Skip to main content
  • 697 Accesses

Abstract

Millions of people of all ethnicities and ages are afflicted with pulmonary diseases globally according to the World Health Organization (WHO). The ramifications of these pulmonary diseases are evident in terms of impaired work productivity and quality of life mitigations in the daily healthcare activities. Among the pulmonary diseases, chronic obstructive pulmonary disease (COPD), occupational lung diseases (such as silicosis), asthma, lung cancer, pulmonary arterial hypertension and cystic fibrosis are the most prevalent. Unfortunately, none of these pulmonary diseases are completely eradicable with the available therapeutic regimes, and the early and thorough diagnosis is pivotal. The emergence of nanotechnology offers a commendable tool for the diagnosis and therapeutic management of pulmonary ailments. This is ascribable to sizing of particle in the nano range which enable them to triumph the biological and other pulmonary barriers leading to the enhancement not only in the therapeutic performance but also in the diagnosis. It is documented that although the extent of uptake of nanoparticle by pulmonary tissues is primarily affected by the physicochemical characteristics of nanoparticles themselves, the health condition of the host also plays a crucial role. Consequently, despite the enormous potential of nanotechnology to transform medicine field, the safety assessment remains an important concern. The present chapter describes the innovations in the nanotechnology field relevant to the diagnosis of pulmonary diseases and highlights some of the latest work in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ali W, Moghaddam FJ, Raza MU, Loan B, Bailey S, Young-Tae K, Samir MI (2016) Electromechanical transducer for rapid detection, discrimination and quantification of lung cancer cells. Nanotechnology 27(19):195101

    Article  PubMed  CAS  Google Scholar 

  • Anselmo AC, Mitragotri S (2014) An overview of clinical and commercial impact of drug delivery systems. J Control Release 190:15–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azzazy HM, Mansour MM, Kazmierczak SC (2007) From diagnostics to therapy: prospects of quantum dots. Clin Biochem 40(13–14):917–927

    Article  CAS  PubMed  Google Scholar 

  • Basourakos SP, Li L, Aparicio AM, Corn PG, Kim J, Timothy C (2017) Combination platinum-based and DNA damage responsetargeting cancer therapy: evolution and future directions. Curr Med Chem 24(15):1586–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25

    Article  CAS  PubMed  Google Scholar 

  • Bianchi A, Lux F, Tillement O, Cremillieux Y (2013) Contrast enhanced lung MRI in mice using ultra-short echo time radial imaging and intratracheally administrated Gd-DOTA-based nanoparticles. Magn Reson Med 70:1419–1426

    Article  CAS  PubMed  Google Scholar 

  • Blanchard JD (1996a) Aerosol bolus dispersion and aerosol-derived airway morphometry: assessment of lung pathology and response to therapy, Part 1. J Aerosol Med 9(2):183–205

    Article  CAS  PubMed  Google Scholar 

  • Blanchard JD (1996b) Aerosol bolus dispersion and aerosol-derived airway morphometry: assessment of lung pathology and response to therapy, Part 2. J Aerosol Med 9(4):453–476

    Article  Google Scholar 

  • Blanchard JD, Heyder J, O’Donnell CR, Brain JD (1991) Aerosol-derived lung morphometry: comparisons with a lung model and lung function indexes. J Appl Physiol 71(4):1216–1224

    Article  CAS  PubMed  Google Scholar 

  • Borrebaeck CA (2017) Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer. Nat Rev Cancer 17(3):199–204

    Article  CAS  PubMed  Google Scholar 

  • Boylan NJ, Kim AJ, Suk JS, Adstamongkonkul P, Simons BW, Lai SK, Cooper MJ, Hanes J (2012) Enhancement of airway gene transfer by DNA nanoparticles using a pH-responsive block copolymer of polyethylene glycol and poly-L-lysine. Biomaterials 33(7):2361–2371

    Article  CAS  PubMed  Google Scholar 

  • Brand P, Selzer T, Tuch T, Schulz A, Heyder J (1994) Accuracy and resolution power of aerosol-derived airway morphometry in a simple lung model. Exp Lung Res 20(3):185–205

    Article  CAS  PubMed  Google Scholar 

  • Brenner JS, Bhamidipati K, Glassman PM, Ramakrishnan N, Jiang D, Paris AJ, Myerson JW, Pan DC, Shuvaev VV, Villa CH, Hood ED, Kiseleva R, Greineder CF, Radhakrishnan R, Muzykantov VR (2017) Mechanisms that determine nanocarrier targeting to healthy versus inflamed lung regions. Nanomedicine 13(4):1495–1506

    Article  CAS  PubMed  Google Scholar 

  • Broday DM, Georgopoulos P (2001) Growth and deposition of hygroscopic particulate matter in the human lungs. Aerosol Sci Technol 34(1):144–159

    Article  CAS  Google Scholar 

  • Chevillet JR, Lee I, Briggs HA, He Y, Wang K (2014) Issues and prospects of microRNA-based biomarkers in blood and other body fluids. Molecules 19(5):6080–6105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA (2015) Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev 115:10530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YE, Kwak JW, Park JW (2010) Nanotechnology for early cancer detection. Sensors (Basel) 10(1):428–455

    Article  CAS  Google Scholar 

  • Doria G, Conde J, Veigas B, Giestas L, Almeida C, Assuncao M, Rosa J, Baptista PV (2012) Noble metal nanoparticles for biosensing applications. Sensors (Basel) 12(2):1657–1687

    Article  CAS  Google Scholar 

  • Fain SB, Panth SR, Evans MD, Wentland AL, Holmes JH, Korosec FR, O'Brien MJ, Fountaine H, Grist TM (2016) Early emphysematous changes in asymptomatic smokers: detection with 3He MR imaging. Radiology 239(3):875–883

    Article  Google Scholar 

  • Freiberger E, Sieber C (2013) Mobility in old age: aspects of training in independently living older people. Dtsch Med Wochenschr 138(40):2007–2010

    Article  CAS  PubMed  Google Scholar 

  • González-García I, Solé RV, Costa J (2002) Metapopulation dynamics and spatial heterogeneity in cancer. Proc Natl Acad Sci U S A 99(20):13085–13089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7(10):569–579

    Article  CAS  PubMed  Google Scholar 

  • Harun NA, Benning MJ, Horrocks BR, Fulton DA (2013) Gold nanoparticle-enhanced luminescence of silicon quantum dots co-encapsulated in polymer nanoparticles. Nanoscale 5:3747–3756

    Article  CAS  Google Scholar 

  • Heyder J (1989) Assessment of airway geometry with inert aerosols. J Aerosol Med 2(2):89–97

    Article  Google Scholar 

  • Huang Q, Yin W, Chen X, Wang Y, Li Z, Du S, Wang L, Shi C (2018) Nanotechnology-based strategies for early cancer diagnosis using circulating tumor cells as a liquid biopsy. Nano 2(1):21–41

    Google Scholar 

  • Hull LC, Farrell D, Grodzinski P (2014) Highlights of recent developments and trends in cancer nanotechnology research--view from NCI Alliance for Nanotechnology in Cancer. Biotechnol Adv 32(4):666–678

    Article  CAS  PubMed  Google Scholar 

  • Jakobsson JKF, Hedlund J, Kumlin J, Wollmer P, Löndahl J (2016) A new method for measuring lung deposition efficiency of airborne nanoparticles in a single breath. Sci Rep 6:36147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia S, Zhang R, Li Z, Li J (2017) Clinical and biological significance of circulating tumor cells, circulating tumor DNA, and exosomes as biomarkers in colorectal cancer. Oncotarget 8(33):55632–55645

    Article  PubMed  PubMed Central  Google Scholar 

  • L. Joseph, Circulating tumor cells and nucleic acids for tumor diagnosis. In: Sepulveda A., Lynch J. (eds) Molecular pathology of neoplastic gastrointestinal diseases. Molecular pathology library, vol. 7, 2013, pp. 229-247, Springer, SpBoston, MA

    Google Scholar 

  • Ju J, Li R, Gu S, Ju J, Li R, Gu S, Leader JK, Wang X, Chen Y, Zheng B, Wu S, Gur D, Sciurba F, Pu J (2014) Impact of emphysema heterogeneity on pulmonary function. PLoS One 9(11):e113320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Key J, Leary JF (2014) Nanoparticles for multimodal in vivo imaging in nanomedicine. Int J Nanomed 9:711–726

    Google Scholar 

  • Kim CS, Jaques PA (2000) Respiratory dose of inhaled ultrafine particles in healthy adults. Philos Trans A Math Phys Eng Sci 358(1775):2693–2705

    Article  CAS  Google Scholar 

  • Kong WH, Lee WJ, Cui ZY, Bae KH, Park TG, Kim JH, Park K, Seo SW (2007) Nanoparticulate carrier containing water-insoluble iodinated oil as a multifunctional contrast agent for computed tomography imaging. Biomaterials 28(36):5555–5561

    Article  CAS  PubMed  Google Scholar 

  • Kumar B, Kumar R, Skvortsova I, Kumar V (2017) Promising targets in anti-cancer drug development: recent updates. Curr Med Chem 24(42):4729–4752

    CAS  PubMed  Google Scholar 

  • Landahl HD, Tracewell TN, Lassen WH (1951) On the retention of airborne particulates in the human lung: II. AMA Arch Ind Hyg Occup Med 3(4):359–366

    CAS  PubMed  Google Scholar 

  • Lee Y, Thompson DH (2017) Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(5)

    Google Scholar 

  • Lin G, Ouyang Q, Hu R, Ding Z, Tian J, Yin F, Xu G, Chen Q, Wang X, Yong KT (2015) In vivo toxicity assessment of noncadmium quantum dots in BALB/c mice. Nanomedicine 11(2):341–350

    Article  CAS  PubMed  Google Scholar 

  • Löndahl J, Möller W, Pagels JH, Kreyling WG, Swietlicki E, Schmid O (2014) Measurement techniques for respiratory tract deposition of airborne nanoparticles: a critical review. J Aerosol Med Pulm Drug Deliv 27(4):229–254

    Article  PubMed  PubMed Central  Google Scholar 

  • Löndahl J, Jakobsson JK, Broday DM, Aaltonen HL, Wollmer P (2017) Do nanoparticles provide a new opportunity for diagnosis of distal airspace disease? Int J Nanomedicine 12:41–51

    Article  PubMed  Google Scholar 

  • Ma H, Liu J, Ali MM, Mahmood MAI, Labanieh L, Lu M, Iqbal SM, Zhang Q, Zhao W, Wan Y (2015) Nucleic acid aptamers in cancer research, diagnosis and therapy. Chem Soc Rev 44:1240–1256

    Article  CAS  PubMed  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19(3):311–330

    Article  CAS  PubMed  Google Scholar 

  • Nguyen MM, Carlini AS, Chien MP, Sonnenberg S, Luo C, Braden RL, Osborn KG, Li Y, Gianneschi NC, Christman KL (2015) Enzyme-responsive nanoparticles for targeted accumulation and prolonged retention in heart tissue after myocardial infarction. Adv Mater 27(37):5547–5552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    Article  CAS  PubMed  Google Scholar 

  • Pison U, Welte T, Giersig M, Groneberg DA (2006) Nanomedicine for respiratory diseases. Eur J Pharmacol 533(1–3):341–350

    Article  CAS  PubMed  Google Scholar 

  • Ponomaryova A, Rykova E, Cherdyntseva N, Morozkin E, Zaporozhchenko I, Skvortsova T, Dobrodeev A, Zav’yalov A, Tuzikov S, Vlassov V, Laktionov P (2015) P90: Dynamic changes of circulating microRNA expression in response to the lung cancer combined therapy. Eur J Cancer Suppl 13(1):43–44

    Article  Google Scholar 

  • Rangger C, Helbok A, Sosabowski J, Kremser C, Koehler G, Prassl R, Andreae F, Virgolini IJ, von Guggenberg E, Decristoforo C (2013) Tumor targeting and imaging with dual-peptide conjugated multifunctional liposomal nanoparticles. Int J Nanomedicine 8:4659–4671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosenthal FS (1989) Aerosol recovery following breathholding derived from the distribution of chordlengths in pulmonary tissue. J Aerosol Sci 20(2):267–277

    Article  Google Scholar 

  • Sadikot RT (2012) Peptide nanomedicines for treatment of acute lung injury. Methods Enzymol 508:315–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz H, Schulz A, Brand P, Tuch T, von Mutius E, Erdl R, Reinhardt D, Heyder J (1995) Aerosol bolus dispersion and effective airway diameters in mildly asthmatic children. Eur Respir J 8(4):566–573

    CAS  PubMed  Google Scholar 

  • Shaker SB, Stavngaard T, Hestad M, Bach KS, Tonnesen P, Dirksen A (2009) The extent of emphysema in patients with COPD. Clin Respir J 3(1):15–21

    Article  PubMed  Google Scholar 

  • Sharifi M, Avadi MR, Attar F, Dashtestani F, Ghorchian H, Rezayat SM, Saboury AA, Falahati M (2019) Cancer diagnosis using nanomaterials based electrochemical nanobiosensors. Biosens Bioelectron 126:773–784

    Article  CAS  PubMed  Google Scholar 

  • Song S, Qin Y, He Y, Huang Q, Fan C, Chen HY (2010) Functional nanoprobes for ultrasensitive detection of biomolecules: an update. Chem Soc Rev 39:4234–4243

    Article  CAS  PubMed  Google Scholar 

  • Stoeger T, Reinhard C, Takenaka S, Schroeppel A, Karg E, Ritter B, Heyder J, Schulz H (2006) Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect 114(3):328–333

    Article  PubMed  Google Scholar 

  • Uddin MJ, Werfel TA, Crews BC, Gupta MK, Kavanaugh TE, Kingsley PJ, Boyd K, Marnett LJ, Duvall CL (2016) Fluorocoxib A loaded nanoparticles enable targeted visualization of cyclooxygenase-2 in inflammation and cancer. Biomaterials 92:71–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda K (2013) Glycoproteomic strategies: From discovery to clinical application of cancer carbohydrate biomarkers. Proteomics Clin Appl 7:607–617

    Article  CAS  PubMed  Google Scholar 

  • Vestbo J, Hurd SS, Agustí AG, Jones PW, Vogelmeier C, Anzueto A, Barnes PJ, Fabbri LM, Martinez FJ, Nishimura M, Stockley RA, Sin DD, Rodriguez-Roisin R (2013) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 187(4):347–365

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zheng L, Peng C, Shen M, Shi X, Zhang G (2013) Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adenocarcinoma. Biomaterials 34:470–480

    Article  CAS  PubMed  Google Scholar 

  • Zeman KL, Bennett WD (1995) Measuring alveolar dimensions at total lung capacity by aerosol-derived airway morphometry. J Aerosol Med 8(2):135–147

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Lv J, Jia Z (2017) Efficient fluorescence resonance energy transfer between quantum dots and gold nanoparticles based on porous silicon photonic crystal for DNA detection. Sensors-Basel 17:1078

    Article  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Li M, Gao X, Chen Y, Liu T (2019) Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J Hematol Ooncol 12:137

    Article  Google Scholar 

  • Zhou W, Gao X, Liu D, Chen X (2015) Gold nanoparticles for in vitro diagnostics. Chem Rev 115(19):10575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farrukh Zeeshan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zeeshan, F. (2022). Nanotechnology in Pulmonary Disease Diagnosis. In: Chellappan, D.K., Pabreja, K., Faiyazuddin, M. (eds) Advanced Drug Delivery Strategies for Targeting Chronic Inflammatory Lung Diseases . Springer, Singapore. https://doi.org/10.1007/978-981-16-4392-7_10

Download citation

Publish with us

Policies and ethics