Skip to main content

Advertisement

Log in

Promoted Antitumor Activity of Myricetin against Lung Carcinoma Via Nanoencapsulated Phospholipid Complex in Respirable Microparticles

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Myricetin (MYR) flavonoid is well-recognized for its antioxidant, anti-inflammatory and anti-tumor potential. Introducing nanomedicine was the ultimate resort to solve the imperfections of this nutraceutical, namely solubility, stability and delivery issues. The study, thus, aims at developing inhalable microparticles comprising MYR solid lipid nanoparticles (SLNs) for lung cancer therapy.

Methods

A two-step preparation procedure starting with complexation of MYR with the phospholipid Lipoid-S100, followed by nanoencapsulation in Gelucire-based, surfactant-free SLNs was developed. SLNs were characterized in terms of physicochemical properties, MYR loading, release behavior as well as anti-tumor potential and cellular uptake. Respirable microparticles were then obtained by spray drying SLNs with carbohydrate carriers. Their size, flowability and pulmonary deposition pattern were assessed.

Results

Optimized SLNs were 75.98 nm in diameter with a zeta-potential of −22.5 mV, and an encapsulation efficiency of 84.5%. Attempts to ameliorate drug loading implicate MYR-phospholipid complexation (MYR-PH-CPX) prior to its entrapment in SLNs, which ensured 5-fold increase in drug loading. Viability assays were modified to guarantee MYR chemical stability. Superior antitumor activity of MYR-phospholipid-complex and 3-fold reduction in IC50 were accomplished with MYR-SLNs. This could be related to enhanced cellular uptake revealed by confocal imaging and doubled fluorescence intensity. SLNs entrapping MYR-PH-CPX were spray-dried with carbohydrate carriers to produce respirable microparticles. The latter ensured MMAD of 2.39 μm and span index of 1.84, in addition to good flowability and > 80% release over 8 h. Deposition experiments revealed MMAD of 2.77 μm, FPF of 81.23 and EF of 93% indicating particle deposition in the targeted bronchial region.

Conclusions

The study highlights the ability of phospholipid-complex on the nanoencapsulation, cellular uptake and antitumor activity of MYR. Formulation of respirable microparticles gives promises of efficacious therapy of lung carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Cp:

Compritol 888 ATO

DMEM:

Dulbecco’s Modified Eagle’s Medium

G 39/01:

Gelucire 39/01

G 44/14 :

Gelucire 44/14

G 50/13:

Gelucire 50/13

MYR-PH-CPX:

Myricetin-phospholipid complex

MYR:

Myricetin

PX 407:

Poloxamer 407

SLNs:

Solid lipid nanoparticles

References

  1. Amuka O, Okemo P, Machocho A, Mbugua P, Njagi ENM. Part 2: The role of phytomedicine in the challenges of emerging, re-emerging diseases; and pathogens resistance to antibiotics. Int J Herb Med. 2013;1(4):92–101.

    Google Scholar 

  2. Girija K, and Radha R. Role of phytomedicines and neutraceuticals in the prevention of chronic diseases. Int J Pharm Sci Res. 2013;4(9):3363–8.

  3. Jain D, Raturi R, Jain V, Bansal P, Singh R. Recent technologies in pulsatile drug delivery systems. Biomatter. 2011;1(1):57–65.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kakran M, Shegokar R, Sahoo NG, Al Shaal L, Li L, Müller RH. Fabrication of quercetin nanocrystals: comparison of different methods. Eur J Pharm Biopharm. 2012;80(1):113–21.

    Article  CAS  PubMed  Google Scholar 

  5. Wu J-W, Lin L-C, Hung S-C, Chi C-W, Tsai T-H. Analysis of silibinin in rat plasma and bile for hepatobiliary excretion and oral bioavailability application. J Pharm Biomed Anal. 2007;45(4):635–41.

    Article  CAS  PubMed  Google Scholar 

  6. Dang Y, Lin G, Xie Y, Duan J, Ma P, Li G, et al. Quantitative determination of myricetin in rat plasma by ultra performance liquid chromatography tandem mass spectrometry and its absolute bioavailability. Drug Res (Stuttg). 2014;64(10):516–22.

    CAS  Google Scholar 

  7. Yao Y, Lin G, Xie Y, Ma P, Li G, Meng Q, et al. Preformulation studies of myricetin: a natural antioxidant flavonoid. Die Pharm Int J Pharm Sci. 2014;69(1):19–26.

    CAS  Google Scholar 

  8. Gunasekaran T, Haile T, Nigusse T, Dhanaraju MD. Nanotechnology: an effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac J Trop Biomed. 2014;4:S1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang P, Zhang L, Peng H, Li Y, Xiong J, Xu Z. The formulation and delivery of curcumin with solid lipid nanoparticles for the treatment of on non-small cell lung cancer both in vitro and in vivo. Mater Sci Eng C Mater Biol Appl. 2013;33(8):4802–8.

    Article  CAS  PubMed  Google Scholar 

  10. Qian J, Meng H, Xin L, Xia M, Shen H, Li G. Self-nanoemulsifying drug delivery systems of myricetin : Formulation development, characterization , and in vitro and in vivo evaluation. Colloids Surfaces B Biointerfaces. 2017;160:101–9.

    Article  CAS  PubMed  Google Scholar 

  11. Wang G, Wang J-JJ, Tang X-JJ DL, Li F. In vitro and in vivo evaluation of functionalized chitosan-Pluronic micelles loaded with myricetin on glioblastoma cancer. Nanomedicine Nanotechnology, Biol Med. 2016;12(5):1263–78.

    Article  CAS  Google Scholar 

  12. Wang G, Wang J-J, Li F, To S-ST. Development and evaluation of a novel drug delivery: pluronics/SDS mixed micelle loaded with myricetin in vitro and in vivo. J Pharm Sci. 2016;105(4):1535–43.

    Article  CAS  PubMed  Google Scholar 

  13. Kaur T, Slavcev R. Solid Lipid Nanoparticles : Tuneable Anti-Cancer Gene / Drug Delivery Systems. In: Targeted Gene Delivery: Importance of Administration Routes. 2013. page 53–73.

  14. Hazzah HA, Farid RM, Nasra MMA, El-Massik MA, Abdallah OY. Lyophilized sponges loaded with curcumin solid lipid nanoparticles for buccal delivery: development and characterization. Int J Pharm. 2015;492(1–2):248–57.

    Article  CAS  PubMed  Google Scholar 

  15. Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci. 2014;10(2):81–98.

    Article  CAS  Google Scholar 

  16. Pathan RA, Bhandari U. Preparation & characterization of embelin–phospholipid complex as effective drug delivery tool. J Incl Phenom Macrocycl Chem. 2011;69(1–2):139–47.

    Article  CAS  Google Scholar 

  17. Yang Y, Cheow WS, Hadinoto K. Dry powder inhaler formulation of lipid–polymer hybrid nanoparticles via electrostatically-driven nanoparticle assembly onto microscale carrier particles. Int J Pharm. 2012;434(1):49–58.

    Article  CAS  PubMed  Google Scholar 

  18. Elsayed I, AbouGhaly MHH. Inhalable nanocomposite microparticles: preparation, characterization and factors affecting formulation. Expert Opin Drug Deliv. 2016;13(2):207–22.

    Article  CAS  PubMed  Google Scholar 

  19. Hazzah HA, Farid RM, Nasra MMA, Hazzah WA, El-Massik MA, Abdallah OY. Gelucire-based nanoparticles for Curcumin targeting to Oral mucosa: preparation, characterization, and antimicrobial activity assessment. J Pharm Sci. 2015;104(11):3913–24.

    Article  CAS  PubMed  Google Scholar 

  20. Makled S, Nafee N, Boraie N. Nebulized solid lipid nanoparticles for the potential treatment of pulmonary hypertension via targeted delivery of phosphodiesterase-5-inhibitor. Int J Pharm. 2017;517(1–2):312–21.

    Article  CAS  PubMed  Google Scholar 

  21. Gaber DM, Nafee N, Abdallah OY. Myricetin solid lipid nanoparticles : stability assurance from system preparation to site of action. Eur J Pharm Sci. 2017;109(May):569–80.

    Article  CAS  PubMed  Google Scholar 

  22. Duret C, Wauthoz N, Sebti T, Vanderbist F, Amighi K. New inhalation-optimized itraconazole nanoparticle-based dry powders for the treatment of invasive pulmonary aspergillosis. Int J Nanomedicine. 2012;7(5475):e5489.

    Google Scholar 

  23. Ishak RAH, Osman R. Lecithin/TPGS-based spray-dried self-microemulsifying drug delivery systems: in vitro pulmonary deposition and cytotoxicity. Int J Pharm. 2015;485(1–2):249–60.

    Article  CAS  PubMed  Google Scholar 

  24. Zeng X-M, Jones S, O’LEARY D, Phelan M, Colledge J. Delivery of formoterol from a novel multi-dose inhaler Airmax TM. Respir Med. 2002;96(6):397–403.

    Article  CAS  PubMed  Google Scholar 

  25. Guo C, Ngo D, Ahadi S, Doub WH. Evaluation of an abbreviated Impactor for fine particle fraction (FPF) determination of metered dose inhalers (MDI). AAPS PharmSciTech. 2013;14(3):1004–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Melike U, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine. 2007;2(3):289–300.

    Google Scholar 

  27. Ekambaram P, Sathali AAH, Priyanka K. Solid lipid nanoparticles: a review. Sci Rev Chem Commun. 2012;2(1):80–102.

    CAS  Google Scholar 

  28. Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2):165–96.

    Article  CAS  PubMed  Google Scholar 

  29. Siekmann B, Westesen K. Submicron-sized parenteral carrier systems based on solid lipids. Pharm Pharmacol Lett. 1992;1(3):123–6.

    CAS  Google Scholar 

  30. Jensen LB, Magnussson E, Gunnarsson L, Vermehren C, Nielsen HM, Petersson K. Corticosteroid solubility and lipid polarity control release from solid lipid nanoparticles. Int J Pharm. 2010;390(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  31. Date AA, Vador N, Jagtap A, Nagarsenker MS. Lipid nanocarriers (GeluPearl) containing amphiphilic lipid Gelucire 50/13 as a novel stabilizer: fabrication, characterization and evaluation for oral drug delivery. Nanotechnology. 2011;22(27):275102–2751013.

    Article  PubMed  CAS  Google Scholar 

  32. Upadhyay SU, Patel JK, Patel V. A, Saluja a K. effect of different lipids and surfactants on formulation of solid lipid nanoparticles incorporating tamoxifen citrate. J Pharm Bioallied Sci. 2012;4(S1):S112–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kumar VV, Chandrasekar D, Ramakrishna S, Kishan V, Rao YM, Diwan PV. Development and evaluation of nitrendipine loaded solid lipid nanoparticles: influence of wax and glyceride lipids on plasma pharmacokinetics. Int J Pharm. 2007;335(1):167–75.

    Article  CAS  PubMed  Google Scholar 

  34. Yanyu X, Yunmei S, Zhipeng C, Qineng P. The preparation of silybin–phospholipid complex and the study on its pharmacokinetics in rats. Int J Pharm. 2006;307(1):77–82.

    Article  PubMed  CAS  Google Scholar 

  35. Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Curcumin–phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm. 2007;330(1):155–63.

    Article  CAS  PubMed  Google Scholar 

  36. Semalty A, Semalty M, Singh D, Rawat MSM. Preparation and characterization of phospholipid complexes of naringenin for effective drug delivery. J Incl Phenom Macrocycl Chem. 2010;67(3–4):253–60.

    Article  CAS  Google Scholar 

  37. Xu K, Liu B, Ma Y, Du J, Li G, Gao H, et al. Physicochemical properties and antioxidant activities of luteolin-phospholipid complex. Molecules. 2009;14(9):3486–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Das MK, Kalita B. Design and evaluation of phyto-phospholipid complexes (phytosomes) of rutin for transdermal application. J Appl Pharm Sci. 2014;4(10):51–7.

    CAS  Google Scholar 

  39. Shi Y, Wan A, Shi Y, Zhang Y, Chen Y. Experimental and mathematical studies on the drug release properties of aspirin loaded chitosan nanoparticles. Biomed Res Int. 2014;2014:1–8.

    Google Scholar 

  40. Siepmann J, Siepmann F. Mathematical modeling of drug delivery. Int J Pharm. 2008;364(2):328–43.

    Article  CAS  PubMed  Google Scholar 

  41. Shih Y-W, Wu P-F, Lee Y-C, Shi M-D, Chiang T-A. Myricetin suppresses invasion and migration of human lung adenocarcinoma A549 cells: possible mediation by blocking the ERK signaling pathway. J Agric Food Chem. 2009;57(9):3490–9.

    Article  CAS  PubMed  Google Scholar 

  42. Yang R, Shim WS, Cui F De, Cheng G, Han X, Jin QR, Kim DD, Chung SJ, Shim CK. Enhanced electrostatic interaction between chitosan-modified PLGA nanoparticle and tumor. Int J Pharm, 2009;371(1–2):142–7.

  43. Bakshi MS, Zhao L, Smith R, Possmayer F, Petersen NO. Metal nanoparticle pollutants interfere with pulmonary surfactant function in vitro. Biophys J. 2008;94(3):855–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Erickson B, DiMaggio SC, Mullen DG, Kelly CV, Leroueil PR, Berry SA, et al. Interactions of poly (amidoamine) dendrimers with Survanta lung surfactant: the importance of lipid domains. Langmuir. 2008;24(19):11003–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nafee N, Schneider M, Schaefer UF, Lehr CM. Relevance of the colloidal stability of chitosan/PLGA nanoparticles on their cytotoxicity profile. Int J Pharm. 2009;381(2):130–9.

    Article  CAS  PubMed  Google Scholar 

  46. Nair B, Elmore AR. Final report on the safety assessment of sodium sulfite, potassium sulfite, ammonium sulfite, sodium bisulfite, ammonium bisulfite, sodium metabisulfite and potassium metabisulfite. Int J Toxicol. 2002;22(S2):63–88.

    Google Scholar 

  47. Gunnison AF. Sulphite toxicity: a critical review of in vitro and in vivo data. Food Cosmet Toxicol. 1981;19(5):667–82.

    Article  CAS  PubMed  Google Scholar 

  48. Macholz R. Evaluation of certain food additives and contaminants. Thirtienth Report of the Joint FAO/WHO Expert Committee on Food Additives (Technical Report Series 751). 57 Seiten. Mol Nutr Food Res. 1988;32(2):208.

    Google Scholar 

  49. Rowe R, Sheskey P, Quinn M. Handbook of Pharmaceutical Excipients. 2009.

  50. Pelletier M, Lavastre V, Girard D. Activation of human epithelial lung A549 cells by the pollutant sodium sulfite: enhancement of neutrophil adhesion. Toxicol Sci. 2002;69(1):210–6.

    Article  CAS  PubMed  Google Scholar 

  51. Chen Y, Wu Q, Zhang Z, Yuan L, Liu X, Zhou L. Preparation of curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics. Molecules. 2012;17(5):5972–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Celano M, Calvagno MG, Bulotta S, Paolino D, Arturi F, Rotiroti D, et al. Cytotoxic effects of gemcitabine-loaded liposomes in human anaplastic thyroid carcinoma cells. BMC Cancer. 2004;4(63):1–5.

    Google Scholar 

  53. Yi Y, Li Y, Wu H, Jia M, Yang X, Wei H, et al. Single-step assembly of polymer-lipid hybrid nanoparticles for mitomycin C delivery. Nanoscale Res Lett. 2014;9(1):1–14.

    Article  CAS  Google Scholar 

  54. Trapani A, Mandracchia D, Di Franco C, Cordero H, Morcillo P, Comparelli R, et al. In vitro characterization of 6-Coumarin loaded solid lipid nanoparticles and their uptake by immunocompetent fish cells. Colloids Surfaces B Biointerfaces. 2015;127:79–88.

    Article  CAS  PubMed  Google Scholar 

  55. Rivolta I, Panariti A, Lettiero B, Sesana S, Gasco P, Gasco MR, et al. Cellular uptake of coumarin-6 as a model drug loaded in solid lipid nanoparticles. J Physiol Pharmacol. 2011;62(1):45–53.

    CAS  PubMed  Google Scholar 

  56. He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657–66.

    Article  CAS  PubMed  Google Scholar 

  57. Ngo KX, Umakoshi H, Shimanouchi T, Bui HT, Kuboi R. Enhanced release of chitosanase from Streptomyces griseus through direct interaction of liposome with cell membrane under heat stress. J Biosci Bioeng. 2008;106(6):602–5.

    Article  CAS  PubMed  Google Scholar 

  58. Malamatari M, Somavarapu S, Bloxham M, Buckton G. Nanoparticle agglomerates of indomethacin: the role of poloxamers and matrix former on their dissolution and aerosolisation efficiency. Int J Pharm. 2015;495(1):516–26.

    Article  CAS  PubMed  Google Scholar 

  59. Cruz L, Fattal E, Tasso L, Freitas GC, Carregaro AB, Guterres SS, et al. Formulation and in vivo evaluation of sodium alendronate spray-dried microparticles intended for lung delivery. J Control Release. 2011;152(3):370–5.

    Article  CAS  PubMed  Google Scholar 

  60. Osman R, Kan PL, Awad G, Mortada N, Abd-Elhameed E-S, Alpar O. Spray dried inhalable ciprofloxacin powder with improved aerosolisation and antimicrobial activity. Int J Pharm. 2013;449(1):44–58.

    Article  CAS  PubMed  Google Scholar 

  61. Jacobs C, Müller RH. Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharm Res. 2002;19(2):189–94.

    Article  CAS  PubMed  Google Scholar 

  62. Yu H, Teo J, Chew JW, Hadinoto K. Dry powder inhaler formulation of high-payload antibiotic nanoparticle complex intended for bronchiectasis therapy: spray drying versus spray freeze drying preparation. Int J Pharm. 2016;499(1):38–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noha Nafee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nafee, N., Gaber, D.M., Elzoghby, A.O. et al. Promoted Antitumor Activity of Myricetin against Lung Carcinoma Via Nanoencapsulated Phospholipid Complex in Respirable Microparticles. Pharm Res 37, 82 (2020). https://doi.org/10.1007/s11095-020-02794-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02794-z

Key Words

Navigation