Skip to main content

Identification of Various Metabolites like Gases, Biopolymers and Biosurfactants

  • Chapter
  • First Online:
Microbial Enhanced Oil Recovery

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Biodegradation of hydrocarbons involves various metabolic pathways producing a broad range of metabolites. Various biopolymers such as bioplastics, polylactides and polysaccharides have been reported to be released by microbes as a result of defence and storage needs. Biogases such as biohydrogen and methane are also produced as by-products during microbial fermentation. Few studies also revealed the release of bio-acids such as acetic acid, lactic acid during the anaerobic biodegradation of organic hydrocarbons. Biosurfactants are another class of surface-active metabolite produced by microbes during the metabolism of toxic hydrocarbons in order to improve the overall bioavailability and ultimately their biodegradation. However, their production is limited, which challenges researchers to gain an insight into the possible metabolic pathways involved in their synthesis to improve the production. This chapter details information on various reported metabolic pathways associated with the production of these biomolecules. Also, the most common tools associated with the identification of these metabolites and their characterization techniques are briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ai, X.-X., J.-R. Liang, Y.-H. Gao, S.C.-L. Lo, F.W.-F. Lee, C.-P. Chen, C.-S. Luo, and C. Du. 2015. MALDI-TOF MS analysis of the extracellular polysaccharides released by the diatom Thalassiosira pseudonana under various nutrient conditions. Journal of Applied Phycology 27 (2): 673–684.

    Article  Google Scholar 

  • Akbari, S., N.H. Abdurahman, R.M. Yunus, F. Fayaz, and O.R. Alara. 2018. Biosurfactants—A new frontier for social and environmental safety: A mini review. Biotechnology Research and Innovation 2 (1): 81–90.

    Article  Google Scholar 

  • Al-Bahry, S., Y. Al-Wahaibi, A. Elshafie, A. Al-Bemani, S. Joshi, H. Al-Makhmari, and H. Al-Sulaimani. 2013. Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. International Biodeterioration & Biodegradation 81: 141–146.

    Article  Google Scholar 

  • Al-Sulaimani, H., S. Joshi, Y. Al-Wahaibi, S. Al-Bahry, A. Elshafie, and A. Al-Bemani. 2011. Microbial biotechnology for enhancing oil recovery: Current developments and future prospects. Biotechnol Bioinf Bioeng 1 (2): 147–158.

    Google Scholar 

  • Al-Wahaibi, Y., S. Joshi, S. Al-Bahry, A. Elshafie, A. Al-Bemani, and B. Shibulal. 2014. Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery. Colloids and Surfaces b: Biointerfaces 114: 324–333.

    Article  Google Scholar 

  • Aljuraifani, A.A., M.M. Berekaa, and A.G. Azzah. 2018. Perspectives of Polyhydroxyalkanoate (PHAs) biopolymer production using indigenous bacteria: screening and characterization. Journal of Pure Applied Microbiology 12 (4): 1997–2009.

    Article  Google Scholar 

  • Altmann, F., P. Kosma, A. O’Callaghan, S. Leahy, F. Bottacini, E. Molloy, S. Plattner, E. Schiavi, M. Gleinser, and D. Groeger. 2016. Genome analysis and characterisation of the exopolysaccharide produced by Bifidobacterium longum subsp. longum 35624™. PloS One 11(9): e0162983.

    Google Scholar 

  • Ariyanti, D., and H. Hadiyanto. 2013. Ethanol production from whey by Kluyveromyces marxianus in batch fermentation system: Kinetics parameters estimation. Bulletin of Chemical Reaction Engineering & Catalysis 7 (3): 179.

    Article  Google Scholar 

  • Behrens, B., J. Engelen, T. Tiso, L.M. Blank, and H. Hayen. 2016. Characterization of rhamnolipids by liquid chromatography/mass spectrometry after solid-phase extraction. Analytical and Bioanalytical Chemistry 408 (10): 2505–2514.

    Article  Google Scholar 

  • Berdugo-Clavijo, C., and L. Gieg. 2014. Conversion of crude oil to methane by a microbial consortium enriched from oil reservoir production waters. Frontiers in Microbiology 5: 197.

    Article  Google Scholar 

  • Berdy, J. 2005. Bioactive microbial metabolites. The Journal of Antibiotics 58 (1): 1–26.

    Article  Google Scholar 

  • Bernat, P., K. Paraszkiewicz, P. Siewiera, M. Moryl, G. Płaza, and J. Chojniak. 2016. Lipid composition in a strain of Bacillus subtilis, a producer of iturin A lipopeptides that are active against uropathogenic bacteria. World Journal of Microbiology and Biotechnology 32 (10): 157.

    Article  Google Scholar 

  • Borah, T., B. Gogoi, A. Khataniar, M. Gogoi, A. Das, and D. Borah. 2019. Probiotic characterization of indigenous Bacillus velezensis strain DU14 isolated from Apong, a traditionally fermented rice beer of Assam. Biocatalysis and Agricultural Biotechnology 18: 101008.

    Google Scholar 

  • Chae, K.J., A. Jang, S.K. Yim, and I.S. Kim. 2008. The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresource Technology 99 (1): 1–6.

    Article  Google Scholar 

  • Chang, I., J. Im, and G.-C. Cho. 2016. Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability 8 (3): 251.

    Article  Google Scholar 

  • Cho, J.K., S.C. Park, and H.N. Chang. 1995. Biochemical methane potential and solid state anaerobic digestion of Korean food wastes. Bioresource Technology 52 (3): 245–253.

    Article  Google Scholar 

  • Dahiya, S., A.N. Kumar, J. Shanthi Sravan, S. Chatterjee, O. Sarkar, and S.V. Mohan. 2018. Food waste biorefinery: Sustainable strategy for circular bioeconomy. Bioresource Technology 248: 2–12.

    Article  Google Scholar 

  • Datta, P., P. Tiwari, and L.M. Pandey. 2018. Isolation and characterization of biosurfactant producing and oil degrading Bacillus subtilis MG495086 from formation water of Assam oil reservoir and its suitability for enhanced oil recovery. Bioresource Technology 270: 439–448.

    Article  Google Scholar 

  • Datta, P., P. Tiwari, and L.M. Pandey. 2020. Oil washing proficiency of biosurfactant produced by isolated Bacillus tequilensis MK 729017 from Assam reservoir soil. Journal of Petroleum Science and Engineering 195: 107612.

    Google Scholar 

  • De Vrieze, J., K. Plovie, W. Verstraete, and N. Boon. 2015. Co-digestion of molasses or kitchen waste with high-rate activated sludge results in a diverse microbial community with stable methane production. Journal of Environmental Management 152: 75–82.

    Article  Google Scholar 

  • Desniar, M. 2013. Characterization of lactic acid bacteria isolated from an Indonesian fermented fish (bekasam) and their antimicrobial activity against pathogenic bacteria. Emirates Journal of Food and Agriculture 25(6): 489–494.

    Google Scholar 

  • Dimkić, I., S. Stanković, M. Nišavić, M. Petković, P. Ristivojević, D. Fira, and T. Berić. 2017. The profile and antimicrobial activity of Bacillus lipopeptide extracts of five potential biocontrol strains. Frontiers in Microbiology 8: 925.

    Article  Google Scholar 

  • Du Shin, J., C.C. Xu, S.-H. Kim, H. Kim, N. Mahmood, and M. Kim. 2017. Biomass conversion of plant residues. In Food Bioconversion, Academic press, Elsevier, 351–383. ISBN-978-0-12-811413-1.

    Google Scholar 

  • Ersahin, M.E., H. Ozgun, R.K. Dereli, and I. Ozturk. 2011. Anaerobic treatment of industrial effluents: an overview of applications. In: Waste water-treatment and reutilization, (Ed.) F.S.G. Einschlag, IntechOpen Limited. London, 9–13.

    Google Scholar 

  • Florez, J.P., M. Fazeli, and R.A. Simão. 2019. Preparation and characterization of thermoplastic starch composite reinforced by plasma-treated poly (hydroxybutyrate) PHB. International Journal of Biological Macromolecules 123: 609–621.

    Article  Google Scholar 

  • Fontana, C., S. Li, Z. Yang, and G. Widmalm. 2015. Structural studies of the exopolysaccharide from Lactobacillus plantarum C88 using NMR spectroscopy and the program CASPER. Carbohydrate Research 402: 87–94.

    Article  Google Scholar 

  • Fooladi, T., M.R. Soudi, N. Alimadadi, P. Savedoroudi, and M.M. Heravi. 2019. Bioactive exopolysaccharide from Neopestalotiopsis sp. strain SKE15: Production, characterization and optimization. International Journal of Biological Macromolecules 129: 127–139.

    Article  Google Scholar 

  • Fopase, R., S.R. Pathode, S. Sharma, P. Datta, and L.M. Pandey. 2020. Lipopeptide and essential oil based nanoemulsion for controlled drug delivery. Polymer-Plastics Technology and Materials 59 (18): 2076–2086.

    Article  Google Scholar 

  • Gonzalez-Gil, G., L. Thomas, A.-H. Emwas, P.N.L. Lens, and P.E. Saikaly. 2015. NMR and MALDI-TOF MS based characterization of exopolysaccharides in anaerobic microbial aggregates from full-scale reactors. Scientific Reports 5 (1): 14316.

    Article  Google Scholar 

  • Goswami, R., P. Chattopadhyay, A. Shome, S.N. Banerjee, A.K. Chakraborty, A.K. Mathew, and S. Chaudhury. 2016. An overview of physico-chemical mechanisms of biogas production by microbial communities: a step towards sustainable waste management. 3 Biotech 6(1): 72.

    Google Scholar 

  • Guerra-Blanco, P., O. Cortes, T. Poznyak, I. Chairez, and E. García-Peña. 2018. Polyhydroxyalkanoates (PHA) production by photoheterotrophic microbial consortia: Effect of culture conditions over microbial population and biopolymer yield and composition. European Polymer Journal 98: 94–104.

    Article  Google Scholar 

  • Gupta, J., R. Rathour, R. Singh, and I.S. Thakur. 2019. Production and characterization of extracellular polymeric substances (EPS) generated by a carbofuran degrading strain Cupriavidus sp. ISTL7. Bioresource Technology 282: 417–424.

    Article  Google Scholar 

  • Gupta, P., and B. Diwan. 2017. Bacterial Exopolysaccharide mediated heavy metal removal: A review on biosynthesis, mechanism and remediation strategies. Biotechnology Reports 13: 58–71.

    Article  Google Scholar 

  • Hassan, M.A., E.K. Bakhiet, S.G. Ali, and H.R. Hussien. 2016. Production and characterization of polyhydroxybutyrate (PHB) produced by Bacillus sp. isolated from Egypt. Journal of Applied Pharmaceutical Science 6(4): 46–51.

    Google Scholar 

  • Jakinala, P., N. Lingampally, A. Kyama, B. Hameeda. 2019. Enhancement of atrazine biodegradation by marine isolate Bacillus velezensis MHNK1 in presence of surfactin lipopeptide. Ecotoxicology and Environmental Safety 182: 109372.

    Google Scholar 

  • Joshi, S.J., Y.M. Al-Wahaibi, S.N. Al-Bahry, A.E. Elshafie, A.S. Al-Bemani, A. Al-Bahri, and M.S. Al-Mandhari. 2016. Production, characterization, and application of Bacillus licheniformis W16 biosurfactant in enhancing oil recovery. Frontiers in Microbiology 7 (1853).

    Google Scholar 

  • Joshi, S.J., S. Geetha, and A.J. Desai. 2015. Characterization and application of biosurfactant produced by Bacillus licheniformis R2. Applied Biochemistry and Biotechnology 177 (2): 346–361.

    Article  Google Scholar 

  • Joy, S., P.K. Rahman, S.K. Khare, and S. Sharma. 2019. Production and characterization of glycolipid biosurfactant from Achromobacter sp.(PS1) isolate using one-factor-at-a-time (OFAT) approach with feasible utilization of ammonia-soaked lignocellulosic pretreated residues. Bioprocess and Biosystems Engineering 42(8): 1301–1315.

    Google Scholar 

  • Kamoldeen, A.A., C.K. Lee, W.N.W. Abdullah, and C.P. Leh. 2017. Enhanced ethanol production from mild alkali-treated oil-palm empty fruit bunches via co-fermentation of glucose and xylose. Renewable Energy 107: 113–123.

    Article  Google Scholar 

  • Karolski, B., L.O. Cardoso, L.H. Gracioso, C.A. Nascimento, and E.A. Perpetuo. 2018. MALDI-Biotyper as a tool to identify polymer producer bacteria. Journal of Microbiological Methods 153: 127–132.

    Article  Google Scholar 

  • Kaur, V., M.B. Bera, P.S. Panesar, H. Kumar, and J.F. Kennedy. 2014. Welan gum: Microbial production, characterization, and applications. International Journal of Biological Macromolecules 65: 454–461.

    Article  Google Scholar 

  • Khademolhosseini, R., A. Jafari, S.M. Mousavi, H. Hajfarajollah, K.A. Noghabi, and M. Manteghian. 2019. Physicochemical characterization and optimization of glycolipid biosurfactant production by a native strain of Pseudomonas aeruginosa HAK01 and its performance evaluation for the MEOR process. RSC Advances 9 (14): 7932–7947.

    Article  Google Scholar 

  • Khanna, S., and A.K. Srivastava. 2005. Recent advances in microbial polyhydroxyalkanoates. Process Biochemistry 40 (2): 607–619.

    Article  Google Scholar 

  • Ko, J.K., Y. Um, H.M. Woo, K.H. Kim, and S.-M. Lee. 2016. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway. Bioresource Technology 209: 290–296.

    Article  Google Scholar 

  • Kodzius, R., and T. Gojobori. 2015. Marine metagenomics as a source for bioprospecting. Marine Genomics 24: 21–30.

    Article  Google Scholar 

  • Korres, N.E., and J.K. Norsworthy. 2017. Biohydrogen production from agricultural biomass and organic wastes. In Biohydrogen production: Sustainability of current technology and future perspective, Springer, New Delhi  India 49–67.  

    Chapter  Google Scholar 

  • Kot, I., and H. Krawiec. 2015. The use of a multiscale approach in electrochemistry to study the corrosion behaviour of as-cast AZ91 magnesium alloy. Journal of Solid State Electrochemistry 19 (8): 2379–2390.

    Article  Google Scholar 

  • Lee, D.H., S.K. Behera, J.W. Kim, and H.-S. Park. 2009. Methane production potential of leachate generated from Korean food waste recycling facilities: A lab-scale study. Waste Management 29 (2): 876–882.

    Article  Google Scholar 

  • Lee, J.H., S.H. Nam, W.T. Seo, H.D. Yun, S.Y. Hong, M.K. Kim, and K.M. Cho. 2012. The production of surfactin during the fermentation of cheonggukjang by potential probiotic Bacillus subtilis CSY191 and the resultant growth suppression of MCF-7 human breast cancer cells. Food Chemistry 131 (4): 1347–1354.

    Article  Google Scholar 

  • Li, Q. 2017. Rhamnolipid synthesis and production with diverse resources. Frontiers of Chemical Science and Engineering 11 (1): 27–36.

    Article  Google Scholar 

  • Liao, J.-H., P.-Y. Chen, Y.-L. Yang, S.-C. Kan, F.-C. Hsieh, and Y.-C. Liu. 2016. Clarification of the antagonistic effect of the lipopeptides produced by Bacillus amyloliquefaciens BPD1 against Pyricularia oryzae via in situ MALDI-TOF IMS analysis. Molecules 21 (12): 1670.

    Article  Google Scholar 

  • Lima, F.A., O.S. Santos, A.W.V. Pomella, E.J. Ribeiro, and M.M. de Resende. 2020. Culture medium evaluation using low-cost substrate for biosurfactants lipopeptides production by Bacillus amyloliquefaciens in pilot bioreactor. Journal of Surfactants and Detergents 23 (1): 91–98.

    Article  Google Scholar 

  • Liu, N., H. Li, M.G. Chevrette, L. Zhang, L. Cao, H. Zhou, X. Zhou, Z. Zhou, P.B. Pope, and C.R. Currie. 2019. Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite. The ISME Journal 13 (1): 104–117.

    Article  Google Scholar 

  • López, J.A., J.M. Naranjo, J.C. Higuita, M.A. Cubitto, C.A. Cardona, and M.A. Villar. 2012. Biosynthesis of PHB from a new isolated Bacillus megaterium strain: Outlook on future developments with endospore forming bacteria. Biotechnology and Bioprocess Engineering 17 (2): 250–258.

    Article  Google Scholar 

  • Luo, J., Y. Chen, and L. Feng. 2016. Polycyclic aromatic hydrocarbon affects acetic acid production during anaerobic fermentation of waste activated sludge by altering activity and viability of acetogen. Environmental Science & Technology 50 (13): 6921–6929.

    Article  Google Scholar 

  • Luo, J., J. Wu, Q. Zhang, Q. Feng, L. Wu, J. Cao, C. Li, and F. Fang. 2018. Efficient production of short-chain fatty acids from anaerobic fermentation of liquor wastewater and waste activated sludge by breaking the restrictions of low bioavailable substrates and microbial activity. Bioresource Technology 268: 549–557.

    Article  Google Scholar 

  • Madhumitha, G., J. Fowsiya, N. Gupta, A. Kumar, and M. Singh. 2019. Green synthesis, characterization and antifungal and photocatalytic activity of Pithecellobium dulce peel–mediated ZnO nanoparticles. Journal of Physics and Chemistry of Solids 127: 43–51.

    Article  Google Scholar 

  • Mathew, A.K., I. Bhui, S.N. Banerjee, R. Goswami, A.K. Chakraborty, A. Shome, S. Balachandran, and S. Chaudhury. 2015. Biogas production from locally available aquatic weeds of Santiniketan through anaerobic digestion. Clean Technologies and Environmental Policy 17 (6): 1681–1688.

    Article  Google Scholar 

  • Mohamed, M.A., J. Jaafar, A. Ismail, M. Othman, and M. Rahman. 2017. Fourier transform infrared (FTIR) spectroscopy. In: Membrane Characterization, Elsevier, 3–29. ISBN-978-044463776-5.

    Google Scholar 

  • Mohr, T., H. Aliyu, R. Küchlin, M. Zwick, D. Cowan, A. Neumann, and P. De Maayer. 2018. Comparative genomic analysis of Parageobacillus thermoglucosidasius strains with distinct hydrogenogenic capacities. BMC Genomics 19 (1): 880.

    Article  Google Scholar 

  • Moradali, M.F., and B.H.A. Rehm. 2020. Bacterial biopolymers: From pathogenesis to advanced materials. Nature Reviews Microbiology 18 (4): 195–210.

    Article  Google Scholar 

  • Moussa, T., M. Mohamed, and N. Samak. 2014. Production and characterization of di-rhamnolipid produced by Pseudomonas aeruginosa TMN. Brazilian Journal of Chemical Engineering 31 (4): 867–880.

    Article  Google Scholar 

  • Muneer, F., I. Rasul, F. Azeem, M.H. Siddique, M. Zubair, and H. Nadeem. Microbial Polyhydroxyalkanoates (PHAs): Efficient replacement of synthetic polymers. Journal of Polymers and the Environment 28(9): 2301–2323

    Google Scholar 

  • Nelson, D.L., A.L. Lehninger, and M.M. Cox. 2008. Lehninger principles of biochemistry. Macmillan.

    Google Scholar 

  • Osińska-Jaroszuk, M., M. Jaszek, M. Mizerska-Dudka, A. Błachowicz, T.P. Rejczak, G. Janusz, J. Wydrych, J. Polak, A. Jarosz-Wilkołazka, and M. Kandefer-Szerszeń. 2014. Exopolysaccharide from Ganoderma applanatum as a promising bioactive compound with cytostatic and antibacterial properties. BioMed research international 2014.

    Google Scholar 

  • Osman, Y., A. Abd Elrazak, and W. Khater. 2016. Microbial biopolymer production by Microbacterium WA81 in batch fermentation. Egyptian Journal of Basic and Applied Sciences 3 (3): 250–262.

    Article  Google Scholar 

  • Özcelik, S., E. Kuley, and F. Özogul. 2016. Formation of lactic, acetic, succinic, propionic, formic and butyric acid by lactic acid bacteria. LWT 73: 536–542.

    Article  Google Scholar 

  • Özgören, T., O. Pinar, G. Bozdağ, A.A. Denizci, O. Gündüz, P.Ç. Hatır, and D. Kazan. 2018. Assessment of poly (3-hydroxybutyrate) synthesis from a novel obligate alkaliphilic Bacillus marmarensis and generation of its composite scaffold via electrospinning. International Journal of Biological Macromolecules 119: 982–991.

    Article  Google Scholar 

  • Pacwa-Płociniczak, M., G.A. Płaza, Z. Piotrowska-Seget, and S.S. Cameotra. 2011. Environmental applications of biosurfactants: Recent advances. International Journal of Molecular Sciences 12 (1): 633–654.

    Article  Google Scholar 

  • Pan, X., I. Angelidaki, M. Alvarado-Morales, H. Liu, Y. Liu, X. Huang, and G. Zhu. 2016. Methane production from formate, acetate and H2/CO2; focusing on kinetics and microbial characterization. Bioresource Technology 218: 796–806.

    Article  Google Scholar 

  • Patowary, K., R. Patowary, M.C. Kalita, and S. Deka. 2017. Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon. Frontiers in Microbiology 8: 279–279.

    Article  Google Scholar 

  • Pham, J.V., M.A. Yilma, A. Feliz, M.T. Majid, N. Maffetone, J.R. Walker, E. Kim, H.J. Cho, J.M. Reynolds, M.C. Song, S.R. Park, and Y.J. Yoon. 2019. A review of the microbial production of bioactive natural products and biologics. Frontiers in Microbiology 10 (1404).

    Google Scholar 

  • Prabakaran, G., S. Hoti, H.S.P. Rao, and S. Vijjapu. 2015. Di-rhamnolipid is a mosquito pupicidal metabolite from Pseudomonas fluorescens (VCRC B426). Acta Tropica 148: 24–31.

    Article  Google Scholar 

  • Pradhan, S., A.J. Borah, M.K. Poddar, P.K. Dikshit, L. Rohidas, and V.S. Moholkar. 2017. Microbial production, ultrasound-assisted extraction and characterization of biopolymer polyhydroxybutyrate (PHB) from terrestrial (P. hysterophorus) and aquatic (E. crassipes) invasive weeds. Bioresource Technology 242: 304–310.

    Article  Google Scholar 

  • Qiang, H., D.-L. Lang, and Y.-Y. Li. 2012. High-solid mesophilic methane fermentation of food waste with an emphasis on Iron, Cobalt, and Nickel requirements. Bioresource Technology 103 (1): 21–27.

    Article  Google Scholar 

  • Ramalingam, V., K. Varunkumar, V. Ravikumar, and R. Rajaram. 2019. Production and structure elucidation of anticancer potential surfactin from marine actinomycete Micromonospora marina. Process Biochemistry 78: 169–177.

    Article  Google Scholar 

  • Routhu, S.R., R.N. Chary, A.B. Shaik, S. Prabhakar, C.G. Kumar, and A. Kamal. 2019. Induction of apoptosis in lung carcinoma cells by antiproliferative cyclic lipopeptides from marine algicolous isolate Bacillus atrophaeus strain AKLSR1. Process Biochemistry 79: 142–154.

    Article  Google Scholar 

  • Saimmai, A., V. Sobhon, and S. Maneerat. 2011. Molasses as a whole medium for biosurfactants production by Bacillus strains and their application. Applied Biochemistry and Biotechnology 165 (1): 315–335.

    Article  Google Scholar 

  • Santos, D.K.F., R.D. Rufino, J.M. Luna, V.A. Santos, and L.A. Sarubbo. 2016. Biosurfactants: Multifunctional biomolecules of the 21st century. International Journal of Molecular Sciences 17 (3): 401.

    Article  Google Scholar 

  • Sharma, P., and B.K. Bajaj. 2015. Production and characterization of poly-3-hydroxybutyrate from Bacillus cereus PS 10. International Journal of Biological Macromolecules 81: 241–248.

    Article  Google Scholar 

  • Sharma, S., P. Datta, B. Kumar, P. Tiwari, and L.M. Pandey. 2019a. Production of novel rhamnolipids via biodegradation of waste cooking oil using Pseudomonas aeruginosa MTCC7815. Biodegradation 30 (4): 301–312.

    Article  Google Scholar 

  • Sharma, S., R. Verma, and L.M. Pandey. 2019b. Crude oil degradation and biosurfactant production abilities of isolated Agrobacterium fabrum SLAJ731. Biocatalysis and Agricultural Biotechnology 21: 101322.

    Google Scholar 

  • Sharma, S., and L.M. Pandey. 2020. Production of biosurfactant by Bacillus subtilis RSL-2 isolated from sludge and biosurfactant mediated degradation of oil. Bioresource Technology 307: 123261.

    Google Scholar 

  • Sikora, A., A. Detman, A. Chojnacka, and M.K. Błaszczyk. 2017. Anaerobic digestion: I. A common process ensuring energy flow and the circulation of matter in ecosystems. II. A tool for the production of gaseous biofuels. In: Fermentation processes, 271–301.

    Google Scholar 

  • Sindhu, R., B. Ammu, P. Binod, S.K. Deepthi, K. Ramachandran, C.R. Soccol, and A. Pandey. 2011. Production and characterization of poly-3-hydroxybutyrate from crude glycerol by Bacillus sphaericus NII 0838 and improving its thermal properties by blending with other polymers. Brazilian Archives of Biology and Technology 54 (4): 783–794.

    Article  Google Scholar 

  • Singh, N., S.C. Pemmaraju, P.A. Pruthi, S.S. Cameotra, and V. Pruthi. 2013. Candida Biofilm Disrupting Ability of Di-rhamnolipid (RL-2) Produced from Pseudomonas aeruginosa DSVP20. Applied Biochemistry and Biotechnology 169 (8): 2374–2391.

    Article  Google Scholar 

  • Staniszewski, M., W. Kujawski, and M. Lewandowska. 2007. Ethanol production from whey in bioreactor with co-immobilized enzyme and yeast cells followed by pervaporative recovery of product–Kinetic model predictions. Journal of Food Engineering 82 (4): 618–625.

    Article  Google Scholar 

  • Suganthi, S.H., S. Murshid, S. Sriram, and K. Ramani. 2018. Enhanced biodegradation of hydrocarbons in petroleum tank bottom oil sludge and characterization of biocatalysts and biosurfactants. Journal of Environmental Management 220: 87–95.

    Article  Google Scholar 

  • Sukan, A., I. Roy, and T. Keshavarz. 2015. Dual production of biopolymers from bacteria. Carbohydrate Polymers 126: 47–51.

    Article  Google Scholar 

  • Thavasi, R., S. Jayalakshmi, and I.M. Banat. 2011. Effect of biosurfactant and fertilizer on biodegradation of crude oil by marine isolates of Bacillus megaterium, Corynebacterium kutscheri and Pseudomonas aeruginosa. Bioresource Technology 102 (2): 772–778.

    Article  Google Scholar 

  • Varjani, S.J., and V.N. Upasani. 2016. Core Flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514. Bioresource Technology 220: 175–182.

    Article  Google Scholar 

  • Varjani, S.J., and V.N. Upasani. 2017. Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresource Technology 232: 389–397.

    Article  Google Scholar 

  • Verma, R., S. Sharma, L.M. Kundu, and L.M. Pandey. 2020. Experimental investigation of molasses as a sole nutrient for the production of an alternative metabolite biosurfactant. Journal of Water Process Engineering 38: 101632.

    Google Scholar 

  • Wang, W., B. Cai, and Z. Shao. 2014. Oil degradation and biosurfactant production by the deep sea bacterium Dietzia maris As-13–3. Frontiers in Microbiology 5 (711).

    Google Scholar 

  • Yaraguppi, D.A., Z.K. Bagewadi, U.M. Muddapur, and S.I. Mulla. 2020. Response surface methodology-based optimization of biosurfactant production from isolated Bacillus aryabhattai strain ZDY2. Journal of Petroleum Exploration and Production Technology 10: 2483–2498.

    Google Scholar 

  • Zhou, D., F. Hu, J. Lin, W. Wang, and S. Li. 2019. Genome and transcriptome analysis of Bacillus velezensis BS‐37, an efficient surfactin producer from glycerol, in response to d‐/l‐leucine. MicrobiologyOpen 8 (8): e00794.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalit Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S., Tiwari, P., Pandey, L. (2022). Identification of Various Metabolites like Gases, Biopolymers and Biosurfactants. In: Pandey, L., Tiwari, P. (eds) Microbial Enhanced Oil Recovery. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-5465-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5465-7_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5464-0

  • Online ISBN: 978-981-16-5465-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics