Skip to main content

Emerging Nanotechnology in Chronic Respiratory Diseases

  • Chapter
  • First Online:
Nanoformulations in Human Health

Abstract

A large population, including people of all age groups, is suffering from chronic respiratory diseases worldwide. Asthma, chronic obstructive pulmonary disease, occupational lung diseases, cystic fibrosis, etc. are the most common of these diseases and are noncurable with conventional and currently available therapies. Nanotechnology is emerging as a great therapeutic promise in different spheres including drug delivery systems and is becoming the technology of choice nowadays. The administration of drugs via inhalation helps in avoiding the first-pass metabolism by targeted delivery to the affected site. It has been observed that there is a huge diversity in nanotechnology being used in pulmonary diseases, and thus safety assessment is a challenging as well as important task. The present review focuses on some of the major emerging nanotechnologies for chronic pulmonary diseases and includes some of the latest studies in the field of nanomedicines.

Authors Parijat Pandey and Meenu Mehta Sharing First Authorship in Equal Contributuion

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelaziz HM, Gaber M, Abd-Elwakil MM, Mabrouk MT, Elgohary MM, Kamel NM, Elzoghby AO (2018) Inhalable particulate drug delivery systems for lung cancer therapy: nanoparticles, microparticles, nanocomposites and nanoaggregates. J Control Release 269:374–392

    CAS  PubMed  Google Scholar 

  • Abdelaziz HM, Elzoghby AO, Helmy MW, Samaha MW, Fang JY, Freag MS (2019) Liquid crystalline assembly for potential combinatorial chemo–herbal drug delivery to lung cancer cells. Int J Nanomedicine 14:499–507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abu-Dahab R, Schäfer UF, Lehr CM (2001) Lectin-functionalized liposomes for pulmonary drug delivery: effect of nebulization on stability and bioadhesion. Eur J Pharm Sci 14(1):37–46

    CAS  PubMed  Google Scholar 

  • Adam B, Nicolas T, Ilaria A, Anais C, Camilla F, Claudine D, Elias F (2017) Anti-inflammatory effect of anti-TNF-α SiRNA cationic phosphorus dendrimer nanocomplexes administered intranasally in a murine acute lung injury model. Biomacromolecules 18(8):2379–2388

    Google Scholar 

  • Agustí A, Celli B (2017) Natural history of COPD: gaps and opportunities. ERJ Open Res 3(4):1–10

    Google Scholar 

  • Al-Nemrawi N, Alshraiedeh NA, Zayed A, Altaani B (2018) Low molecular weight chitosan-coated PLGA nanoparticles for pulmonary delivery of tobramycin for cystic fibrosis. Pharmaceuticals (Basel) 11(1):28

    Google Scholar 

  • Alvarez MJ, Echechipía S, García B, Tabar AI, Martín S, Rico P, Olaguibel JM (2002) Liposome-entrapped D. pteronyssinus vaccination in mild asthma patients: effect of 1-year double-blind, placebo-controlled trial on inflammation, bronchial hyper-responsiveness and immediate and late bronchial responses to the allergen. Clin Exp Allergy 32(11):1574–1582

    CAS  PubMed  Google Scholar 

  • Amore E, Ferraro M, Manca ML, Gjomarkaj M, Giammona G, Pace E, Bondì ML (2017) Mucoadhesive solid lipid microparticles for controlled release of a corticosteroid in the chronic obstructive pulmonary disease treatment. Nanomedicine 12(19):2287–2302

    CAS  PubMed  Google Scholar 

  • Amreddy N, Babu A, Panneerselvam J, Srivastava A, Muralidharan R, Chen A, Ramesh R (2018) Chemo-biologic combinatorial drug delivery using folate receptor-targeted dendrimer nanoparticles for lung cancer treatment. Nanomedicine 14(2):373–384

    CAS  PubMed  Google Scholar 

  • Asher I, Pearce N (2014) Global burden of asthma among children. Int J Tuberc Lung Dis 18(11):1269–1278

    CAS  PubMed  Google Scholar 

  • Bai S, Thomas C, Rawat A, Ahsan F (2006) Recent progress in dendrimer-based nanocarriers. Crit Rev Ther Drug Carrier Syst 23(6):437–495

    CAS  PubMed  Google Scholar 

  • Bai S, Thomas S, Ahsan F (2007) Dendrimers as a carrier for pulmonary delivery of enoxaparin, a low-molecular weight heparin. J Pharm Sci 96(8):2090–2106

    CAS  PubMed  Google Scholar 

  • Barnes PJ (2003) New concepts in chronic obstructive pulmonary disease. Annu Rev Med 54(1):113–129

    CAS  PubMed  Google Scholar 

  • Barnes PJ (2011) C4 Drugs for the treatment of airway disease. In: Principles of immunopharmacology. Springer, Basel, Switzerland. pp 321–357

    Google Scholar 

  • Bateman ED, Hurd SS, Barnes PJ, Bousquet J, Drazen JM, Fitz Gerald JM, Zar HJ (2008) Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J 31(1):143–178

    CAS  PubMed  Google Scholar 

  • Beloqui A, Solinís MÁ, Rodríguez-Gascón A, Almeida AJ, Préat V (2016) Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomedicine 12(1):143–161

    CAS  PubMed  Google Scholar 

  • Bharatwaj B, Mohammad AK, Dimovski R, Cassio FL, Bazito RC, Conti D, da Rocha SRP (2015) Dendrimer nanocarriers for transport modulation across models of the pulmonary epithelium. Mol Pharm 12(3):826–838

    CAS  PubMed  Google Scholar 

  • Bhavna AFJ, Mittal G, Jain GK, Malhotra G, Khar RK, Bhatnagar A (2009) Nano-salbutamol dry powder inhalation: a new approach for treating broncho-constrictive conditions. Eur J Pharm Biopharm 71(2):282–291

    CAS  PubMed  Google Scholar 

  • Bradbury M, Wiesner U, Penate MO, Burns A, Lewis J, Larson S, Quinn T. Multimodal silica-based nanoparticles. Google Patents. 2014.

    Google Scholar 

  • Brockman SM, Bodas M, Silverberg D, Sharma A, Vij N (2017) Dendrimer-based selective autophagy-induction rescues F508-CFTR and inhibits Pseudomonas aeruginosa infection in cystic fibrosis. PLoS One 12(9):e0184793–e0184799

    PubMed  PubMed Central  Google Scholar 

  • Celli BR, Mac Nee W (2004) Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 23(6):932–946

    CAS  PubMed  Google Scholar 

  • Chellappan DK, Hansbro PM, Dua K, Hsu A, Gupta G, Ng ZY, Panneerselvam J (2017) Vesicular systems containing curcumin and their applications in respiratory disorders - a mini review. Pharm Nanotechnol 5(4):250–254

    CAS  PubMed  Google Scholar 

  • Chellappan DK, Ng ZY, Wong JY, Hsu A, Wark P, Hansbro N, Dua K (2018) Immunological axis of curcumin-loaded vesicular drug delivery systems. Future Med Chem 10(8):839–844

    CAS  PubMed  Google Scholar 

  • Chennakesavulu S, Mishra A, Sudheer A, Sowmya C, Suryaprakash Reddy C, Bhargava E (2018) Pulmonary delivery of liposomal dry powder inhaler formulation for effective treatment of idiopathic pulmonary fibrosis. Asian J Pharm Sci 13(1):91–100

    CAS  PubMed  Google Scholar 

  • Chono S, Tanino T, Seki T, Morimoto K (2007) Uptake characteristics of liposomes by rat alveolar macrophages: influence of particle size and surface mannose modification. J Pharm Pharmacol 59(1):75–80

    CAS  PubMed  Google Scholar 

  • Chou AJ, Gupta R, Bell MD, Riewe KO, Meyers PA, Gorlick R (2013) Inhaled lipid cisplatin (ILC) in the treatment of patients with relapsed/progressive osteosarcoma metastatic to the lung. Pediatr Blood Cancer 60:580–586

    CAS  PubMed  Google Scholar 

  • Cruz AA (2007) Global surveillance, prevention and control of chronic respiratory diseases: a comprehensive approach. World Health Organization

    Google Scholar 

  • Cryer AM, Thorley AJ (2019) Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacol Ther 198:189–205

    CAS  PubMed  Google Scholar 

  • De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3(2):133–149

    PubMed  PubMed Central  Google Scholar 

  • Dong Z, Hamid KA, Gao Y, Lin Y, Katsumi H, Sakane T, Yamamoto A (2011) Polyamidoamine dendrimers can improve the pulmonary absorption of insulin and calcitonin in rats. J Pharm Sci 100(5):1866–1878

    CAS  PubMed  Google Scholar 

  • Dozor AJ (2010) The role of oxidative stress in the pathogenesis and treatment of asthma. Ann N Y Acad Sci 1203(1):133–137

    CAS  PubMed  Google Scholar 

  • Dua K, Rapalli VK, Shukla SD, Singhvi G, Shastri MD, Chellappan DK, Gupta G (2018) Multi-drug resistant Mycobacterium tuberculosis and oxidative stress complexity: emerging need for novel drug delivery approaches. Biomed Pharmacother 107:1218–1229

    CAS  PubMed  Google Scholar 

  • Dua K, Malyla V, Singhvi G, Wadhwa R, Krishna RV, Shukla SD, Hansbro PM (2019) Increasing complexity and interactions of oxidative stress in chronic respiratory diseases: an emerging need for novel drug delivery systems. Chem Biol Interact 299:168–178

    CAS  PubMed  Google Scholar 

  • Dufès C, Uchegbu IF, Schätzlein AG (2005) Dendrimers in gene delivery. Adv Drug Deliv Rev 57(15):2177–2202

    PubMed  Google Scholar 

  • Duncan R, Izzo L (2005) Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 57(15):2215–2237

    CAS  PubMed  Google Scholar 

  • Frankenberger M, Häussinger K, Ziegler-Heitbrock L (2005) Liposomal methylprednisolone differentially regulates the expression of TNF and IL-10 in human alveolar macrophages. Int Immunopharmacol 5(2):289–299

    CAS  PubMed  Google Scholar 

  • Geiger J, Aneja MK, Rudolph C. Pulmonary delivery of messenger RNA. Google Patents. 2015.

    Google Scholar 

  • Girdhar V, Patil S, Banerjee S, Singhvi G (2018) Nanocarriers for drug delivery: mini review. Curr Nanomed 8(2):88–99

    CAS  Google Scholar 

  • GOLD. Global strategy for the diagnosis, management and prevention of COPD, Global initiative for chronic obstructive lung disease (GOLD) 2018. Retrieved from https://goldcoped.org/. Accessed 10 Mar 2019.

  • Guarascio AJ, Ray SM, Finch CK, Self TH (2013) The clinical and economic burden of chronic obstructive pulmonary disease in the USA. Clinicoecon Outcomes Res 5:235–245

    PubMed  PubMed Central  Google Scholar 

  • Hamman JH, Enslin GM, Kotzé AF (2005) Oral delivery of peptide drugs. BioDrugs 19(3):165–177

    CAS  PubMed  Google Scholar 

  • Han Y, Zhang P, Chen Y, Sun J, Kong F (2014) Co-delivery of plasmid DNA and doxorubicin by solid lipid nanoparticles for lung cancer therapy. Int J Mol Med 34(1):191–196

    CAS  PubMed  Google Scholar 

  • Hatamipour M, Ramezani M, Tabassi SAS, Johnston TP, Ramezani M, Sahebkar A (2018) Demethoxycurcumin: a naturally occurring curcumin analogue with antitumor properties. J Cell Physiol 233(12):9247–9260

    CAS  PubMed  Google Scholar 

  • Hema S, Thambiraj S, Shankaran DR (2018) Nanoformulations for targeted drug delivery to prostate cancer: an overview. J Nanosci Nanotechnol 18(8):5171–5191

    CAS  PubMed  Google Scholar 

  • Hickey S (2014) Understanding the impact of inhaler technique on asthma and COPD. Nurse Prescribing 12(10):492–496

    Google Scholar 

  • Iga AM, Robertson JH, Winslet MC, Seifalian AM (2007) Clinical potential of quantum dots. J Biomed Biotechnol (10):76087–76097

    Google Scholar 

  • Ihrie MD, Bonner JC (2018) The toxicology of engineered nanomaterials in asthma. Curr Environ Health Rep 5(1):100–109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inapagolla R, Raja Guru B, Kurtoglu YE, Gao X, Lieh-Lai M, Bassett DJP, Rangaramanujam K (2010) In vivo efficacy of dendrimer-methylprednisolone conjugate formulation for the treatment of lung inflammation. Int J Pharm 399:140–147

    CAS  PubMed  Google Scholar 

  • Islam N, Abbas M, Rahman S (2017) Neuropathic pain and lung delivery of nanoparticulate drugs: an emerging novel therapeutic strategy. CNS Neurol Disord Drug Targets 16(3):303–310

    CAS  PubMed  Google Scholar 

  • Islan Germán A, Tornello PC, Abraham GA, Duran N, Castro GR (2016) Smart lipid nanoparticles containing levofloxacin and DNase for lung delivery. Design and characterization. Colloids Surf B: Biointerfaces 143:168–176

    PubMed  Google Scholar 

  • Jasinski D, Haque F, Binzel DW, Guo P (2017) Advancement of the emerging field of RNA nanotechnology. ACS Nano 11(2):1142–1164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi M, Misra A (2001) Dry powder inhalation of liposomal ketotifen fumarate: formulation and characterization. Int J Pharm 223(1–2):15–27

    CAS  PubMed  Google Scholar 

  • Joshi M, Misra A (2003) Disposition kinetics of ketotifen from liposomal dry powder for inhalation in rat lung. Clin Exp Pharmacol Physiol 30(3):153–156

    CAS  PubMed  Google Scholar 

  • Kaminskas LM, McLeodVM RGM, Kelly BD, Haynes JM, Williamson M, Thienthong N, Owen DJ, Porter CJ (2014) Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J Control Release 183:18–26

    CAS  PubMed  Google Scholar 

  • Kaur SS (2017) Pulmonary drug delivery system: newer patents. Pharm Pat Anal 6(5):225–244

    CAS  PubMed  Google Scholar 

  • Kc R, Shukla SD, Gautam SS, Hansbro PM, O'Toole RF (2018) The role of environmental exposure to non-cigarette smoke in lung disease. Clin Transl Med 7(1):39–45

    PubMed  PubMed Central  Google Scholar 

  • Khan OF, Zaia EW, Jhunjhunwala S, Xue W, Cai W, Yun DS, Anderson DG (2015) Dendrimer-inspired nanomaterials for the in vivo delivery of siRNA to lung vasculature. Nanotechnol Lett 15(5):3008–3016

    CAS  Google Scholar 

  • Khosa A, Reddi S, Saha RN (2018) Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother 103:598–613

    CAS  PubMed  Google Scholar 

  • Kiparissides C, Kammona O (2008) Nanotechnology advances in controlled drug delivery systems. Phys Status Solidi C 5(12):3828–3833

    CAS  Google Scholar 

  • Koo HK, Vasilescu DM, Booth S, Hsieh A, Katsamenis OL, Fishbane N, Hackett TL (2018) Small airways disease in mild and moderate chronic obstructive pulmonary disease: a cross-sectional study. Lancet Respir Med 6(8):591–602

    PubMed  Google Scholar 

  • Kumar M, Kong X, Behera AK, Hellermann GR, Lockey RF, Mohapatra SS (2003) Chitosan IFN-gamma-pDNA nanoparticle (CIN) therapy for allergic asthma. Genet Vaccin Ther 1(1):3

    Google Scholar 

  • Kuzmov A, Minko T (2015) Nanotechnology approaches for inhalation treatment of lung diseases. J Control Release 219(10):500–518

    CAS  PubMed  Google Scholar 

  • Lee DW, Shirley SA, Lockey RF, Mohapatra SS (2006) Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline. Respir Res 7(1):112

    PubMed  PubMed Central  Google Scholar 

  • Lee C, Seo J, Hwang HS, Thao LQ, Lee S, Lee ES, Youn YS (2016) Treatment of bleomycin-induced pulmonary fibrosis by inhaled tacrolimus-loaded chitosan-coated poly (lactic-co-glycolic acid) nanoparticles. Biomed Pharmacother 78:226–233

    CAS  PubMed  Google Scholar 

  • Lehr CM (2000) Lectin-mediated drug delivery: the second generation of bioadhesives. J Control Release 65(1–2):19–29

    CAS  PubMed  Google Scholar 

  • Li B, Zhang X, Dong Y (2019) Nanoscale platforms for messenger RNA delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 11(2):e1530–e1536

    PubMed  Google Scholar 

  • Loira-Pastoriza C, Todoroff J, Vanbever R (2014) Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev 75:81–91

    CAS  PubMed  Google Scholar 

  • Madaan K, Kumar S, Poonia N, Lather V, Pandita D (2014) Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 6(3):139–150

    PubMed  PubMed Central  Google Scholar 

  • Madni A, Batool A, Noreen S, Maqbool I, Rehman F, Kashif PM, Raza A (2017) Novel nanoparticulate systems for lung cancer therapy: an updated review. J Drug Target 25(6):499–512

    CAS  PubMed  Google Scholar 

  • Makled S, Nafee N, Boraie N (2017) Nebulized solid lipid nanoparticles for the potential treatment of pulmonary hypertension via targeted delivery of phosphodiesterase-5-inhibitor. Int J Pharm 517(1–2):312–321

    CAS  PubMed  Google Scholar 

  • Maretti E, Costantino L, Rustichelli C, Leo E, Croce MA, Buttini F, Iannuccelli V (2017) Surface engineering of solid lipid nanoparticle assemblies by methyl α-d-mannopyranoside for the active targeting to macrophages in anti-tuberculosis inhalation therapy. Int J Pharm 528(1–2):440–451

    CAS  PubMed  Google Scholar 

  • Mehta P (2016) Dry powder inhalers: a focus on advancements in novel drug delivery systems. J Drug Deliv 2016:8290963–8290968

    PubMed  PubMed Central  Google Scholar 

  • Mehta P, Bothiraja C, Mahadik K, Kadam S, Pawar A (2018) Phytoconstituent based dry powder inhalers as biomedicine for the management of pulmonary diseases. Biomed Pharmacother 108:828–837

    CAS  PubMed  Google Scholar 

  • Mehta M, Deeksha, Sharma N, Vyas M, Khurana N, Maurya PK, Satija S (2019) Interactions with the macrophages: an emerging targeted approach using novel drug delivery systems in respiratory diseases. Chem Biol Interact 304:10–19

    CAS  PubMed  Google Scholar 

  • Momtazi-Borojeni AA, Esmaeili SA, Abdollahi E, Sahebkar A (2017) A review on the pharmacology and toxicology of steviol glycosides extracted from stevia rebaudiana. Curr Pharm Des 23(11):1616–1622

    CAS  PubMed  Google Scholar 

  • Moreno-Sastre M, Pastor M, Esquisabel A, Sans E, Viñas M, Fleischer A, Pedraz JL (2016) Pulmonary delivery of tobramycin-loaded nanostructured lipid carriers for pseudomonas aeruginosa infections associated with cystic fibrosis. Int J Pharm 498(1–2):263–273

    CAS  PubMed  Google Scholar 

  • Morgan MT, Carnahan MA, Immoos CE, Ribeiro AA, Finkelstein S (2003) Dendritic molecular capsules for hydrophobic compounds. J Am Chem Soc 125:15485–15489

    CAS  PubMed  Google Scholar 

  • Morris C, Aljayyoussi G, Mansour O, Griffiths P, Gumbleton M (2017) Endocytic uptake, transport and macromolecular interactions of anionic PAMAM dendrimers within lung tissue. Pharm Res 34(12):2517–2531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7:145–173

    CAS  PubMed  Google Scholar 

  • Nasr M, Najlah M, D’Emanuele A, Elhissi A (2014) PAMAM dendrimers as aerosol drug nanocarriers for pulmonary delivery via nebulization. Int J Pharm 461(1–2):242–250

    CAS  PubMed  Google Scholar 

  • Nassimi M, Schleh C, Lauenstein HD, Hussein R, Hoymann HG, Koch W, Pohlmann G, Krug N, Sewald K, Rittinghausen S, Braun A, Müller-Goymann C (2010) A toxicological evaluation of inhaled solid lipid nanoparticles used as a potential drug delivery system for the lung. Eur J Pharm Biopharm 75(2):107–116

    CAS  PubMed  Google Scholar 

  • National asthma education and prevention program, third expert panel on the diagnosis and management of asthma. Expert panel report 3: guidelines for the diagnosis and management of asthma. Bethesda: National heart, lung, and blood institute (US); 2007 Aug. Section 2, Definition, pathophysiology and pathogenesis of asthma, and natural history of asthma. Retrieved from: https://www.ncbi.nlm.nih.gov/books/NBK7223/

  • Neerman MF, Chen HT, Parrish AR, Simanek EE (2004) Reduction of drug toxicity using dendrimers based on melamine. Mol Pharmacol 1:390–393

    CAS  Google Scholar 

  • Newman SP (2017) Drug delivery to the lungs: challenges and opportunities. Ther Deliv 8(8):647–661

    CAS  PubMed  Google Scholar 

  • Ng ZY, Wong JY, Panneerselvam J, Madheswaran T, Kumar P, Pillay V, Chellappan DK (2018) Assessing the potential of liposomes loaded with curcumin as a therapeutic intervention in asthma. Colloids Surf B: Biointerfaces 172:51–59

    CAS  PubMed  Google Scholar 

  • Nkanga CI, Krause RW, Noundou XS, Walker RB (2017) Preparation and characterization of isoniazid-loaded crude soybean lecithin liposomes. Int J Pharm 526(1–2):466–473

    CAS  PubMed  Google Scholar 

  • Ong WZ, Nowak PW, Kim J, Enlow EM, Bourassa J, CUY, Popov A, Chen H. Meropenem derivatives and uses thereof. Google Patents, 2014.

    Google Scholar 

  • Oyarzun-Ampuero FA, Brea J, Loza MI, Torres D, Alonso MJ (2009) Chitosan-hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma. Int J Pharm 381(2):122–129

    CAS  PubMed  Google Scholar 

  • Pahal P, Sharma S. Emphysema. [Updated 2019 Feb 23]. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing. 2019. Retrieved from: https://www.ncbi.nlm.nih.gov/books/NBK482217/

  • Paranjpe M, Müller-Goymann CC (2014) Nanoparticle-mediated pulmonary drug delivery: a review. Int J Mol Sci 15(4):5852–5873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parasaram V, Nosoudi N, LeClair RJ, Binks A, Vyavahare N (2016) Targeted drug delivery to emphysematous lungs: inhibition of MMPs by doxycycline loaded nanoparticles. Pulm Pharmacol Ther 39:64–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patri AK, Myc A, Beals J, Thomas TP, Bander NH, Baker JR Jr (2004) Synthesis and in vitro testing of J591 antibody-dendrimer conjugates for targeted prostate cancer therapy. Bioconjug Chem 15(6):1174–1181

    CAS  PubMed  Google Scholar 

  • Patton DL, Cosgrove Sweeney YT, McCarthy TD, Hillier SL (2006) Preclinical safety and efficacy assessments of dendrimer-based (SPL 7013) microbicide gel formulations in a nonhuman primate model. Antimicrob Agents Chemother 50(5):1696–1700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paul P, Sengupta S, Mukherjee B, Shaw TK, Gaonkar RH, Debnath MC (2018) Chitosan-coated nanoparticles enhanced lung pharmacokinetic profile of voriconazole upon pulmonary delivery in mice. Nanomedicine 13(5):501–520

    CAS  PubMed  Google Scholar 

  • Pavord ID, Beasley R, Agusti A, Anderson GP, Bel E, Brusselle G, Bush A (2018) After asthma: redefining airways diseases. Lancet 391(10118):350–400

    PubMed  Google Scholar 

  • Payne CM, Burke LP, Cavanagh B, O'Toole D, Cryan SA, Kelly HM (2019) Evaluation of the immunomodulatory effects of all-trans retinoic acid solid lipid nanoparticles and human mesenchymal stem cells in an A549 epithelial cell line model. Pharm Res 36(4):50–56

    PubMed  Google Scholar 

  • Rosière R, Van Woensel M, Gelbcke M, Mathieu V, Hecq J, Mathivet T, Wauthoz N (2018) New folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation. Mol Pharmacol 15(3):899–910

    Google Scholar 

  • Ruge CA, Kirch J, Lehr C-M (2013) Pulmonary drug delivery: from generating aerosols to overcoming biological barriers—therapeutic possibilities and technological challenges. Lancet Respir Med 1(5):402–413

    CAS  PubMed  Google Scholar 

  • Sahib MN, Darwis Y, Peh KK, Abdulameer SA, Tan YT (2011) Rehydrated sterically stabilized phospholipid nanomicelles of budesonide for nebulization: physicochemical characterization and in vitro, in vivo evaluations. Int J Nanomedicine 6:2351–2356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sapey E, Stockley RA (2006) COPD exacerbations 2: aetiology. Thorax 61(3):250–258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saraogi GK, Gupta P, Gupta UD, Jain NK, Agrawal GP (2010) Gelatin nanocarriers as potential vectors for effective management of tuberculosis. Int J Pharm 385(1–2):143–149

    CAS  PubMed  Google Scholar 

  • Savla R, Minko T (2013) Nanotechnology approaches for inhalation treatment of fibrosis. J Drug Target 21(10):914–925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt ST, Foged C, Korsholm KS, Rades T, Christensen D (2016) Liposome-based adjuvants for subunit vaccines: formulation strategies for subunit antigens and immunostimulators. Pharmaceutics 8(1):7–12

    Google Scholar 

  • Serisier DJ, Bilton D, De Soyza A, Thompson PJ, Kolbe J, Greville HW, Gonda I (2013) Inhaled, dual release liposomal ciprofloxacin in non-cystic fibrosis bronchiectasis (ORBIT-2): a randomised, double-blind, placebo-controlled trial. Thorax 68(9):812–817

    PubMed  PubMed Central  Google Scholar 

  • Sharma A, Sharma S, Khuller GK (2004) Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J Antimicrob Chemother 54(4):761–766

    CAS  PubMed  Google Scholar 

  • Shukla R, Thomas TP, Desai AM, Kotlyar A, Park SJ, Baker JR (2008) HER2 specific delivery of methotrexate by dendrimer conjugated anti-HER2 mAb. Nanotechnology 19(29):295102–295109

    PubMed  PubMed Central  Google Scholar 

  • Simpson JL, Scott R, Boyle MJ, Gibson PG (2006) Inflammatory subtypes in asthma: assessment and identification using induced sputum. Respirology (Carlton, Vic) 11(1):54–61

    Google Scholar 

  • Singhvi G, Banerjee S, Khosa A (2018) Lyotropic liquid crystal nanoparticles: a novel improved lipidic drug delivery system. In: Inorganic materials as smart nanocarriers for drug delivery, 1st edn, William Andrew, Norwich, New York. pp 471–517

    Google Scholar 

  • Smola M, Vandamme T, Sokolowski A (2008) Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non-respiratory diseases. Int J Nanomedicine 3(1):1–6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soto-Castro D, Cruz-Morales JA, Ramírez Apan MT, Guadarrama P (2012) Solubilization and anticancer-activity enhancement of methotrexate by novel dendrimeric nanodevices synthesized in one-step reaction. Bioorg Chem 41–42:13–21

    PubMed  Google Scholar 

  • Taguchi K, Yamasaki K, Sakai H, Maruyama T, Otagiri M (2017) The use of hemoglobin vesicles for delivering medicinal gas for the treatment of intractable disorders. J Pharm Sci 106(9):2392–2400

    CAS  PubMed  Google Scholar 

  • Tang Y, Wu S, Lin J, Cheng L, Zhou J, Xie J, Liao G (2018) Nanoparticles targeted against cryptococcal pneumonia by interactions between chitosan and its peptide ligand. Nanotechnol Lett 18(10):6207–6213

    CAS  Google Scholar 

  • Taratula O, Kuzmov A, Shah M, Garbuzenko OB, Minko T (2013) Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and SiRNA. J Control Release 171(3):349–357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur S, Singh B, Mishra V, Yadav N, Giri N, Sharma P, Garg LK (2019) Bilayer tablet based chronotherapeutics in the management of nocturnal asthma: an overview. Recent Pat Drug Deliv Formul 1:1–10

    Google Scholar 

  • TO PG. Global initiative for chronic obstructive lung. 2018.

    Google Scholar 

  • Tomalia DA (2005) Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog Polym Sci 30:294–324

    CAS  Google Scholar 

  • Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Smith P (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17:117–132

    CAS  Google Scholar 

  • Tureli NG, Torge A, Juntke J, Schwarz BC, Schneider-Daum N, Türeli AE, Schneider M (2017) Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections. Eur J Pharm Biopharm 117:363–371

    PubMed  Google Scholar 

  • van Rijt SH, Bein T, Meiners S (2014) Medical nanoparticles for next generation drug delivery to the lungs. Eur Respir J 44:765–774

    PubMed  Google Scholar 

  • Verschraegen CF, Gilbert BE, Loyer E, Huaringa A, Walsh G, Newman RA, Knight V (2004) Clinical evaluation of the delivery and safety of aerosolized liposomal 9-nitro-20(s)-camptothecin in patients with advanced pulmonary malignancies. Clin Cancer Res 10:2319–2326

    CAS  PubMed  Google Scholar 

  • Vieira ACC, Chaves LL, Pinheiro S, Pinto S, Pinheiro M, Lima SC, Reis S (2018) Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis. Int J Pharm 536(1):478–485

    CAS  PubMed  Google Scholar 

  • Weber S, Zimmer A, Pardeike (2014) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm 86(1):7–22

    CAS  PubMed  Google Scholar 

  • Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL, Chu HW (1999) Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 160(3):1001–1008

    CAS  PubMed  Google Scholar 

  • Winkler J, Hochhaus G, Derendorf H (2004) How the lung handles drugs: pharmacokinetics and pharmacodynamics of inhaled corticosteroids. Proc Am Thorac Soc 1(4):356–363

    CAS  PubMed  Google Scholar 

  • Wittgen BP, Kunst PW, van der Born K, van Wijk AW, Perkins W, Pilkiewicz FG, Postmus PE (2007) Phase I study of aerosolized SLIT cisplatin in the treatment of patients with carcinoma of the lung. Clin Cancer Res 13(8):2414–2421

    CAS  PubMed  Google Scholar 

  • Wolinsky JB, Grinstaff MW (2008) Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev 60(9):1037–1055

    CAS  PubMed  Google Scholar 

  • Wu G, Barth RF, Yang W, Kawabata S, Zhang L, Green-Church K (2006) Targeted delivery of methotrexate to epidermal growth factor receptor-positive brain tumors by means of cetuximab (IMC-C225) dendrimer bioconjugates. Mol Cancer Ther 5(1):52–59

    CAS  PubMed  Google Scholar 

  • Yu HP, Aljuffali IA, Fang JY (2017) Injectable drug-loaded nanocarriers for lung cancer treatments. Curr Pharm Des 23(3):481–494

    CAS  PubMed  Google Scholar 

  • Zahoor A, Sharma S, Khuller GK (2005) Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int J Antimicrob Agents 26:298–303

    CAS  PubMed  Google Scholar 

  • Zou W, Liu C, Chen Z, Zhang N (2009) Studies on bioadhesive PLGA nanoparticles: a promising gene delivery system for efficient gene therapy to lung cancer. Int J Pharm 370(1–2):187–195

    CAS  PubMed  Google Scholar 

  • Zylberberg C, Matosevic S (2016) Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv 23(9):3319–3329

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, P. et al. (2020). Emerging Nanotechnology in Chronic Respiratory Diseases. In: Talegaonkar, S., Rai, M. (eds) Nanoformulations in Human Health. Springer, Cham. https://doi.org/10.1007/978-3-030-41858-8_20

Download citation

Publish with us

Policies and ethics