.1016/B978-0-444-53497-2.00033-4

    Article  Google Scholar 

  34. Bikson, M., Paneri, B., Mourdoukoutas, A., et al.: Limited output transcranial electrical stimulation (LOTES-2017): engineering principles, regulatory statutes, and industry standards for wellness, over-the-counter, or prescription devices with low risk. Brain Stimul. 11, 134–157 (2018). https://doi.org/10.1016/j.brs.2017.10.012

    Article  Google Scholar 

  35. Dundas, J.E., Thickbroom, G.W., Mastaglia, F.L.: Perception of comfort during transcranial DC stimulation: effect of NaCl solution concentration applied to sponge electrodes. Clin. Neurophysiol. 118, 1166–1170 (2007). https://doi.org/10.1016/j.clinph.2007.01.010

    Article  Google Scholar 

  36. Fertonani, A., Ferrari, C., Miniussi, C.: What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects. Clinical Neurophysiology. (2015). https://doi.org/10.1016/j.clinph.2015.03.015

  37. Khadka, N., Borges, H., Zannou, A.L., et al.: Dry tDCS: tolerability of a novel multilayer hydrogel composite non-adhesive electrode for transcranial direct current stimulation. Brain Stimul. 11, 1044–1053 (2018). https://doi.org/10.1016/j.brs.2018.07.049

    Article  Google Scholar 

  38. Ezquerro, F., Moffa, A.H., Bikson, M., et al.: The influence of skin redness on blinding in transcranial direct current stimulation studies: a crossover trial. Neuromodulation: Technology at the Neural Interface. 20, 248–255 (2017). https://doi.org/10.1111/ner.12527

    Article  Google Scholar 

  39. Alam, M., Truong, D.Q., Khadka, N., Bikson, M.: Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS). Phys. Med. Biol. 61, 4506 (2016). https://doi.org/10.1088/0031-9155/61/12/4506

    Article  Google Scholar 

  40. Reinhart, R.M.G.: Disruption and rescue of interareal theta phase coupling and adaptive behavior. PNAS. 114, 11542–11547 (2017). https://doi.org/10.1073/pnas.1710257114

    Article  Google Scholar 

  41. Reinhart, R.M.G., Nguyen, J.A.: Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat. Neurosci. 22, 820–827 (2019). https://doi.org/10.1038/s41593-019-0371-x

    Article  Google Scholar 

  42. Kronberg, G., Bikson, M.: Electrode assembly design for transcranial direct current stimulation: a FEM modeling study. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 891–895 (2012)

    Chapter  Google Scholar 

  43. Minhas, P., Datta, A., Bikson, M.: Cutaneous perception during tDCS: role of electrode shape and sponge salinity. Clin. Neurophysiol. 122, 637–638 (2011). https://doi.org/10.1016/j.clinph.2010.09.023

    Article  Google Scholar 

  44. Turi, Z., Ambrus, G.G., Ho, K.-A., et al.: When size matters: large electrodes induce greater stimulation-related cutaneous discomfort than smaller electrodes at equivalent current density. Brain Stimul. 7, 460–467 (2014). https://doi.org/10.1016/j.brs.2014.01.059

    Article  Google Scholar 

  45. Khadka, N., Woods, A.J., Bikson, M.: Transcranial direct current stimulation electrodes. In: Knotkova, H., Nitsche, M.A., Bikson, M., Woods, A.J. (eds.) Practical Guide to Transcranial Direct Current Stimulation: Principles, Procedures and Applications, pp. 263–291. Springer International Publishing, Cham (2019)

    Chapter  Google Scholar 

  46. Knotkova, H., Riggs, A., Berisha, D., et al.: Automatic M1-SO montage headgear for transcranial direct current stimulation (TDCS) suitable for home and high-throughput in-clinic applications. Neuromodulation. 22, 904–910 (2019). https://doi.org/10.1111/ner.12786

    Article  Google Scholar 

  47. Shaw, M.T., Kasschau, M., Dobbs, B., et al.: Remotely supervised transcranial direct current stimulation: an update on safety and tolerability. J. Vis. Exp. (2017). https://doi.org/10.3791/56211

  48. Borckardt, J.J., Bikson, M., Frohman, H., et al.: A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception. Journal of Pain. 13, 112–120 (2012). https://doi.org/10.1016/j.jpain.2011.07.001

    Article  Google Scholar 

  49. Kuo, H.I., Bikson, M., Datta, A., et al.: Comparing cortical plasticity induced by conventional and high-definition 4 ?? 1 ring tDCS: a neurophysiological study. Brain Stimul. 6, 644–648 (2013). https://doi.org/10.1016/j.brs.2012.09.010

    Article  Google Scholar 

  50. Shen, B., Yin, Y., Wang, J., et al.: High-definition tDCS alters impulsivity in a baseline-dependent manner. NeuroImage. 143, 343–352 (2016). https://doi.org/10.1016/j.neuroimage.2016.09.006

    Article  Google Scholar 

  51. Hill, A.T., Rogasch, N.C., Fitzgerald, P.B., Hoy, K.E.: Effects of prefrontal bipolar and high-definition transcranial direct current stimulation on cortical reactivity and working memory in healthy adults. NeuroImage. 152, 142–157 (2017). https://doi.org/10.1016/j.neuroimage.2017.03.001

    Article  Google Scholar 

  52. Caparelli-Daquer, E.M., Zimmermann, T.J., Mooshagian, E., et al.: A pilot study on effects of 4×1 high-definition tDCS on motor cortex excitability. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 735–738 (2012). https://doi.org/10.1109/EMBC.2012.6346036

    Article  Google Scholar 

  53. Villamar, M.F., Wivatvongvana, P., Patumanond, J., et al.: Focal modulation of the primary motor cortex in fibromyalgia using 4×1-ring high-definition transcranial direct current stimulation (HD-tDCS): immediate and delayed analgesic effects of cathodal and anodal stimulation. J. Pain. 14, 371–383 (2013). https://doi.org/10.1016/j.jpain.2012.12.007

    Article  Google Scholar 

  54. Helfrich, R.F., Knepper, H., Nolte, G., et al.: Selective modulation of interhemispheric functional connectivity by HD-tACS shapes perception. PLoS Biol. 12, e1002031 (2014). https://doi.org/10.1371/journal.pbio.1002031

    Article  Google Scholar 

  55. Bland, N.S., Mattingley, J.B., Sale, M.V.: No evidence for phase-specific effects of 40 Hz HD-tACS on multiple object tracking. Front. Psychol. 9, 304 (2018). https://doi.org/10.3389/fpsyg.2018.00304

    Article  Google Scholar 

  56. Grossman, N., Bono, D., Dedic, N., et al.: Noninvasive deep brain stimulation via temporally interfering electric fields. Cell. 169, 1029–1041.e16 (2017). https://doi.org/10.1016/j.cell.2017.05.024

    Article  Google Scholar 

  57. Edwards, D., Cortes, M., Datta, A., et al.: Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS. NeuroImage. 74, 266–275 (2013). https://doi.org/10.1016/j.neuroimage.2013.01.042

    Article  Google Scholar 

  58. Hill, A.T., Rogasch, N.C., Fitzgerald, P.B., Hoy, K.E.: Effects of single versus dual-site high-definition transcranial direct current stimulation (HD-tDCS) on cortical reactivity and working memory performance in healthy subjects. Brain Stimul. 11, 1033–1043 (2018). https://doi.org/10.1016/j.brs.2018.06.005

    Article  Google Scholar 

  59. Meier, J., Nolte, G., Schneider, T.R., et al.: Intrinsic 40Hz-phase asymmetries predict tACS effects during conscious auditory perception. PLoS One. 14 (2019). https://doi.org/10.1371/journal.pone.0213996

  60. Dmochowski, J.P., Koessler, L., Norcia, A.M., et al.: Optimal use of EEG recordings to target active brain areas with transcranial electrical stimulation. NeuroImage. 157, 69–80 (2017). https://doi.org/10.1016/j.neuroimage.2017.05.059

    Article  Google Scholar 

  61. Thut, G., Bergmann, T.O., Fröhlich, F., et al.: Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: a position paper. Clin. Neurophysiol. 128, 843–857 (2017). https://doi.org/10.1016/j.clinph.2017.01.003

    Article  Google Scholar 

  62. Heimrath, K., Breitling, C., Krauel, K., et al.: Modulation of pre-attentive spectro-temporal feature processing in the human auditory system by HD-tDCS. Eur. J. Neurosci. 41, 1580–1586 (2015). https://doi.org/10.1111/ejn.12908

    Article  Google Scholar 

  63. Gebodh, N., Esmaeilpour, Z., Adair, D., et al.: Inherent physiological artifacts in EEG during tDCS. NeuroImage. 185, 408–424 (2019). https://doi.org/10.1016/j.neuroimage.2018.10.025

    Article  Google Scholar 

  64. Noury, N., Hipp, J.F., Siegel, M.: Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation. NeuroImage. 140, 99–109 (2016). https://doi.org/10.1016/j.neuroimage.2016.03.065

    Article  Google Scholar 

  65. Kronberg, G., Bikson, M.: Electrode assembly design for transcranial direct current stimulation: a FEM modeling study. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 891–895 (2012). https://doi.org/10.1109/EMBC.2012.6346075

    Article  Google Scholar 

  66. Khadka, N., Zannou, A.L., Zunara, F., et al.: Minimal heating at the skin surface during transcranial direct current stimulation. Neuromodulation: Technology at the Neural Interface. (2017). https://doi.org/10.1111/ner.12554

  67. Hahn, C., Rice, J., Macuff, S., et al.: Methods for extra-low voltage transcranial direct current stimulation: current and time dependent impedance decreases. Clin. Neurophysiol. 124, 551–556 (2013). https://doi.org/10.1016/j.clinph.2012.07.028

    Article  Google Scholar 

  68. Bikson, M., Rahman, A., Datta, A., et al.: High-resolution modeling assisted design of customized and individualized transcranial direct current stimulation protocols. Neuromodulation. 15, 306–315 (2012). https://doi.org/10.1111/j.1525-1403.2012.00481.x

    Article  Google Scholar 

  69. Khadka, N., Borges, H., Paneri, B., et al.: Adaptive current tDCS up to 4 mA. Brain Stimul. (2019). https://doi.org/10.1016/j.brs.2019.07.027

  70. Kasschau, M., Sherman, K., Haider, L., et al.: A protocol for the use of remotely-supervised transcranial direct current stimulation (tDCS) in multiple sclerosis (MS). J Vis Exp, e53542 (2015). https://doi.org/10.3791/53542

  71. Khadka, N., Rahman, A., Sarantos, C., et al.: Methods for specific electrode resistance measurement during transcranial direct current stimulation. Brain Stimul. 8, 150–159 (2015). https://doi.org/10.1016/j.brs.2014.10.004

    Article  Google Scholar 

  72. Gillick, B.T., Feyma, T., Menk, J., et al.: Safety and feasibility of transcranial direct current stimulation in pediatric hemiparesis: randomized controlled preliminary study. Phys. Ther. 95, 337–349 (2015). https://doi.org/10.2522/ptj.20130565

    Article  Google Scholar 

  73. Guleyupoglu, B., Schestatsky, P., Edwards, D., et al.: Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations. J. Neurosci. Methods. 219, 297–311 (2013). https://doi.org/10.1016/j.jneumeth.2013.07.016

    Article  Google Scholar 

  74. Jog, M.V., Smith, R.X., Jann, K., et al.: In-vivo imaging of magnetic fields induced by transcranial direct current stimulation (tDCS) in human brain using MRI. Sci. Rep. 6, 34385 (2016). https://doi.org/10.1038/srep34385

    Article  Google Scholar 

  75. Brunoni, A.R., Sampaio-Junior, B., Moffa, A.H., et al.: Noninvasive brain stimulation in psychiatric disorders: a primer. Braz J Psychiatry. 41, 70–81 (2019). https://doi.org/10.1590/1516-4446-2017-0018

    Article  Google Scholar 

  76. Kenney-Jung, D.L., Blacker, C.J., Camsari, D.D., et al.: Transcranial direct current stimulation: mechanisms and psychiatric applications. Child Adolesc. Psychiatr. Clin. N. Am. 28, 53–60 (2019). https://doi.org/10.1016/j.chc.2018.07.008

    Article  Google Scholar 

  77. Kanai, R., Chaieb, L., Antal, A., et al.: Frequency-dependent electrical stimulation of the visual cortex. Curr. Biol. 18, 1839–1843 (2008). https://doi.org/10.1016/j.cub.2008.10.027

    Article  Google Scholar 

  78. Boggio, P.S., Ferrucci, R., Rigonatti, S.P., et al.: Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. J. Neurol. Sci. 249, 31–38 (2006). https://doi.org/10.1016/j.jns.2006.05.062

    Article  Google Scholar 

  79. Weber, M.J., Messing, S.B., Rao, H., et al.: Prefrontal transcranial direct current stimulation alters activation and connectivity in cortical and subcortical reward systems: a tDCS-fMRI study. Hum. Brain Mapp. 35, 3673–3686 (2014). https://doi.org/10.1002/hbm.22429

    Article  Google Scholar 

  80. Alonzo, A., Aaronson, S., Bikson, M., et al.: Study design and methodology for a multicentre, randomised controlled trial of transcranial direct current stimulation as a treatment for unipolar and bipolar depression. Contemp. Clin. Trials. 51, 65–71 (2016). https://doi.org/10.1016/j.cct.2016.10.002

    Article  Google Scholar 

  81. Brunoni, A.R., Sampaio-Junior, B., Moffa, A.H., et al.: The escitalopram versus electric current therapy for treating depression clinical study (ELECT-TDCS): rationale and study design of a non-inferiority, triple-arm, placebo-controlled clinical trial. Sao Paulo Med. J. 133, 252–263 (2015). https://doi.org/10.1590/1516-3180.2014.00351712

    Article  Google Scholar 

  82. Alexander, M.L., Alagapan, S., Lugo, C.E., et al.: Double-blind, randomized pilot clinical trial targeting alpha oscillations with transcranial alternating current stimulation (tACS) for the treatment of major depressive disorder (MDD). Transl. Psychiatry. 9, 106 (2019). https://doi.org/10.1038/s41398-019-0439-0

    Article  Google Scholar 

  83. Gomes, J.S., Shiozawa, P., Dias, Á.M., et al.: Left dorsolateral prefrontal cortex anodal tDCS effects on negative symptoms in schizophrenia. Brain Stimul. 8, 989–991 (2015). https://doi.org/10.1016/j.brs.2015.07.033

    Article  Google Scholar 

  84. Mellin, J.M., Alagapan, S., Lustenberger, C., et al.: Randomized trial of transcranial alternating current stimulation for treatment of auditory hallucinations in schizophrenia. Eur. Psychiatry. 51, 25–33 (2018). https://doi.org/10.1016/j.eurpsy.2018.01.004

    Article  Google Scholar 

  85. Charvet, L.E., Kasschau, M., Datta, A., et al.: Remotely-supervised transcranial direct current stimulation (tDCS) for clinical trials: guidelines for technology and protocols. Front. Syst. Neurosci. 9, 26 (2015). https://doi.org/10.3389/fnsys.2015.00026

    Article  Google Scholar 

  86. Wong, H.C., Zaman, R.: Neurostimulation in treating ADHD. Psychiatr. Danub. 31, 265–275 (2019)

    Google Scholar 

  87. Ekhtiari, H., Tavakoli, H., Addolorato, G., et al.: Transcranial electrical and magnetic stimulation (tES and TMS) for addiction medicine: a consensus paper on the present state of the science and the road ahead. Neurosci. Biobehav. Rev. 104, 118–140 (2019). https://doi.org/10.1016/j.neubiorev.2019.06.007

    Article  Google Scholar 

  88. Lee, S.H., Im, J.J., Oh, J.K., et al.: Transcranial direct current stimulation for online gamers. JoVE (Journal of Visualized Experiments), e60007 (2019). https://doi.org/10.3791/60007

  89. Ma, T., Sun, Y., Ku, Y.: Effects of non-invasive brain stimulation on stimulant craving in users of cocaine, amphetamine, or methamphetamine: a systematic review and meta-analysis. Front. Neurosci. 13 (2019). https://doi.org/10.3389/fnins.2019.01095

  90. Silva-Filho, E., Okano, A.H., Morya, E., et al.: Neuromodulation treats chikungunya arthralgia: a randomized controlled trial. Sci. Rep. 8, 16010 (2018). https://doi.org/10.1038/s41598-018-34514-4

    Article  Google Scholar 

  91. Castillo-Saavedra, L., Gebodh, N., Bikson, M., et al.: Clinically effective treatment of fibromyalgia pain with high-definition transcranial direct current stimulation: phase II open-label dose optimization. J. Pain. 17, 14–26 (2016). https://doi.org/10.1016/j.jpain.2015.09.009

    Article  Google Scholar 

  92. Arendsen, L.J., Hugh-Jones, S., Lloyd, D.M.: Transcranial alternating current stimulation at alpha frequency reduces pain when the intensity of pain is uncertain. J. Pain. 19, 807–818 (2018). https://doi.org/10.1016/j.jpain.2018.02.014

    Article  Google Scholar 

  93. Bikson, M., Bulow, P., Stiller, J.W., et al.: Transcranial direct current stimulation for major depression: a general system for quantifying transcranial electrotherapy dosage. Curr. Treat. Options Neurol. 10, 377–385 (2008)

    Article  Google Scholar 

  94. McGirr, A., Berlim, M.T.: Clinical usefulness of therapeutic neuromodulation for major depression: a systematic meta-review of recent meta-analyses. Psychiatr. Clin. North Am. 41, 485–503 (2018). https://doi.org/10.1016/j.psc.2018.04.009

    Article  Google Scholar 

  95. Borrione, L., Moffa, A.H., Martin, D., et al.: Transcranial direct current stimulation in the acute depressive episode: a systematic review of current knowledge. J. ECT. 34, 153–163 (2018). https://doi.org/10.1097/YCT.0000000000000512

    Article  Google Scholar 

  96. Leite, J., Gonçalves, Ó.F., Pereira, P., et al.: The differential effects of unihemispheric and bihemispheric tDCS over the inferior frontal gyrus on proactive control. Neurosci. Res. 130, 39–46 (2018). https://doi.org/10.1016/j.neures.2017.08.005

    Article  Google Scholar 

  97. Seibt, O., Brunoni, A.R., Huang, Y., Bikson, M.: The pursuit of DLPFC: non-neuronavigated methods to target the left dorsolateral pre-frontal cortex with symmetric Bicephalic transcranial direct current stimulation (tDCS). Brain Stimul. 8, 590–602 (2015). https://doi.org/10.1016/j.brs.2015.01.401

    Article  Google Scholar 

  98. Stilling, J.M., Monchi, O., Amoozegar, F., Debert, C.T.: Transcranial magnetic and direct current stimulation (TMS/tDCS) for the treatment of headache: a systematic review. Headache. 59, 339–357 (2019). https://doi.org/10.1111/head.13479

    Article  Google Scholar 

  99. Przeklasa-Muszyńska, A., Kocot-Kępska, M., Dobrogowski, J., et al.: Transcranial direct current stimulation (tDCS) and its influence on analgesics effectiveness in patients suffering from migraine headache. Pharmacol. Rep. 69, 714–721 (2017). https://doi.org/10.1016/j.pharep.2017.02.019

    Article  Google Scholar 

  100. Shirahige, L., Melo, L., Nogueira, F., et al.: Efficacy of noninvasive brain stimulation on pain control in migraine patients: a systematic review and meta-analysis. Headache. 56, 1565–1596 (2016). https://doi.org/10.1111/head.12981

    Article  Google Scholar 

  101. Dasilva, A.F., Mendonca, M.E., Zaghi, S., et al.: tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine. Headache. 52, 1283–1295 (2012). https://doi.org/10.1111/j.1526-4610.2012.02141.x

    Article  Google Scholar 

  102. Zhu, C.-E., Yu, B., Zhang, W., et al.: Effiectiveness and safety of transcranial direct current stimulation in fibromyalgia: a systematic review and meta-analysis. J. Rehabil. Med. 49, 2–9 (2017). https://doi.org/10.2340/16501977-2179

    Article  Google Scholar 

  103. Hou, W.-H., Wang, T.-Y., Kang, J.-H.: The effects of add-on non-invasive brain stimulation in fibromyalgia: a meta-analysis and meta-regression of randomized controlled trials. Rheumatology (Oxford). 55, 1507–1517 (2016). https://doi.org/10.1093/rheumatology/kew205

    Article  Google Scholar 

  104. Fregni, F., Gimenes, R., Valle, A.C., et al.: A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis Rheum. 54, 3988–3998 (2006). https://doi.org/10.1002/art.22195

    Article  Google Scholar 

  105. Hagenacker, T., Bude, V., Naegel, S., et al.: Patient-conducted anodal transcranial direct current stimulation of the motor cortex alleviates pain in trigeminal neuralgia. J. Headache Pain. 15, 78 (2014). https://doi.org/10.1186/1129-2377-15-78

    Article  Google Scholar 

  106. Hansen, N., Obermann, M., Poitz, F., et al.: Modulation of human trigeminal and extracranial nociceptive processing by transcranial direct current stimulation of the motor cortex. Cephalalgia. 31, 661–670 (2011). https://doi.org/10.1177/0333102410390394

    Article  Google Scholar 

  107. Nitsche, M.A., Paulus, W.: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. Lond. 527(Pt 3), 633–639 (2000)

    Article  Google Scholar 

  108. Datta, A., Zhou, X., Su, Y., et al.: Validation of finite element model of transcranial electrical stimulation using scalp potentials: implications for clinical dose. J. Neural Eng. 10, 036018 (2013). https://doi.org/10.1088/1741-2560/10/3/036018

    Article  Google Scholar 

  109. Peterchev, A.V., Wagner, T.A., Miranda, P.C., et al.: Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimul. 5, 435–453 (2012). https://doi.org/10.1016/j.brs.2011.10.001

    Article  Google Scholar 

  110. Opitz, A., Falchier, A., Yan, C.-G., et al.: Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates. Sci. Rep. 6, srep31236 (2016). https://doi.org/10.1038/srep31236

    Article  Google Scholar 

  111. Bikson, M., Truong, D.Q., Mourdoukoutas, A.P., et al.: Modeling sequence and quasi-uniform assumption in computational neurostimulation. Prog. Brain Res. 222, 1–23 (2015). https://doi.org/10.1016/bs.pbr.2015.08.005

    Article  Google Scholar 

  112. Ho, K.-A., Taylor, J.L., Chew, T., et al.: The effect of transcranial direct current stimulation (tDCS) electrode size and current intensity on motor cortical excitability: evidence from single and repeated sessions. Brain Stimul. 9, 1–7 (2016). https://doi.org/10.1016/j.brs.2015.08.003

    Article  Google Scholar 

  113. Miranda, P.C., Lomarev, M., Hallett, M.: Modeling the current distribution during transcranial direct current stimulation. Clin. Neurophysiol. 117, 1623–1629 (2006). https://doi.org/10.1016/j.clinph.2006.04.009

    Article  Google Scholar 

  114. Wagner, T., Fregni, F., Fecteau, S., et al.: Transcranial direct current stimulation: a computer-based human model study. NeuroImage. 35, 1113–1124 (2007). https://doi.org/10.1016/j.neuroimage.2007.01.027

    Article  Google Scholar 

  115. Opitz, A., Paulus, W., Will, S., et al.: Determinants of the electric field during transcranial direct current stimulation. NeuroImage. 109, 140–150 (2015). https://doi.org/10.1016/j.neuroimage.2015.01.033

    Article  Google Scholar 

  116. Im, C.H., Jung, H.H., Choi, J.D., et al.: Determination of optimal electrode positions for transcranial direct current stimulation (tDCS). Phys. Med. Biol. 53, N219–N225 (2008)

    Article  Google Scholar 

  117. Ruffini, G., Fox, M.D., Ripolles, O., et al.: Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields. NeuroImage. 89, 216–225 (2014). https://doi.org/10.1016/j.neuroimage.2013.12.002

    Article  Google Scholar 

  118. Truong, D.Q., Hüber, M., Xie, X., et al.: Clinician accessible tools for GUI computational models of transcranial electrical stimulation: BONSAI and SPHERES. Brain Stimul. 7, 521–524 (2014). https://doi.org/10.1016/j.brs.2014.03.009

    Article  Google Scholar 

  119. Huang, Y., Liu, A.A., Lafon, B., et al.: Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. eLife. 6, e18834 (2017). https://doi.org/10.7554/eLife.18834

    Article  Google Scholar 

  120. Antal, A., Bikson, M., Datta, A., et al.: Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain. NeuroImage. 85(Pt 3), 1040–1047 (2014). https://doi.org/10.1016/j.neuroimage.2012.10.026

    Article  Google Scholar 

  121. Datta, A., Krause, M.R., Pilly, P.K., et al.: On comparing in vivo intracranial recordings in non-human primates to predictions of optimized transcranial electrical stimulation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2016, 1774–1777 (2016). https://doi.org/10.1109/EMBC.2016.7591061

    Article  Google Scholar 

  122. Weintraub-Brevda, R.R., Chua, E.F.: Transcranial direct current stimulation over the right and left VLPFC leads to differential effects on working and episodic memory. Brain Cogn. 132, 98–107 (2019). https://doi.org/10.1016/j.bandc.2019.03.005

    Article  Google Scholar 

  123. Wu, X., Xu, F., Chen, X., et al.: The effect of high-definition transcranial direct current stimulation of the right inferior frontal gyrus on empathy in healthy individuals. Front. Hum. Neurosci. 12, 446 (2018). https://doi.org/10.3389/fnhum.2018.00446

    Article  Google Scholar 

  124. Wang, Y., Zhou, H., Li, Y., Liu, W.: Impact of electrode number on the performance of high-definition transcranial direct current stimulation (HD-tDCS). Conf. Proc. IEEE Eng. Med. Biol. Soc. 2018, 4182–4185 (2018). https://doi.org/10.1109/EMBC.2018.8513379

    Article  Google Scholar 

  125. Sadleir, R.J., Vannorsdall, T.D., Schretlen, D.J., Gordon, B.: Target optimization in transcranial direct current stimulation. Front. Psych. 3, 90–90 (2012). https://doi.org/10.3389/fpsyt.2012.00090

    Article  Google Scholar 

  126. Bikson, M., Brunoni, A.R., Charvet, L.E., et al.: Rigor and reproducibility in research with transcranial electrical stimulation: an NIMH-sponsored workshop. Brain Stimul. (2017). https://doi.org/10.1016/j.brs.2017.12.008

  127. Laakso, I., Mikkonen, M., Koyama, S., et al.: Can electric fields explain inter-individual variability in transcranial direct current stimulation of the motor cortex? Sci. Rep. 9, 626 (2019). https://doi.org/10.1038/s41598-018-37226-x

    Article  Google Scholar 

  128. Mikkonen, M., Laakso, I., Sumiya, M., et al.: TMS motor thresholds correlate with TDCS electric field strengths in hand motor area. Front. Neurosci. 12, 426 (2018). https://doi.org/10.3389/fnins.2018.00426

    Article  Google Scholar 

  129. Halko, M.A., Datta, A., Plow, E.B., et al.: Neuroplastic changes following rehabilitative training correlate with regional electrical field induced with tDCS. NeuroImage. 57, 885–891 (2011)

    Article  Google Scholar 

  130. Tyler, W.J., Boasso, A.M., Mortimore, H.M., et al.: Transdermal neuromodulation of noradrenergic activity suppresses psychophysiological and biochemical stress responses in humans. Sci. Rep. 5, 13865 (2015). https://doi.org/10.1038/srep13865

    Article  Google Scholar 

  131. Bikson, M., Truong, D.Q., Mourdoukoutas, A.P., et al.: Chapter 1 - Modeling sequence and quasi-uniform assumption in computational neurostimulation. In: Bestmann, S. (ed.) Progress in Brain Research, pp. 1–23. Elsevier, Amsterdam (2015)

    Google Scholar 

  132. Datta, A., Truong, D., Minhas, P., et al.: Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models. Front. Psych. 3, 91 (2012). https://doi.org/10.3389/fpsyt.2012.00091

    Article  Google Scholar 

  133. Truong, D.Q., Magerowski, G., Blackburn, G.L., et al.: Computational modeling of transcranial direct current stimulation (tDCS) in obesity: impact of head fat and dose guidelines. Neuroimage Clin. 2, 759–766 (2013). https://doi.org/10.1016/j.nicl.2013.05.011

    Article  Google Scholar 

  134. Laakso, I., Tanaka, S., Koyama, S., et al.: Inter-subject variability in electric fields of motor cortical tDCS. Brain Stimul. 8, 906–913 (2015). https://doi.org/10.1016/j.brs.2015.05.002

    Article  Google Scholar 

  135. Arlotti, M., Rahman, A., Minhas, P., Bikson, M.: Axon terminal polarization induced by weak uniform DC electric fields: a modeling study. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 4575–4578 (2012). https://doi.org/10.1109/EMBC.2012.6346985

    Article  Google Scholar 

  136. Rahman, A., Reato, D., Arlotti, M., et al.: Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects: somatic and terminal origin of DCS effects. J. Physiol. 591, 2563–2578 (2013). https://doi.org/10.1113/jphysiol.2012.247171

    Article  Google Scholar 

  137. Rattay, F.: Analysis of models for external stimulation of axons. I.E.E.E. Trans. Biomed. Eng. 33, 974–977 (1986). https://doi.org/10.1109/TBME.1986.325670

    Article  Google Scholar 

  138. Tranchina, D., Nicholson, C.: A model for the polarization of neurons by extrinsically applied electric fields. Biophys. J. 50, 1139–1156 (1986). https://doi.org/10.1016/S0006-3495(86)83558-5

    Article  Google Scholar 

  139. Galletta, E.E., Cancelli, A., Cottone, C., et al.: Use of computational modeling to inform tDCS electrode montages for the promotion of language recovery in post-stroke aphasia. Brain Stimul. 8, 1108–1115 (2015). https://doi.org/10.1016/j.brs.2015.06.018

    Article  Google Scholar 

  140. Saturnino, G.B., Antunes, A., Thielscher, A.: On the importance of electrode parameters for shaping electric field patterns generated by tDCS. NeuroImage. 120, 25–35 (2015). https://doi.org/10.1016/j.neuroimage.2015.06.067

    Article  Google Scholar 

  141. Douglas, Z.H., Maniscalco, B., Hallett, M., et al.: Modulating conscious movement intention by noninvasive brain stimulation and the underlying neural mechanisms. J. Neurosci. 35, 7239–7255 (2015). https://doi.org/10.1523/JNEUROSCI.4894-14.2015

    Article  Google Scholar 

  142. Fröhlich, F., Sellers, K.K., Cordle, A.L.: Targeting the neurophysiology of cognitive systems with transcranial alternating current stimulation. Expert. Rev. Neurother. 15, 145–167 (2015). https://doi.org/10.1586/14737175.2015.992782

    Article  Google Scholar 

  143. Holt, A.B., Netoff, T.I.: Origins and suppression of oscillations in a computational model of Parkinson’s disease. J. Comput. Neurosci. 37, 505–521 (2014). https://doi.org/10.1007/s10827-014-0523-7

    Article  MathSciNet  MATH  Google Scholar 

  144. Karamintziou, S.D., Tsirogiannis, G.L., Stathis, P.G., et al.: Supporting clinical decision making during deep brain stimulation surgery by means of a stochastic dynamical model. J. Neural Eng. 11, 056019 (2014). https://doi.org/10.1088/1741-2560/11/5/056019

    Article  Google Scholar 

  145. Mina, F., Benquet, P., Pasnicu, A., et al.: Modulation of epileptic activity by deep brain stimulation: a model-based study of frequency-dependent effects. Front. Comput. Neurosci. 7 (2013). https://doi.org/10.3389/fncom.2013.00094

  146. Shahid, S.S., Bikson, M., Salman, H., et al.: The value and cost of complexity in predictive modelling: role of tissue anisotropic conductivity and fibre tracts in neuromodulation. J. Neural Eng. 11, 036002 (2014). https://doi.org/10.1088/1741-2560/11/3/036002

    Article  Google Scholar 

  147. Bériault, S., Subaie, F.A., Collins, D.L., et al.: A multi-modal approach to computer-assisted deep brain stimulation trajectory planning. Int J CARS. 7, 687–704 (2012). https://doi.org/10.1007/s11548-012-0768-4

    Article  Google Scholar 

  148. de Aguiar, V., Paolazzi, C.L., Miceli, G.: tDCS in post-stroke aphasia: the role of stimulation parameters, behavioral treatment and patient characteristics. Cortex. 63, 296–316 (2015). https://doi.org/10.1016/j.cortex.2014.08.015

    Article  Google Scholar 

  149. Merlet, I., Birot, G., Salvador, R., et al.: From oscillatory transcranial current stimulation to scalp EEG changes: a biophysical and physiological modeling study. PLoS One. 8, e57330 (2013). https://doi.org/10.1371/journal.pone.0057330

    Article  Google Scholar 

  150. Datta, A., Bikson, M., Fregni, F.: Transcranial direct current stimulation in patients with skull defects and skull plates: high-resolution computational FEM study of factors altering cortical current flow. NeuroImage. 52, 1268–1278 (2010). https://doi.org/10.1016/j.neuroimage.2010.04.252

    Article  Google Scholar 

  151. Jiang, J., Truong, D.Q., Esmaeilpour, Z., et al.: Enhanced tES and tDCS computational models by meninges emulation. J. Neural Eng. 17, 016027 (2020). https://doi.org/10.1088/1741-2552/ab549d

    Article  Google Scholar 

  152. Laakso, I., Tanaka, S., Mikkonen, M., et al.: Electric fields of motor and frontal tDCS in a standard brain space: a computer simulation study. NeuroImage. 137, 140–151 (2016). https://doi.org/10.1016/j.neuroimage.2016.05.032

    Article  Google Scholar 

  153. Truong, D.Q., Magerowski, G., Pascual-Leone, A., et al.: Finite element study of skin and fat delineation in an obese subject for transcranial direct current stimulation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 6587–6590 (2012). https://doi.org/10.1109/EMBC.2012.6347504

    Article  Google Scholar 

  154. Windhoff, M., Opitz, A., Thielscher, A.: Electric field calculations in brain stimulation based on finite elements: an optimized processing pipeline for the generation and usage of accurate individual head models. Hum. Brain Mapp. 34, 923–935 (2013). https://doi.org/10.1002/hbm.21479

    Article  Google Scholar 

  155. Miranda, P.C.: Physics of effects of transcranial brain stimulation. Handb. Clin. Neurol. 116, 353–366 (2013). https://doi.org/10.1016/B978-0-444-53497-2.00029-2

    Article  Google Scholar 

  156. Rahman, A., Lafon, B., Bikson, M.: Multilevel computational models for predicting the cellular effects of noninvasive brain stimulation. Prog. Brain Res. 222, 25–40 (2015). https://doi.org/10.1016/bs.pbr.2015.09.003

    Article  Google Scholar 

  157. Jackson, M.P., Rahman, A., Lafon, B., et al.: Animal models of transcranial direct current stimulation: methods and mechanisms. Clin. Neurophysiol. 127, 3425–3454 (2016). https://doi.org/10.1016/j.clinph.2016.08.016

    Article  Google Scholar 

  158. Modolo, J., Denoyer, Y., Wendling, F., Benquet, P.: Physiological effects of low-magnitude electric fields on brain activity: advances from in vitro, in vivo and in silico models. Curr Opin Biomed Eng. 8, 38–44 (2018). https://doi.org/10.1016/j.cobme.2018.09.006

    Article  Google Scholar 

  159. Bai, S., Loo, C., Dokos, S.: A computational model of direct brain stimulation by electroconvulsive therapy. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 2069–2072 (2010)

    Google Scholar 

  160. Deng, Z.D., Lisanby, S.H., Peterchev, A.V.: Effect of anatomical variability on neural stimulation strength and focality in electroconvulsive therapy (ECT) and magnetic seizure therapy (MST). In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 682–688 (2009)

    Chapter  Google Scholar 

  161. Lee, W.H., Lisanby, S.H., Laine, A.F., Peterchev, A.V.: Comparison of electric field strength and spatial distribution of electroconvulsive therapy and magnetic seizure therapy in a realistic human head model. Eur. Psychiatry. 36, 55–64 (2016). https://doi.org/10.1016/j.eurpsy.2016.03.003

    Article  Google Scholar 

  162. Krause, M.R., Zanos, T.P., Csorba, B.A., et al.: Transcranial direct current stimulation facilitates associative learning and alters functional connectivity in the primate brain. Curr. Biol. 27, 3086–3096.e3 (2017). https://doi.org/10.1016/j.cub.2017.09.020

    Article  Google Scholar 

  163. Fröhlich, F.: Experiments and models of cortical oscillations as a target for noninvasive brain stimulation. Prog. Brain Res. 222, 41–73 (2015). https://doi.org/10.1016/bs.pbr.2015.07.025

    Article  Google Scholar 

  164. Jefferys, J.G.R., Deans, J., Bikson, M., Fox, J.: Effects of weak electric fields on the activity of neurons and neuronal networks. Radiat. Prot. Dosim. 106, 321–323 (2003). https://doi.org/10.1093/oxfordjournals.rpd.a006367

    Article  Google Scholar 

  165. Liu, A., Vöröslakos, M., Kronberg, G., et al.: Immediate neurophysiological effects of transcranial electrical stimulation. Nat. Commun. 9, 5092 (2018). https://doi.org/10.1038/s41467-018-07233-7

    Article  Google Scholar 

  166. Rahman, A., Lafon, B., Parra, L.C., Bikson, M.: Direct current stimulation boosts synaptic gain and cooperativity in vitro. J. Physiol. Lond. 595, 3535–3547 (2017). https://doi.org/10.1113/JP273005

    Article  Google Scholar 

  167. Bikson, M., Name, A., Rahman, A.: Origins of specificity during tDCS: anatomical, activity-selective, and input-bias mechanisms. Front. Hum. Neurosci. 7, 688 (2013). https://doi.org/10.3389/fnhum.2013.00688

    Article  Google Scholar 

  168. Bindman, L.J., Lippold, O.C., Redfearn, J.W.: Long-lasting changes in the level of the electrical activity of the cerebral cortex produced bypolarizing currents. Nature. 196, 584–585 (1962)

    Article  Google Scholar 

  169. Pelletier, S.J., Cicchetti, F.: Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models. Int. J. Neuropsychopharmacol. 18 (2014). https://doi.org/10.1093/ijnp/pyu047

  170. Reato, D., Bikson, M., Parra, L.C.: Lasting modulation of in vitro oscillatory activity with weak direct current stimulation. J. Neurophysiol. 113, 1334–1341 (2015). https://doi.org/10.1152/jn.00208.2014

    Article  Google Scholar 

  171. Schmidt, S.L., Iyengar, A.K., Foulser, A.A., et al.: Endogenous cortical oscillations constrain neuromodulation by weak electric fields. Brain Stimul. 7, 878–889 (2014). https://doi.org/10.1016/j.brs.2014.07.033

    Article  Google Scholar 

  172. Bonaiuto, J.J., Bestmann, S.: Understanding the nonlinear physiological and behavioral effects of tDCS through computational neurostimulation. Prog. Brain Res. 222, 75–103 (2015). https://doi.org/10.1016/bs.pbr.2015.06.013

    Article  Google Scholar 

  173. Reato, D., Gasca, F., Datta, A., et al.: Transcranial electrical stimulation accelerates human sleep homeostasis. PLoS Comput. Biol. 9, e1002898–e1002898 (2013). https://doi.org/10.1371/journal.pcbi.1002898

    Article  Google Scholar 

  174. Reato, D., Rahman, A., Bikson, M., Parra, L.C.: Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J. Neurosci. 30, 15067–15079 (2010). https://doi.org/10.1523/JNEUROSCI.2059-10.2010

    Article  Google Scholar 

  175. Ali, M.M., Sellers, K.K., Fröhlich, F.: Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J. Neurosci. 33, 11262–11275 (2013). https://doi.org/10.1523/JNEUROSCI.5867-12.2013

    Article  Google Scholar 

  176. Polanía, R., Nitsche, M.A., Paulus, W.: Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum. Brain Mapp. 32, 1236–1249 (2011). https://doi.org/10.1002/hbm.21104

    Article  Google Scholar 

  177. Filmer, H.L., Dux, P.E., Mattingley, J.B.: Applications of transcranial direct current stimulation for understanding brain function. Trends Neurosci. 37, 742–753 (2014). https://doi.org/10.1016/j.tins.2014.08.003

    Article  Google Scholar 

  178. Vöröslakos, M., Takeuchi, Y., Brinyiczki, K., et al.: Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nat. Commun. 9, 483 (2018). https://doi.org/10.1038/s41467-018-02928-3

    Article  Google Scholar 

  179. Antal, A., Varga, E.T., Kincses, T.Z., et al.: Oscillatory brain activity and transcranial direct current stimulation in humans. Neuroreport. 15, 1307–1310 (2004)

    Article  Google Scholar 

  180. Rawji, V., Ciocca, M., Zacharia, A., et al.: tDCS changes in motor excitability are specific to orientation of current flow. Brain Stimul. 11, 289–298 (2018). https://doi.org/10.1016/j.brs.2017.11.001

    Article  Google Scholar 

  181. Fertonani, A., Miniussi, C.: Transcranial electrical stimulation: what we know and do not know about mechanisms. Neuroscientist. 23, 109–123 (2017). https://doi.org/10.1177/1073858416631966

    Article  Google Scholar 

  182. Reed, T., Cohen, R.K.: Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity. J. Inherit. Metab. Dis. (2018). https://doi.org/10.1007/s10545-018-0181-4

  183. De, A.B., Bikson, M., Bestmann, S.: Predicting the behavioral impact of transcranial direct current stimulation: issues and limitations. Front. Hum. Neurosci. 7, 613–613 (2013). https://doi.org/10.3389/fnhum.2013.00613

    Article  Google Scholar 

  184. Nguyen, J., Deng, Y., Reinhart, R.M.G.: Brain-state determines learning improvements after transcranial alternating-current stimulation to frontal cortex. Brain Stimul. 11, 723–726 (2018). https://doi.org/10.1016/j.brs.2018.02.008

    Article  Google Scholar 

  185. Elsner, B., Kugler, J., Mehrholz, J.: Transcranial direct current stimulation (tDCS) for upper limb rehabilitation after stroke: future directions. J. Neuroeng. Rehabil. 15, 106 (2018). https://doi.org/10.1186/s12984-018-0459-7

    Article  Google Scholar 

  186. Perceval, G., Martin, A.K., Copland, D.A., et al.: High-definition tDCS of the temporo-parietal cortex enhances access to newly learned words. Sci. Rep. 7, 17023–17023 (2017). https://doi.org/10.1038/s41598-017-17279-0

    Article  Google Scholar 

  187. Beaulieu, L.-D., Blanchette, A.K., Mercier, C., et al.: Efficacy, safety, and tolerability of bilateral transcranial direct current stimulation combined to a resistance training program in chronic stroke survivors: a double-blind, randomized, placebo-controlled pilot study. Restor. Neurol. Neurosci. 37, 333–346 (2019). https://doi.org/10.3233/RNN-190908

    Article  Google Scholar 

  188. Chhatbar, P.Y., Chen, R., Deardorff, R., et al.: Safety and tolerability of transcranial direct current stimulation to stroke patients - a phase I current escalation study. Brain Stimul. 10, 553–559 (2017). https://doi.org/10.1016/j.brs.2017.02.007

    Article  Google Scholar 

  189. Haberbosch, L., Datta, A., Thomas, C., et al.: Safety aspects, tolerability and modeling of retinofugal alternating current stimulation. Front. Neurosci. 13, 783 (2019). https://doi.org/10.3389/fnins.2019.00783

    Article  Google Scholar 

  190. Reckow, J., Rahman-Filipiak, A., Garcia, S., et al.: Tolerability and blinding of 4x1 high-definition transcranial direct current stimulation (HD-tDCS) at two and three milliamps. Brain Stimul. 11, 991–997 (2018). https://doi.org/10.1016/j.brs.2018.04.022

    Article  Google Scholar 

  191. Jackson, M.P., Bikson, M., Liebetanz, D., Nitsche, M.: How to consider animal data in tDCS safety standards. Brain Stimul. 10, 1141–1142 (2017). https://doi.org/10.1016/j.brs.2017.08.004

    Article  Google Scholar 

  192. Liebetanz, D., Koch, R., Mayenfels, S., et al.: Safety limits of cathodal transcranial direct current stimulation in rats. Clin. Neurophysiol. 120, 1161–1167 (2009). https://doi.org/10.1016/j.clinph.2009.01.022

    Article  Google Scholar 

  193. Brookshire, G., Casasanto, D.: Approach motivation in human cerebral cortex. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 373 (2018). https://doi.org/10.1098/rstb.2017.0141

  194. Guo, H., Zhang, Z., Da, S., et al.: High-definition transcranial direct current stimulation (HD-tDCS) of left dorsolateral prefrontal cortex affects performance in Balloon Analogue Risk Task (BART). Brain Behav. 8, e00884 (2018). https://doi.org/10.1002/brb3.884

    Article  Google Scholar 

  195. Harvey, M.-P., Lorrain, D., Martel, M., et al.: Can we improve pain and sleep in elderly individuals with transcranial direct current stimulation? – results from a randomized controlled pilot study. Clin. Interv. Aging. 12, 937–947 (2017). https://doi.org/10.2147/CIA.S133423

    Article  Google Scholar 

  196. McDermott, T.J., Wiesman, A.I., Mills, M.S., et al.: tDCS modulates behavioral performance and the neural oscillatory dynamics serving visual selective attention. Hum. Brain Mapp. 40, 729–740 (2019). https://doi.org/10.1002/hbm.24405

    Article  Google Scholar 

  197. Pergolizzi, D., Chua, E.F.: Transcranial direct current stimulation (tDCS) of the parietal cortex leads to increased false recognition. Neuropsychologia. 66, 88–98 (2015). https://doi.org/10.1016/j.neuropsychologia.2014.11.012

    Article  Google Scholar 

  198. Salvi, C., Beeman, M., Bikson, M., et al.: TDCS to the right anterior temporal lobe facilitates insight problem-solving. Sci. Rep. 10, 946 (2020). https://doi.org/10.1038/s41598-020-57724-1

    Article  Google Scholar 

  199. Zhang, Y., Yu, H., Yin, Y., Zhou, X.: Intention modulates the effect of punishment threat in norm enforcement via the lateral orbitofrontal cortex. J. Neurosci. 36, 9217–9226 (2016). https://doi.org/10.1523/JNEUROSCI.0595-16.2016

    Article  Google Scholar 

  200. Bikson, M., Hanlon, C.A., Woods, A.J., et al.: Guidelines for TMS/tES clinical services and research through the COVID-19 pandemic. Brain Stimul. 13, 1124–1149 (2020). https://doi.org/10.1016/j.brs.2020.05.010

    Article  Google Scholar 

  201. Charvet, L.E., Shaw, M.T., Bikson, M., et al.: Supervised transcranial direct current stimulation (tDCS) at home: a guide for clinical research and practice. Brain Stimul. 13, 686–693 (2020). https://doi.org/10.1016/j.brs.2020.02.011

    Article  Google Scholar 

  202. Fritsch, B., Reis, J., Martinowich, K., et al.: Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 66, 198–204 (2010). https://doi.org/10.1016/j.neuron.2010.03.035

    Article  Google Scholar 

  203. Kronberg, G., Rahman, A., Sharma, M., et al.: Direct current stimulation boosts hebbian plasticity in vitro. Brain Stimul. 13, 287–301 (2020). https://doi.org/10.1016/j.brs.2019.10.014

    Article  Google Scholar 

  204. Monai, H., Ohkura, M., Tanaka, M., et al.: Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nat. Commun. 7, 11100 (2016). https://doi.org/10.1038/ncomms11100

    Article  Google Scholar 

  205. Monai, H., Hirase, H.: Astrocytes as a target of transcranial direct current stimulation (tDCS) to treat depression. Neurosci. Res. 126, 15–21 (2018). https://doi.org/10.1016/j.neures.2017.08.012

    Article  Google Scholar 

  206. Cucca, A., Sharma, K., Agarwal, S., et al.: Tele-monitored tDCS rehabilitation: feasibility, challenges and future perspectives in Parkinson’s disease. J. Neuroeng. Rehabil. 16, 20 (2019). https://doi.org/10.1186/s12984-019-0481-4

    Article  Google Scholar 

  207. Ketz, N., Jones, A.P., Bryant, N.B., et al.: Closed-loop slow-wave tACS improves sleep-dependent long-term memory generalization by modulating endogenous oscillations. J. Neurosci. 38, 7314–7326 (2018). https://doi.org/10.1523/JNEUROSCI.0273-18.2018

    Article  Google Scholar 

  208. Leite, J., Morales-Quezada, L., Carvalho, S., et al.: Surface EEG-transcranial direct current stimulation (tDCS) closed-loop system. Int. J. Neural Syst. 27, 1750026 (2017). https://doi.org/10.1142/S0129065717500265

    Article  Google Scholar 

  209. Nascimento, D.C., Depetri, G., Stefano, L.H., et al.: Entropy analysis of high-definition transcranial electric stimulation effects on EEG dynamics. Brain Sci. 9 (2019). https://doi.org/10.3390/brainsci9080208

  210. Caulfield, K.A., Badran, B.W., Li, X., et al.: Can transcranial electrical stimulation motor threshold estimate individualized tDCS doses over the prefrontal cortex? Evidence from reverse-calculation electric field modeling. Brain Stimul. 13, 1150–1152 (2020). https://doi.org/10.1016/j.brs.2020.05.012

    Article  Google Scholar 

  211. de Graaf, T.A., Thomson, A., Janssens, S.E.W., et al.: Does alpha phase modulate visual target detection? Three experiments with tACS-phase-based stimulus presentation. Eur. J. Neurosci. 51, 2299–2313 (2020). https://doi.org/10.1111/ejn.14677

    Article  Google Scholar 

  212. Del Felice, A., Castiglia, L., Formaggio, E., et al.: Personalized transcranial alternating current stimulation (tACS) and physical therapy to treat motor and cognitive symptoms in Parkinson’s disease: a randomized cross-over trial. Neuroimage Clin. 22, 101768 (2019). https://doi.org/10.1016/j.nicl.2019.101768

    Article  Google Scholar 

  213. Esmaeilpour, Z., Shereen, A.D., Ghobadi-Azbari, P., et al.: Methodology for tDCS integration with fMRI. Hum. Brain Mapp. 41, 1950–1967 (2020). https://doi.org/10.1002/hbm.24908

    Article  Google Scholar 

  214. Kasten, F.H., Duecker, K., Maack, M.C., et al.: Integrating electric field modeling and neuroimaging to explain inter-individual variability of tACS effects. Nat. Commun. 10, 5427 (2019). https://doi.org/10.1038/s41467-019-13417-6

    Article  Google Scholar 

  215. Cancelli, A., Cottone, C., Tecchio, F., et al.: A simple method for EEG guided transcranial electrical stimulation without models. J. Neural Eng. 13, 036022 (2016). https://doi.org/10.1088/1741-2560/13/3/036022

    Article  Google Scholar 

  216. Lazarev, V.V., Gebodh, N., Tamborino, T., et al.: Experimental-design specific changes in spontaneous EEG and during intermittent photic stimulation by high definition transcranial direct current stimulation. Neuroscience. 426, 50–58 (2020). https://doi.org/10.1016/j.neuroscience.2019.11.016

    Article  Google Scholar 

  217. Guarnieri, R., Brancucci, A., D’Anselmo, A., et al.: A computationally efficient method for the attenuation of alternating current stimulation artifacts in electroencephalographic recordings. J. Neural Eng. (2020). https://doi.org/10.1088/1741-2552/aba99d

  218. Esmaeilpour, Z., Marangolo, P., Hampstead, B.M., et al.: Incomplete evidence that increasing current intensity of tDCS boosts outcomes. Brain Stimul. 11, 310–321 (2018). https://doi.org/10.1016/j.brs.2017.12.002

    Article  Google Scholar 

Download references

Conflict of Interest

The City University of New York (CUNY) has IP on neurostimulation systems and methods with authors NK and MB as inventors. MB has equity in Soterix Medical. MB served on the advisory boards and/or consulted for Boston Scientific, Mecta, Halo Neuroscience, and GlaxoSmithKline Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marom Bikson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Khadka, N., Bikson, M. (2023). Noninvasive Electrical Brain Stimulation of the Central Nervous System. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-5540-1_59

Download citation

Publish with us

Policies and ethics