Skip to main content

Microparticles, Microspheres, and Microemulsions in Respiratory Diseases

  • Chapter
  • First Online:
Advanced Drug Delivery Strategies for Targeting Chronic Inflammatory Lung Diseases

Abstract

The term microparticles refers to particles that boast in the size range of micrometers. These may be described as solid particles or particulate dispersions in the size range of 1–1000 μm. These particles may exist in various structures and formulations. Such microparticles have been demonstrated to be an ideal way of manufacturing sustained release dosage forms. These may be useful in successfully controlling the release of drugs over long periods ranging from few hours to months. There are two major factors that affect the deposition of aerosolized particles in respiratory tract. These may be categorised under two broad heads; biological and physiological factors; and physicochemical properties. Formulation researchers are continuously seeking for improvement in formulation technologies which may enable them to overcome the challenges paving the path towards translation of research into clinically viable and acceptable pharmaceutical products. The encouraging outcomes of the research studies would result in transition of these systems to a clinical reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ainali NM, Xanthopoulou E, Michailidou G, Zamboulis A, Bikiaris DN (2020) Microencapsulation of fluticasone propionate and salmeterol Xinafoate in modified chitosan microparticles for release optimization. Molecules 17:3888

    Article  Google Scholar 

  • Alagusundaram M, Madhu Sudana Chetty C, Umashankari K, Attuluri Venkata B, Lavanya C, Ramkanth S (2009) Microspheres as a novel drug delivery system: a review. Int J ChemTech Res (1):526–534

    Google Scholar 

  • Amore E, Manca ML, Ferraro M, Valenti D, La Parola V, Di Vincenzo S, Gjomarkaj M, Giammona G, Bondì ML, Pace E (2019) Salmeterol Xinafoate (SX) loaded into mucoadhesive solid lipid microparticles for COPD treatment. Int J Pharm 562:351–358

    Article  CAS  PubMed  Google Scholar 

  • Andhariya JV, Burgess DJ (2016) Recent advances in testing of microsphere drug delivery systems. Expert Opin Drug Deliv 3(4):593–608

    Article  Google Scholar 

  • Attia MI, Eldehna WM, Afifi SA, Keeton AB, Piazza GA, Abdel-Aziz HA (2017) New hydrazonoindolin-2-ones: synthesis, exploration of the possible anti-proliferative mechanism of action and encapsulation into PLGA microspheres. PLoS One 12(7):e0181241

    Article  PubMed  PubMed Central  Google Scholar 

  • Azouz SM, Walpole J, Amirifeli S, Taylor KN, Grinstaff MW, Colson YL (2008) Prevention of local tumor growth with paclitaxel-loaded microspheres. J Thorac Cardiovasc Surg 135(5):1014–1021

    Article  CAS  PubMed  Google Scholar 

  • Balagani PK, Chandiran IS, Bhavya B, Sindhuri M (2011) Microparticulate drug delivery system: a review. Indian J Pharm Sci Res 1:19–37

    Google Scholar 

  • Belotti S, Rossi A, Colombo P, Bettini R, Rekkas D, Politis S, Colombo G, Balducci AG, Buttini F (2015) Spray-dried amikacin sulphate powder for inhalation in cystic fibrosis patients: the role of ethanol in particle formation. Eur J Pharm Biopharm 93:165–172

    Article  CAS  PubMed  Google Scholar 

  • Bera A, Mandal A (2015) Microemulsions: a novel approach to enhanced oil recovery: a review. J Petrol Explor Prod Technol 5:255–268

    Article  CAS  Google Scholar 

  • Bezemer GFG, Pieters RHH (2009) Particle deposition and clearance from the respiratory tract. Dissertation. University of Ultrecht

    Google Scholar 

  • Blandón LM, Islan GA, Castro GR, Noseda MD, Thomaz-Soccol V, Soccol CR (2016) Kefiran-alginate gel microspheres for oral delivery of ciprofloxacin. Colloids Surf B: Biointerfaces 145:706–715

    Article  PubMed  Google Scholar 

  • Blasi F (2018) Lung diseases: chronic respiratory infections. Int J Mol Sci 19:3051

    Article  PubMed Central  Google Scholar 

  • Bosio VE, Cacicedo ML, Calvignac B, León I, Beuvier T, Boury F, Castro GR (2014) Synthesis and characterization of CaCO3–biopolymer hybrid nanoporous microparticles for controlled release of doxorubicin. Colloids Surf B: Biointerfaces 123:158–169

    Article  CAS  PubMed  Google Scholar 

  • Brzeziński M, Kost B, Wedepohl S, Socka M, Biela T, Calderón M (2019) Stereocomplexed PLA microspheres: control over morphology, drug encapsulation and anticancer activity. Colloids Surf B: Biointerfaces 184:110544

    Article  PubMed  Google Scholar 

  • Callender SP, Mathews JA, Kobernyk K, Wettig SD (2017) Microemulsion utility in pharmaceuticals: implications for multi-drug delivery. Int J Pharm 526(1–2):425–442

    Article  CAS  PubMed  Google Scholar 

  • Camner P (1980) Clearance of particles from the human tracheobronchial tree. Clin Sci 59:79

    Article  CAS  Google Scholar 

  • Cao F, Ding B, Sun M, Guo C, Zhang L, Zhai G (2011) Lung-targeted delivery system of curcumin loaded gelatin microspheres. Drug Deliv 18(8):545–554

    Article  CAS  PubMed  Google Scholar 

  • Cayli YA, Sahin S, Buttini F, Balducci AG, Montanari S, Vural I, Oner L (2017) Dry powders for the inhalation of ciprofloxacin or levofloxacin combined with a mucolytic agent for cystic fibrosis patients. Drug Dev Ind Pharm 43(8):1378–1389

    Article  Google Scholar 

  • Ceschan NE, Bucalá V, Mateos MV, Smyth HD, Ramírez-Rigo MV (2018) Carrier free indomethacin microparticles for dry powder inhalation. Int J Pharm 549:169–178

    Article  CAS  PubMed  Google Scholar 

  • Çevikelli T, Deniz ON, Güven UM, Demirtürk E (2020) Preparation, characterization and in-vitro evaluation of theophylline loaded microemulsion formulations. J Pharm Technol 1(1):7–12

    Article  Google Scholar 

  • Champion J, Walker A, Mitragotri S (2008) Role of particle size in phagocytosis of polymeric microspheres. Pharm Res 25:1815–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao P, Deshmukh M, Kutscher HL, Gao D, Rajan SS, Hu P, Laskin DL, Stein S, Sinko PJ (2010) Pulmonary targeting microparticulate camptothecin delivery system: anti-cancer evaluation in a rat orthotopic lung cancer model. Anti-cancer Drugs 21(1)

    Google Scholar 

  • Charles S, Cruz D, Lynn T, Tanoue MRA (2011) Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med 32:605–644

    Article  Google Scholar 

  • Chen X, Yang Z, Sun R, Mo Z, Jin G, Wei F, Hu J, Guan W, Zhong N (2014) Preparation of lung-targeting, emodin-loaded polylactic acid microspheres and their properties. Int J Mol Sci 15(4):6241–6251

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng F, Peng X, Meng G, Pu Y, Luo K, He B (2020) Poly (ester-thioether) microspheres co-loaded with erlotinib and α-tocopheryl succinate for combinational therapy of non-small cell lung cancer. J Mater Chem B 8(8):1728–1738

    Article  CAS  PubMed  Google Scholar 

  • Chhabra P, Sharma G, Kannan AT (2008) Prevalence of respiratory disease and associated factors in an urban area of Delhi. Ind J Comm Med 33(4):229–232

    Article  Google Scholar 

  • da Silva BC, Gelfuso GM, Pereira PA, de Assis PA, Tefé-Silva C, Ramos SG, Arantes EC, Faccioli LH (2015) Hyaluronidase-loaded PLGA microparticles as a new strategy for the treatment of pulmonary fibrosis. Tissue Eng Part A 21(1–2):246–256

    Google Scholar 

  • Dałek P, Borowik T, Reczyńska K, Pamula E, Chrzanowski W, Langner M (2020) The evaluation of the in vitro stability of stimuli-sensitive fatty acid-based microparticles for the treatment of lung cancer. Langmuir

    Google Scholar 

  • Das MK, Ahmed AB, Saha D (2019) Microsphere a drug delivery system–a review. Int J Curr Pharma Res 11(4):34–41

    Article  CAS  Google Scholar 

  • de Oliveira JF, Garreto DV, da Silva MC, Fortes TS, de Oliveira RB, Nascimento FR, Da Costa FB, Grisotto MA, Nicolete R (2013) Therapeutic potential of biodegradable microparticles containing Punica granatum L. (pomegranate) in murine model of asthma. Inflamm Res 62(11):971–980

    Article  PubMed  Google Scholar 

  • Dekhuijzen PR, Batsiou M, Bjermer L et al (2016) Incidence of oral thrush in patients with COPD prescribed inhaled corticosteroids: effect of drug, dose, and device. Respir Med 120:54–63

    Article  PubMed  Google Scholar 

  • Dellamary LA, Tarara TE, Smith DJ, Woelk CH, Adractas A, Costello ML, Gill H, Weers JG (2000) Hollow porous particles in metered dose inhalers. Pharm Res 17(2):168–174

    Article  CAS  PubMed  Google Scholar 

  • Dhanda DS, Tyagi P, Mirvish SS, Kompella UB (2013) Supercritical fluid technology based large porous celecoxib–PLGA microparticles do not induce pulmonary fibrosis and sustain drug delivery and efficacy for several weeks following a single dose. J Control Release 168(3):239–250

    Article  CAS  PubMed  Google Scholar 

  • Ducati RG, Ruffino-Netto A, Basso LA, Santos DS (2006) The resumption of consumption- a review on tuberculosis. Mem Inst Oswaldo Cruz 101(7):697–714

    Article  CAS  PubMed  Google Scholar 

  • Dufour G, Bigazzi W, Wong N, Boschini F, De Tullio P, Piel G, Cataldo D, Evrard B (2015) Interest of cyclodextrins in spray-dried microparticles formulation for sustained pulmonary delivery of budesonide. Int J Pharm 495(2):869–878

    Article  CAS  PubMed  Google Scholar 

  • Elsaid Ali AA, Taher M, Mohamed F (2013) Microencapsulation of alpha-mangostin into PLGA microspheres and optimization using response surface methodology intended for pulmonary delivery. J Microencapsul 30(8):728–740

    Article  CAS  PubMed  Google Scholar 

  • El-Sherbiny IM, McGill S, Smyth HD (2010) Swellable microparticles as carriers for sustained pulmonary drug delivery. J Pharm Sci 99(5):2343–2356

    Article  CAS  PubMed  Google Scholar 

  • El-Sherbiny IM, El-Baz NM, Yacoub MH (2015) Inhaled nano- and microparticles for drug delivery. Global Cardiol Sci Pract 2:1–14

    Google Scholar 

  • Emami J, Pourmashhadi A, Sadeghi H, Varshosaz J, Hamishehkar H (2015) Formulation and optimization of celecoxib-loaded PLGA nanoparticles by the Taguchi design and their in vitro cytotoxicity for lung cancer therapy. Pharm Dev Technol 20(7):791–800

    Article  CAS  PubMed  Google Scholar 

  • Feng S-S, Chien S (2003) Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem Eng Sci 58(18):4087–4114

    Article  CAS  Google Scholar 

  • Gaba RC, Lakhoo J (2012) Yttrium-90 microsphere radioembolization for treatment of lung cancer hepatic metastases. Case Rep Oncol 5(2):479–486

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaspar MC, Sousa JJ, Pais AA, Cardoso O, Murtinho D, Serra ME, Tewes F, Olivier JC (2015) Optimization of levofloxacin-loaded crosslinked chitosan microspheres for inhaled aerosol therapy. Eur J Pharm Biopharm 96:65–75

    Article  CAS  PubMed  Google Scholar 

  • Gaubert RM, Viard L, Girault D, Perez BP, Guignard M, Metras D, Fuentes P (1997) Improved absorption and bioavailability of cyclosporine A from a microemulsion formulation in lung transplant recipients affected with cystic fibrosis. Transplant Proc (29):2450–2453

    Google Scholar 

  • Guiziou B, Armstrong DJ, Elliott PN, Ford JL, Rostron C (1996) Investigation of in-vitro release characteristics of NSAID-loaded polylactic acid microspheres. J Microencapsul 13(6):701–708

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Zhang X, Ye L, Zhang Y, Ding R, Hao Y, Zhao Y, Zhang Z, Zhang Y (2014) Inhalable microspheres embedding chitosan-coated PLGA nanoparticles for 2-methoxyestradiol. J Drug Target 22(5):421–427

    Article  CAS  PubMed  Google Scholar 

  • Gupta V et al (2011) PLGA microparticles encapsulating prostaglandin E 1-hydroxypropyl- β -cyclodextrin (PGE 1-HP β CD) complex for the treatment of pulmonary arterial hypertension (PAH). Pharm Res 28(7):1733–1749

    Article  CAS  PubMed  Google Scholar 

  • Harsha S, Al-Khars M, Al-Hassan M, Kumar NP, Nair AB, Attimarad M, Al-Dhubiab BE (2014) Pharmacokinetics and tissue distribution of spray-dried carboplatin microspheres: lung targeting via intravenous route. Arch Pharm Res 37(3):352–360

    Article  CAS  PubMed  Google Scholar 

  • Ike O, Shimizu Y, Ikada Y, Watanabe S, Natsume T, Wada R, Hyon SH, Hitomi S (1991) Biodegradation and antitumour effect of adriamycin-containing poly (L-lactic acid) microspheres. Biomaterials 12(8):757–762

    Article  CAS  PubMed  Google Scholar 

  • Incalzi RA, Maini CL, Fuso L, Giordano A, Carbonin PU, Galli G (1989) Effects of aging on mucociliary clearance. Compr Gerontol 3:65

    Google Scholar 

  • Ishak RA, Osman R (2015) Lecithin/TPGS-based spray-dried self-microemulsifying drug delivery systems: in vitro pulmonary deposition and cytotoxicity. Int J Pharm 485:249–260

    Article  CAS  PubMed  Google Scholar 

  • Islan GA, Bosio VE, Castro GR (2013) Alginate Lyase and ciprofloxacin co-I mmobilization on biopolymeric microspheres for cystic fibrosis treatment. Macromol Biosci 9:1238–1248

    Article  Google Scholar 

  • Islan GA, Ruiz ME, Morales JF, Sbaraglini ML, Enrique AV, Burton G, Talevi A, Bruno-Blanch LE, Castro GR (2017) Hybrid inhalable microparticles for dual controlled release of levofloxacin and DNase: physicochemical characterization and in vivo targeted delivery to the lungs. J Mater Chem B 5(17):3132–3144

    Article  CAS  PubMed  Google Scholar 

  • Jadhav KR, Shaikh IM, Ambade KW, Kadam VJ (2006) Applications of microemulsion based drug delivery system. Curr Drug Deliv 3(3):267–275

    Article  CAS  PubMed  Google Scholar 

  • Jennifer Y, Mamary AJ, Shenoy K (2018) Asthma: diagnosis and treatment. Euro Med J 3(4):111–121

    Google Scholar 

  • Jeong D, Kang C, Jung E, Yoo D, Wu D, Lee D (2016) Porous antioxidant polymer microparticles as therapeutic systems for the airway inflammatory diseases. J Control Release 233:72–80

    Article  CAS  PubMed  Google Scholar 

  • José BP, Camargos PAM, Filho AAS, Corrêa RA (2014) Diagnostic accuracy of respiratory diseases in primary health units. Rev Assoc Med Bras 60(6):599–612

    Article  PubMed  Google Scholar 

  • Kale SN, Deore SL (2017) Emulsion micro emulsion and nano emulsion: a review. Syst Rev Pharmacy 8(1):39

    Article  CAS  Google Scholar 

  • Kozáková J, Altay A, Ždímal V, Mašková L, Sonvico F, Quarta E, Rossi A, Buttini F, Colombo G (2019) Dry powder inhaler of colistimethate sodium for lung infections in cystic fibrosis: optimization of powder construction. Drug Dev Ind Pharm 45(10):1664–1673

    Article  PubMed  Google Scholar 

  • Kucukoglu V, Uzuner H, Kenar H, Karadenizli A (2019) In vitro antibacterial activity of ciprofloxacin loaded chitosan microparticles and their effects on human lung epithelial cells. Int J Pharm

    Google Scholar 

  • Kyle AH, Huxham LA, Yeoman DM et al (2007) Limited tissue penetration of taxanes: a mechanism for resistance in solid tumors. Clin Cancer Res 13(9):2804–2810

    Article  CAS  PubMed  Google Scholar 

  • Lassalle V, Ferreira ML (2007) PLA nano-and microparticles for drug delivery: an overview of the methods of preparation. Macromol Biosci 6:767–783

    Article  Google Scholar 

  • Lawrence MJ, Rees GD (2012) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 64:175–193

    Article  Google Scholar 

  • Lee HY, Mohammed KA, Goldberg EP, Nasreen N (2013) Arginine-conjugated albumin microspheres inhibits proliferation and migration in lung cancer cells. Am J Cancer Res 3(3):266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lengyel M, Kállai-Szabó N, Antal V, Laki AJ, Antal I (2019) Microparticles, microspheres, and microcapsules for advanced drug delivery. Scientia Pharma 87(20):1–31

    Google Scholar 

  • Levet V, Rosière R, Merlos R, Fusaro L, Berger G, Amighi K, Wauthoz N (2016) Development of controlled-release cisplatin dry powders for inhalation against lung cancers. Int J Pharm 515(1–2):209–220

    Article  CAS  PubMed  Google Scholar 

  • Lippmann M, Yeates DB, Albert RE (1980) Deposition, retention and clearance of inhaled particles. Br J Ind Med 37:337–362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Xu F, Wang G, Diao X, Li Y (2008) Kanglaite injection plus chemotherapy versus chemotherapy alone for non-small cell lung cancer patients: a systematic review and meta-analysis. Curr Ther Res 69(5):381–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Feng Y, Zhang L, Li G, Geng L, Cui Y, Teng F, Tang X, Bi K, Chen X (2013) Pharmacokinetics and tissue distribution of larotaxel in rats: comparison of larotaxel-loaded microsphere with larotaxel-solution. Cancer Chemother Pharmacol 71(5):1131–1139

    Article  CAS  PubMed  Google Scholar 

  • Lohade AA, Singh DJ, Parmar JJ, Hegde DD, Menon MD, Soni PS, Samad A, Gaikwad RV (2007) Albumin microspheres of fluticasone propionate inclusion complexes for pulmonary delivery. Indian J Pharm Sci 69(5):707

    CAS  Google Scholar 

  • Ma S, Chen F, Ye X, Dong Y, Xue Y, Xu H, Zhang W, Song S, Ai L, Zhang N, Pan W (2013) Intravenous microemulsion of docetaxel containing an anti-tumor synergistic ingredient (Brucea javanica oil): formulation and pharmacokinetics. Int J Nanomed 8:4045

    Google Scholar 

  • Madhav S, Gupta D (2011) A review on microemulsion based system. Int J Pharm Sci Res 2(8):1888–1899

    CAS  Google Scholar 

  • Madhav NVS, Kala S (2011) Review on microparticulate drug delivery system. Int J PharmTech Res 3(3):1242–1254

    CAS  Google Scholar 

  • Mahale MM, Saudagar RB (2019) Microsphere: a review. J Drug Deliv Ther 9(3-s):854–856

    CAS  Google Scholar 

  • Makino K, Yamamoto N, Higuchi K et al (2003) Phagocytic uptake of polystyrene microspheres by alveolar macrophages: effects of the size and surface properties of the microspheres. Colloids Surf B Biointerfaces 27:33–39

    Article  CAS  Google Scholar 

  • Manniello MD, Del Gaudio P, Aquino RP, Russo P (2017) Clarithromycin and N-acetylcysteine co-spray-dried powders for pulmonary drug delivery: a focus on drug solubility. Int J Pharm 533(2):463–469

    Article  CAS  PubMed  Google Scholar 

  • Martonen TB, Hoffman W, Eisner AD, Ménache MG (1989) The role of particle hygroscopicity in aerosol therapy and inhalation toxicology. In: Crapo JD, Smolko ED (eds) Extrapolation of Dosimetric relationships for inhaled particles and gases. Academic Press Inc., New York

    Google Scholar 

  • Martonen TB, JRosati JA, Isaacs KK (2005) Modeling deposition of inhaled particles. In: Ruzer LS, Harley NH (eds) Aerosols handbook: measurement, dosimetry, and health effects. CRC Press LLC, Boca Raton, FL, pp 113–155

    Google Scholar 

  • Meghna KS, Pillai MK, Giridas S, Sreelakshmi C, Vijayakuma B (2017) Microsphere a drug delivery system – a review. Int J Novel Trends Pharma Sci 7(4):109–118

    CAS  Google Scholar 

  • Méndez NA, Barreda CTQ, Vega AF, Calderon JM, Urioste CG, Palomec XC, Martínez AR, Díaz MP (2017) Design and development of pharmaceutical micro processes in the production of nanomedicine. Nano Oral Med:669–697

    Google Scholar 

  • Mo’tasem MA, Obaidat RM, Alnaief M, Albiss BA, Hailat N (2020) Development, in vitro characterization, and in vivo toxicity evaluation of chitosan-alginate Nanoporous carriers loaded with cisplatin for lung cancer treatment. AAPS PharmSciTech 21(5):1–2

    Google Scholar 

  • Momeni A, Mohammadi MH (2009) Respiratory delivery of theophylline by size-targeted starch microspheres for treatment of asthma. J Microencapsul 26(8):701–710

    Article  CAS  PubMed  Google Scholar 

  • Nafee N, Gaber DM, Elzoghby AO, Helmy MW, Abdallah OY (2020) Promoted antitumor activity of Myricetin against lung carcinoma via Nanoencapsulated phospholipid complex in respirable microparticles. Pharm Res 37:1–24

    Article  Google Scholar 

  • Nagai K, Takeuchi T, Kotani T, Hata K, Yoshida S, Isoda K, Fujiki Y, Shiba H, Makino S, Hanafusa T (2011) Therapeutic drug monitoring of cyclosporine microemulsion in interstitial pneumonia with dermatomyositis. Mod Rheumatol 21(1):32–36

    Article  CAS  PubMed  Google Scholar 

  • Newman SP (2017) Drug delivery to the lungs: challenges and opportunities. Ther Deliv 8(8):647–661

    Article  CAS  PubMed  Google Scholar 

  • Nidhi RM, Kaur V, Hallan SS, Sharma S, Mishra N (2016) Microparticles as controlled drug delivery carrier for the treatment of ulcerative colitis: a brief review. Saudi Pharma 24:458–472

    Article  CAS  Google Scholar 

  • Niki M, Yokoi T, Kurata T, Nomura S (2017) New prognostic biomarkers and therapeutic effect of bevacizumab for patients with non-small-cell lung cancer. Lung Cancer: Targets Ther 8:91

    CAS  Google Scholar 

  • Padalkar AN, Shahi SR (2011) Microparticles: an approach for betterment of drug delivery system. Intl J Pharm Res Dev 3(1):99–115

    Google Scholar 

  • Paranjpe M, Müller-Goymann CC (2014) Nanoparticle-mediated pulmonary drug delivery: a review. Int J Molecular Sci 15(4):5852–5873

    Article  CAS  Google Scholar 

  • Park JY, Chu GE, Park S, Park C, Aryal S, Kang WJ, Cho WG, Key J (2020) Therapeutic efficacy of curcumin enhanced by microscale discoidal polymeric particles in a murine asthma model. Pharmaceutics 8:739

    Article  Google Scholar 

  • Patel DD, Patel VN, Thakkar TV, Gandhi RT (2012) Preparation and evaluation of Levosalbutamol sulphate chitosan microsphere for the treatment of asthma. J Pharm Bioallied Sci 1:S46

    Article  Google Scholar 

  • Patel B, Rashid J, Gupta N, Ahsan F (2017) Low-molecular-weight heparin-coated and montelukast-filled inhalable particles: a dual-drug delivery system for combination therapy in asthma. J Pharm Sci 106(4):1124–1135

    Article  CAS  PubMed  Google Scholar 

  • Patil JS, Sarasija S (2012) Pulmonary drug delivery strategies: a concise, systematic review. Lung India 29(1)

    Google Scholar 

  • Pavoni L, Perinelli DR, Bonacucina G, Cespi M, Palmieri GF (2020) An overview of micro-and Nanoemulsions as vehicles for essential oils: formulation. Prep Stab Nanomater 1:135

    Article  Google Scholar 

  • Petit V, Lluis J, Gonzalez D, Raquel, Botello F (2013) Alfonso, Nanocapsules containing microemulsions US 20130216596

    Google Scholar 

  • Pulivendala G, Bale S, Godugu C (2020) Inhalation of sustained release microparticles for the targeted treatment of respiratory diseases. Drug Deliv Transl Res 10(4):339–353

    Article  CAS  PubMed  Google Scholar 

  • Qu D, Ma Y, Sun W, Chen Y, Zhou J, Liu C, Huang M (2015) Microemulsion-based synergistic dual-drug codelivery system for enhanced apoptosis of tumor cells. Int J Nanomedicine 10:1173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qu S, Dai C, Yang F, Huang T, Hao Z, Tang Q, Wang H, Zhang Y (2019) Cefquinome-loaded microsphere formulations in protection against pneumonia with Klebsiella pneumonia infection and inflammatory response in rats. Pharm Res 36(5):74

    Article  PubMed  Google Scholar 

  • Quirt J, Hildebrand KJ, Mazza J, Noya F, Kim H (2018) Allergy, asthma & clinical immunology. Allergy Asthma Clin Immunol 14(2):50

    Article  PubMed  PubMed Central  Google Scholar 

  • Radovanovic D, Mantero M, Sferrazza Papa GF, Valenti V, Aliberti S, Di Marco F, Santus P (2016) Formoterol fumarate+ glycopyrrolate for the treatment of chronic obstructive pulmonary disease. Expert Rev Respir Med 10:1045–1055

    Article  CAS  PubMed  Google Scholar 

  • Razuc M, Piña J, Ramírez-Rigo MV (2018) Optimization of ciprofloxacin hydrochloride spray-dried microparticles for pulmonary delivery using design of experiments. AAPS PharmSciTech 19(7):3085–3096

    Article  CAS  PubMed  Google Scholar 

  • Rostami AA (2009) Computational modeling of aerosol deposition in respiratory tract: a review. Inhal Toxicol 21(4):262–290

    Article  CAS  PubMed  Google Scholar 

  • Sacks LV, Pendle S, Orlovic D et al (2001) Adjunctive salvage therapy with inhaled amino- glycosides for patients with persistent smear-positive pulmonary tuberculosis. Clin Infect Dis 32(1):44–49

    Article  CAS  PubMed  Google Scholar 

  • Sahin S, Selek H, Ponchel G, Ercan MT, Sargon M, Hincal AA, Kas HS (2002) Preparation, characterization and in vivo distribution of terbutaline sulfate loaded albumin microspheres. J Control Release 82(2–3):345–358

    Article  CAS  PubMed  Google Scholar 

  • Salvi R, Cerqueira-Coutinho C, Ricci-Junior E, Dos Santos SN, Pinto SR, Bernardes ES, Barros de Araujo PL, Santos-Oliveira R (2018) Diagnosing lung cancer using etoposide microparticles labeled with 99mTc. Artif Cells Nanomed Biotechnol 46(2):341–345

    Article  CAS  PubMed  Google Scholar 

  • Salzano FA, Manola M, Tricarico D, Precone D, Motta G (2000) Mucociliary clearance after aerobic exertion in athletes. Acta Otorhinolaryngol Ital 20:171

    CAS  PubMed  Google Scholar 

  • Sanchez J, Schumann DM, Karakioulaki M, Papakonstantinou E, Rassouli F, Frasnelli M, Brutsche M, Tamm M, Stolz D (2020) Laryngopharyngeal reflux in chronic obstructive pulmonary disease – a multicentre study. Resp Res 21:220

    Article  Google Scholar 

  • Sangi S, SreeHarsha N, Bawadekji A, Al Ali M (2018) Chemotherapeutic drug targeting to lungs by way of microspheres after intravenous administration. Drug Des Dev Ther 12:3051

    Article  CAS  Google Scholar 

  • Shanmugasundaram N, Sundaraseelan J, Uma S, Selvaraj D, Babu M (2006) Design and delivery of silver sulfadiazine from alginate microspheres-impregnated collagen scaffold. J Biomed Mater Res Part B 77(2):378–388

    Article  CAS  Google Scholar 

  • Shivani SH (2015) Review article in microparticles. Int J Pharm Anal Sci 4(3):302–309

    Google Scholar 

  • Siepmann J, Siepmann F (2006) Microparticles used as drug delivery systems. In: Smart colloidal materials. Springer, Berlin, pp 15–21

    Chapter  Google Scholar 

  • Smola M, Vandamme T, Sokolowski A (2008) Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases. Int J Nanomed 3(1):1–19

    CAS  Google Scholar 

  • Soni G, Yadav KS, Gupta MK (2019) Design of Experiments (DoE) approach to optimize the sustained release microparticles of Gefitinib. Curr Drug Deliv 16(4):364–374

    Article  CAS  PubMed  Google Scholar 

  • Soriano JB (2020) Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet Respir Med 8:585–596

    Article  Google Scholar 

  • SreeHarsha N, Venugopala KN, Nair AB, Roopashree TS, Attimarad M, Hiremath JG, Al-Dhubiab BE, Ramnarayanan C, Shinu P, Handral M, Haroun M (2019) An efficient, lung-targeted, drug-delivery system to treat asthma via microparticles. Drug Des Dev Therapy 13:4389

    Article  CAS  Google Scholar 

  • Stead RJ, Skypala I, Hudson M (1988) Treatment of steatorrhoea in cystic fibrosis: a comparison of enteric-coated microspheres of pancreatin versus non-enteric-coated pancreatin and adjuvant cimetidine. Aliment Pharmacol Ther 6:471–482

    Google Scholar 

  • Stigliani M, Aquino RP, Del Gaudio P, Mencherini T, Sansone F, Russo P (2013) Non-steroidal anti-inflammatory drug for pulmonary administration: design and investigation of ketoprofen lysinate fine dry powders. Int J Pharm 448(1):198–204

    Article  CAS  PubMed  Google Scholar 

  • Suzuki ÉY, Amaro MI, de Almeida GS, Cabral LM, Healy AM, de Sousa VP (2018) Development of a new formulation of roflumilast for pulmonary drug delivery to treat inflammatory lung conditions. Int J Pharm 550(1–2):89–99

    Article  CAS  PubMed  Google Scholar 

  • Takenaga M, Igarashi R, Matsumoto K, Takeuchi J, Mizushima N, Nakayama T, Morizawa Y, Mizushima Y (1999) Lipid microsphere preparation of a lipophilic ceramide derivative suppresses colony formation in a murine experimental pulmonary metastasis model. J Drug Target 7(3):187–195

    Article  CAS  PubMed  Google Scholar 

  • Talegaonkar S, Azeem A, Ahmad FJ, Khar RK, Pathan SA, Khan ZI (2008) Microemulsions: a novel approach to enhanced drug delivery. Recent Pat Drug Deliv Formul 2(3):238–257

    Article  CAS  PubMed  Google Scholar 

  • Tartaro G, Mateos H, Schirone D, Angelico R, Palazzo G (2020) Microemulsion microstructure (s): a tutorial review. Nano 9:1657

    Google Scholar 

  • Tena AF, Clara PC (2012) Deposition of inhaled particles in the lungs. Arch Bronconeumol 48(7):240–246

    Article  Google Scholar 

  • Trombino S, Cassano R, Mellace S, Picci N, Loizzo MR, Menichini F, Tundis R (2016) Novel microspheres based on triterpene saponins from the roots of Physospermum verticillatum (Waldst & kit)(Apiaceae) for the improvement of gemcitabine release. J Pharm Pharmacol 2:275–281

    Article  Google Scholar 

  • Trotta V, Lee WH, Loo CY, Young PM, Traini D, Scalia S (2016) Co-spray dried resveratrol and budesonide inhalation formulation for reducing inflammation and oxidative stress in rat alveolar macrophages. Eur J Pharm Sci 86:20–28

    Article  CAS  PubMed  Google Scholar 

  • Uyen NT, Hamid ZA, Tram NX, Ahmad N (2020) Fabrication of alginate microspheres for drug delivery: a review. Int J Biol Macromol 153:1035–1046

    Article  CAS  PubMed  Google Scholar 

  • Valduga CJ, Fernandes DC, Prete AC, Azevedo CH, Rodrigues DG, Maranhão RC (2003) Use of a cholesterol-rich microemulsion that binds to low-density lipoprotein receptors as vehicle for etoposide. J Pharm Pharmacol 12:1615–1622

    Google Scholar 

  • Verma R, Verma S, Kumar S (2019) Microsphere-a novel drug delivery system. Res Chronical Heal Sci 5(1):5–14

    CAS  Google Scholar 

  • Wang W, Cai Y, Zhang G, Liu Y, Sui H, Park K, Wang H (2016) Sophoridine-loaded PLGA microspheres for lung targeting: preparation, in vitro, and in vivo evaluation. Drug Deliv 23(9):3674–3680

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Mi G, Hickey D, Li Y, Tu J, Webster TJ, Shen Y (2018) Azithromycin-loaded respirable microparticles for targeted pulmonary delivery for the treatment of pneumonia. Biomaterials 160:107–123

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Shen Y, Mi G, He D, Zhang Y, Xiong Y, Webster TJ, Tu J (2020) Fumaryl diketopiperazine based effervescent microparticles to escape macrophage phagocytosis for enhanced treatment of pneumonia via pulmonary delivery. Biomaterials 228:119575

    Article  CAS  PubMed  Google Scholar 

  • Wong CY, Al-Salami H, Dass CR (2017) Microparticles, microcapsules and microspheres: a review of recent developments and prospects for oral delivery of insulin. Int J Pharm 537(1–2):223–244

    PubMed  Google Scholar 

  • Yamauchi K, Kobayashi H, Tanifuji Y, Yoshida T, PIAN HD, Inoue H (2005) Efficacy and safety of intravenous theophylline administration for treatment of mild acute exacerbation of bronchial asthma. Respirology 4:491–496

    Article  Google Scholar 

  • Yang W, Peters JI, Williams RO III (2008) Inhaled nanoparticles—a current review. Int J Pharm 356(1):239–247

    Article  CAS  PubMed  Google Scholar 

  • Yang WK, Lee CH, Kim MH, Kim SH, Choi HY, Yeo Y, Park YC (2016) Effects of inhalable microparticles of Seonpyejeongcheon-tang in an asthma mouse model: effects of microparticles of SJT. J Pharm 4:303

    Google Scholar 

  • Yildiz A, John E, Özsoy Y, Araman A, Birchall JC, Broadley KJ, Gumbleton M (2012) Inhaled extended-release microparticles of heparin elicit improved pulmonary pharmacodynamics against antigen-mediated airway hyper-reactivity and inflammation. J Control Release 162(2):456–463

    Article  CAS  PubMed  Google Scholar 

  • Yildiz-Peköz A, Akbal O, Tekarslan SH, Sagirli AO, Mulazimoglu L, Morina D, Cevher E (2018) Preparation and characterization of doripenem-loaded microparticles for pulmonary delivery. J Aerosol Med Pulm Drug Deliv 31(6):347–357

    Article  PubMed  Google Scholar 

  • Yoo NY, Youn YS, Oh NM, Oh KT, Lee DK, Cha KH, Oh YT, Lee ES (2011) Antioxidant encapsulated porous poly (lactide-co-glycolide) microparticles for developing long acting inhalation system. Colloids Surf B: Biointerfaces 88(1):419–424

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Tian X, Cao X (2019) Transferrin-functionalised microemulsion co-delivery of β-elemene and celastrol for enhanced anti-lung cancer treatment and reduced systemic toxicity. Drug Deliv Transl Res 9(3):667–678

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agarwal, S., Sharma, A., Hemrajani, C., Negi, P. (2022). Microparticles, Microspheres, and Microemulsions in Respiratory Diseases. In: Chellappan, D.K., Pabreja, K., Faiyazuddin, M. (eds) Advanced Drug Delivery Strategies for Targeting Chronic Inflammatory Lung Diseases . Springer, Singapore. https://doi.org/10.1007/978-981-16-4392-7_15

Download citation

Publish with us

Policies and ethics