Skip to main content

A Technique for Measuring the 3D Deformation of a Multiphase Structure to Elucidate the Mechanism of Tumor Invasion

  • Chapter
  • First Online:
Multidisciplinary Computational Anatomy
  • 1005 Accesses

Abstract

Cancer is a leading cause of death worldwide and over 90% of cancer-related deaths are due to metastasis. Therefore, understanding the mechanism of metastasis is an important goal for treating cancer patients. Metastasis is initiated by the invasion of cancer cells from a primary lesion via the interstitial extracellular matrix (ECM). Metastasis involves biomechanical interactions between the ECM and a single cancer cell or cancer cell aggregation (cancer spheroid) as it makes its way through ECM collagen fibers. It is important to quantify the ECM deformation fields produced in this process to clarify the biomechanical interactions. We visualized the dynamic deformation of the ECM using a digital volume correlation (DVC) method. As a result, my research group quantified the three-dimensional ECM deformation caused by a single cancer cell or cancer spheroid. This work would be contributory to construct a fundamental knowledge of metastasis suppression when investigated using the multidisciplinary computational anatomy (MCA) techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Ministry of Health, Labour and Welfare in Japan, Annual reports of Vital Statics (in Japanese), 2018.

    Google Scholar 

  2. The National Institute of Population and Social Security Research in Japan, Reports of World’s Vital Statics (in Japanese), 2019.

    Google Scholar 

  3. Steeg PS. Targeting metastasis. Nat Rev Cancer. 2016;16:201–18. https://doi.org/10.1038/nrc.2016.25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat Rev Cancer. 2006;6:449–58. https://doi.org/10.1038/nrc1886.

    Article  CAS  PubMed  Google Scholar 

  5. Ghosh D, Dawson MR. Microenvironment influences cancer cell mechanics from tumor growth to metastasis. In: Dong C, Zahir N, Konstantopoulos K, editors. Biomechanics in oncology, vol. 1092; 2018. p. 69–90. https://doi.org/10.1007/978-3-319-95294-9_5.

    Chapter  Google Scholar 

  6. Nalluri SM, O'Connor JW, Virgi GA, Stewart SE, Ye D, Gomez EW. TGFβ1-induced expression of caldesmon mediates epithelial-mesenchymal transition. Cytoskeleton. 2018;75:201–12. https://doi.org/10.1002/cm.21437.

    Article  CAS  PubMed  Google Scholar 

  7. Mekhdjian AH, Kai FB, Rubashkin MG, Prahl LS, Przybyla LM, McGregor AL, et al. Integrin-mediated traction force enhances paxillin molecular associations and adhesion dynamics that increase the invasiveness of tumor cells into a three-dimensional extracellular matrix. Mol Biol Cell. 2017;28:1467–88. https://doi.org/10.1091/mbc.E16-09-0654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lam CRI, Tan C, Teo Z, Tay CY, Phua T, Wu YL, et al. Loss of TAK1 increases cell traction force in a ROS-dependent manner to drive epithelial-mesenchymal transition of cancer cells. Cell Death Dis. 2013;4:e848. https://doi.org/10.1038/cddis.2013.339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pedersen JA, Swartz MA. Mechanobiology in the third dimension. Ann Biomed Eng. 2005;33:1469–90. https://doi.org/10.1007/s10439-005-8159-4.

    Article  PubMed  Google Scholar 

  10. Koch TM, Munster S, Bonakdar N, Butler JP, Fabry B. 3D traction forces in cancer cell invasion. PLoS One. 2012;7:e33476. https://doi.org/10.1371/journal.pone.0033476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Indra I, Undyala V, Kandow C, Thirumurthi U, Dembo M, Beningo KA. An in vitro correlation of mechanical forces and metastatic capacity. Phys Biol. 2011;8:015015. https://doi.org/10.1088/1478-3975/8/1/015015.

    Article  PubMed  Google Scholar 

  12. Voulgari A, Pintzas A. Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta-Rev Cancer. 1796;2009:75–90. https://doi.org/10.1016/j.bbcan.2009.03.002.

    Article  CAS  Google Scholar 

  13. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96. https://doi.org/10.1038/nrm3758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McGrail DJ, Mezencev R, Kieu QMN, McDonald JF, Dawson MR. SNAIL-induced epithelial-to-mesenchymal transition produces concerted biophysical changes from altered cytoskeletal gene expression. FASEB J. 2015;29:1280–9. https://doi.org/10.1096/fj.14-257345.

    Article  CAS  PubMed  Google Scholar 

  15. Giannoni E, Bianchini F, Masieri L, Serni S, Torre E, Calorini L, et al. Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer Res. 2010;70:6945–56. https://doi.org/10.1158/0008-5472.CAN-10-0785.

    Article  CAS  PubMed  Google Scholar 

  16. Yoshie H, Koushki N, Molter C, Siegel PM, Krishnan R, Ehrlicher AJ. High throughput traction force microscopy using PDMS reveals dose-dependent effects of transforming growth factor-β on the epithelial-to-mesenchymal transition. J Vis Exp. 2019;148:e59364. https://doi.org/10.3791/59364.

    Article  CAS  Google Scholar 

  17. Ikushima H, Miyazono K. TGFβ signalling: a complex web in cancer progression. Nat Rev Cancer. 2010;10:415–24. https://doi.org/10.1038/nrc2853.

    Article  CAS  PubMed  Google Scholar 

  18. Griggs LA, Hassan NT, Malik RS, Griffin BP, Martinez BA, Elmore LW, et al. Fibronectin fibrils regulate TGF-β1-induced epithelial-mesenchymal transition. Matrix Biol. 2017;60-61:157–75. https://doi.org/10.1016/j.matbio.2017.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Flozak AS, Lam AP, Russell S, Jain M, Peled ON, Sheppard KA, et al. Beta-catenin/T-cell factor signaling is activated during lung injury and promotes the survival and migration of alveolar epithelial cells. J Biol Chem. 2010;285:3157–67. https://doi.org/10.1074/jbc.M109.070326.

    Article  CAS  PubMed  Google Scholar 

  20. Morita Y, Kawase N, Ju Y, Yamauchi T. Mesenchymal stem cell-induced 3D displacement field of cell-adhesion matrices with differing elasticities. J Mech Behav Biomed Mater. 2016;60:394–400. https://doi.org/10.1016/j.jmbbm.2016.02.025.

    Article  CAS  PubMed  Google Scholar 

  21. Franck C, Hong S, Maskarinec SA, Tirrell DA, Ravichandran G. Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation. Exp Mech. 2007;47:427–38. https://doi.org/10.1007/s11340-007-9037-9.

    Article  Google Scholar 

  22. Bloom RJ, George JP, Celedon A, Sun SX, Wirtz D. Mapping local matrix remodeling induced by a migrating tumor cell using three-dimensional multiple-particle tracking. Biophys J. 2008;95:4077–38. https://doi.org/10.1529/biophysj.108.132738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Franck C, Maskarinec SA, Tirrell DA, Ravichandran G. Three-dimensional traction force microscopy: a new tool for quantifying cell-matrix interactions. PLoS One. 2011;6:e17833. https://doi.org/10.1371/journal.pone.0017833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fung YC. Biomechanics: mechanical properties of living tissues. New York: Springer Science & Business Media; 2013.

    Google Scholar 

  25. Arevalo RC, Kumar P, Urbach JS, Blair DL. Stress heterogeneities in sheared type-I collagen networks revealed by boundary stress microscopy. PLoS One. 2015;10:e0118021. https://doi.org/10.1371/journal.pone.0118021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Motte S, Kaufman LJ. Strain stiffening in collagen I networks. Biopolymers. 2013;99:35–46. https://doi.org/10.1002/bip.22133.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuyuki Morita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morita, Y. (2022). A Technique for Measuring the 3D Deformation of a Multiphase Structure to Elucidate the Mechanism of Tumor Invasion. In: Hashizume, M. (eds) Multidisciplinary Computational Anatomy. Springer, Singapore. https://doi.org/10.1007/978-981-16-4325-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4325-5_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4324-8

  • Online ISBN: 978-981-16-4325-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics