Skip to main content

Implementation of the Virtual Synchronous Machine in Grid-Connected and Stand-alone Mode

  • Chapter
  • First Online:
DC—DC Converters for Future Renewable Energy Systems

Part of the book series: Energy Systems in Electrical Engineering ((ESIEE))

Abstract

In recent years, interest in the distributed energy sources is increasing because of the advancement of research in renewable energy sources (RESs). The rotating mass and the damping property of a traditional synchronous machine (SM) has a significant role to play in its dynamic performance as these properties ensure a slow rate of change of frequency in the system for nominal load variation. In RESs and distributed generator (DG) units like photovoltaics and fuel cells, there is neither damping property nor rotating mass. So, due to the irregular nature of the generation of RESs, it is very difficult to maintain the grid stability and power balance in the system. A control scheme is applied to the inverter such that the inverter acts like a virtual synchronous machine (VSM). VSM is inspired by the droop characteristics, swing equation and damping of the conventional SM. The main objective of this work is to design and implementation of the VSM in microgrid (MG). The simulation results show the efficacy of the suggested controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lamell, J.O., Trumbo, T., Nestli, T.F.: Offshore platform powered by the new electrical motor drive system. Petroleum and Chemical Industry Conference, Industry Applications Society 52nd Annual, pp. 259–266 (2005).

    Google Scholar 

  2. Rocabert, J., Luna, A., Blaabjerg, F., Rodriguez, P.: Control of power converters in AC microgrids. IEEE Trans. Power Electron. 27, 4734–4749 (2012).

    Article  Google Scholar 

  3. Bevrani, H., Ise, T., Miura, Y.: Virtual synchronous generators: A survey and new perspectives. Int. J. Electr. Power Energy Syst. 54, 244–254 (2014).

    Article  Google Scholar 

  4. Blaabjerg, F., Teodorescu, R., Liserre, M., Timbus, A.: Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 53, 1398–1409 (2006)

    Article  Google Scholar 

  5. Beck, H.P., Hesse, R.: Virtual synchronous machine. In: Proceedings IEEE 9th International Conference Electrical Power Quality Utilisation, Barcelona, Spain, pp. 1–6 (2007)

    Google Scholar 

  6. D’Arco, S., Suul, J.A., Fosso, O.B.: Small-signal modeling and parametric sensitivity of a virtual synchronous machine in islanded operation. Int. J. Electr. Power Energy Syst. 72, 3–15 (2015)

    Article  Google Scholar 

  7. Yong, C., Hesse, R., Turschner, D., Beck, H.P.: Improving the grid power quality using virtual synchronous machines. In: 2011 IEEE International Conference on Power Engineering, Energy and Electrical Drives, pp. 1–6 (2011)

    Google Scholar 

  8. Alipoor, J., Miura, Y., Ise, T.: Power system stabilization using virtual synchronous generator with alternating moment of inertia. IEEE J. Emer. Selec. Topic. Power Electron. 3(2), 451–458 (2014)

    Google Scholar 

  9. Van Wesenbeeck, M.P.N., de Haan, S.W.H., Varela, P., Visscher, K.: Grid tied converter with virtual kinetic storage. In: PowerTech, 2009 IEEE Bucharest, pp. 1–7 (2009)

    Google Scholar 

  10. Zhong, Q.C., Nguyen, P.L., Ma, Z., Sheng, W.: Self-synchronized synchronverters: inverters without a dedicated synchronization unit. IEEE Trans. Power Electron. 29, 617–630 (2014)

    Article  Google Scholar 

  11. Chen, Y., Hesse, R., Turschner, D., Beck, H.P.: Comparison of methods for implementing virtual synchronous machine on inverters. In: International Conference on Renewable Energies and Power Quality. pp. 414–424 (2012).

    Article  Google Scholar 

  12. Chen, Y., Hesse, R., Turschner, D., Beck, H.P. : Dynamic properties of the virtual synchronous machine (VISMA). Proc. ICREPQ, 11, (2011).

    Google Scholar 

  13. Hesse, R., Turschner, D., Beck, H.P.: Micro grid stabilization using the virtual synchronous machine (VISMA). In: Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ’09). Valencia, Spain, pp. 15–17 (2009).

    Article  Google Scholar 

  14. Pulendran, S., Tate, J.E.: Hysteresis control of voltage source converters for synchronous machine emulation. In: 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC). pp. LS3b-2, IEEE (2012).

    Google Scholar 

  15. Pogaku, N., Prodanovic, M., Green, T.C.: Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans. Power Electron. 22, 613–625 (2007).

    Article  Google Scholar 

  16. Guerrero, J. M., Matas, J., De Vicuna, L.G.D.V., Castilla, M., Miret, J.: Wireless-control strategy for parallel operation of distributed-generation inverters. IEEE Trans. Ind. Electron. 53, 1461–1470 (2006).

    Google Scholar 

  17. Yao, W., Chen, M., Matas, J., Guerrero, J.M., Qian, Z.M.: Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing. IEEE Trans. Ind. Electron. 58, 576–588 (2010).

    Google Scholar 

  18. Vasquez, J.C., Guerrero, J.M., Luna, A., Rodríguez, P., Teodorescu, R.: Adaptive droop control applied to voltage-source inverters operating in grid-connected and islanded modes. IEEE Trans. Ind. Electron. 56, 4088–4096 (2009).

    Article  Google Scholar 

  19. D’Arco, S., Suul, J.A.: Equivalence of virtual synchronous machines and frequency-droops for converter-based microgrids. IEEE Trans. Smart Grid. 5, 394–395 (2013).

    Google Scholar 

  20. D’Arco, S., Suul, J.A., Fosso, O.B.: Automatic tuning of cascaded controllers for power converters using eigenvalue parametric sensitivities. IEEE Trans. Ind. Appl. 51, 1743–1753 (2014).

    Article  Google Scholar 

  21. Delille, G., Francois, B., Malarange, G.: Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system’s inertia. IEEE Trans. Sustain. Energy. 3, 931–939 (2012).

    Google Scholar 

  22. Soni, N., Doolla, S., Chandorkar, M.C. (2016). Inertia design methods for islanded microgrids having static and rotating energy sources. IEEE Trans. Ind. Appl. 52, 5165–5174 (2016).

    Google Scholar 

  23. Vikash, G., Ghosh, A., Rudra, S.: Integration of distributed generation to microgrid with virtual inertia. In: IEEE 17th India Council International Conference (INDICON). IEEE. (2020).

    Article  Google Scholar 

  24. Zhang, L., Harnefors, L., Nee, H.P.: Power-synchronization control of grid-connected voltage-source converters. IEEE Trans. Power Syst. 25, 809–820 (2010).

    Article  Google Scholar 

  25. Panda, S.K., Ghosh, A.: A computational analysis of interfacing converters with advanced control methodologies for microgrid application. Technol. Econ. Smart Grids Sustain. Energy. 5(1), 1–18 (2020).

    Article  Google Scholar 

  26. Jiang, K., Su, H., Lin, H., He, K., Zeng, H., Che, Y.: A practical secondary frequency control strategy for virtual synchronous generator. IEEE Trans. Smart Grid. 11, 2734–2736 (2020).

    Google Scholar 

  27. Chen, J., O’Donnell, T.: Parameter constraints for virtual synchronous generator considering stability. IEEE Trans. Power Syst. 34, 2479–2481 (2019).

    Article  Google Scholar 

  28. Karimi, A., Khayat, Y., Naderi, M., Dragičević, T., Mirzaei, R., Blaabjerg, F., Bevrani, H.: Inertia response improvement in AC microgrids: A fuzzy-based virtual synchronous generator control. IEEE Trans. Power Electron. 35, 4321–4331 (2019).

    Google Scholar 

  29. Shi, K., Song, W., Ge, H., Xu, P., Yang, Y., Blaabjerg, F.: Transient analysis of microgrids with parallel synchronous generators and virtual synchronous generators. IEEE Trans. Energy Convers. 35, 95–105 (2019).

    Google Scholar 

  30. Cheema, K.M.: A comprehensive review of virtual synchronous generator. Int. J. Electr. Power Energy Syst. 120:106006 (2020).

    Google Scholar 

  31. Asrari, A., Mustafa, M., Ansari, M., Khazaei, J.: Impedance analysis of virtual synchronous generator-based vector controlled converters for weak AC grid integration. IEEE Trans. Sustain. Energy. 10, 1481–1490 (2019).

    Google Scholar 

  32. Liu, J., Miura, Y., Bevrani, H., Ise, T.: A unified modeling method of virtual synchronous generator for multi-operation-mode analyses. IEEE J. Emer. Selec. Topic. Power Electron. (2020).

    Google Scholar 

  33. Muftau, B., Fazeli, M., Egwebe, A.: Stability analysis of a PMSG based virtual synchronous machine. Electr. Power Syst. Res. 180, 160–170 (2020).

    Google Scholar 

  34. Yazdani, A., Iravani, R.: Voltage-sourced converters in power systems: modeling, control, and applications. John Wiley & Sons. (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vikash, G., Funde, D., Ghosh, A. (2022). Implementation of the Virtual Synchronous Machine in Grid-Connected and Stand-alone Mode. In: Priyadarshi, N., Bhoi, A.K., Bansal, R.C., Kalam, A. (eds) DC—DC Converters for Future Renewable Energy Systems. Energy Systems in Electrical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-4388-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4388-0_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4387-3

  • Online ISBN: 978-981-16-4388-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics