Skip to main content

Bio-inspired Functional DNA Architectures

  • Chapter
  • First Online:
Molecular Architectonics and Nanoarchitectonics

Part of the book series: Nanostructure Science and Technology ((NST))

  • 895 Accesses

Abstract

DNA has become an attractive construction template for a wide range of self-assembled systems, ranging from modified functional duplexes to elaborate three-dimensional structures. Taking DNA out of its biological role and combining it with high-end synthetic building blocks, expands the chemical space of designer structures to dimensions that have been unimaginable a few decades ago. Here, we introduce the basic concept of DNA architectonics and describe some of the most convenient technologies to construct functional DNA architectures. We present an overview of the achievements that have been reported to date, along with some of the milestones leading to the current state-of-the-art. The field has become too vast for a complete review which would be beyond the scope of this chapter, but the given selection will be inspirational to the researcher for future design and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  Google Scholar 

  2. Franklin RE, Gosling RG (1953) Molecular configuration in sodium thymonucleate. Nature 171:740–741

    Article  CAS  Google Scholar 

  3. Wilkins MHF, Stokes AR, Wilson HR (1953) Molecular structure of nucleic acids: molecular structure of deoxypentose nucleic acids. Nature 171:738–740

    Article  CAS  Google Scholar 

  4. Sinha ND, Biernat J, McManus J, Koster H (1984) Polymer support oligonucleotide synthesis XVIII: use of beta-cyanoethyl-N,N-dialkylamino-/N-morpholino phosphoramidite of deoxynucleosides for the synthesis of DNA fragments simplifying deprotection and isolation of the final product. Nucl Acids Res 12:4539–4557

    Article  CAS  Google Scholar 

  5. Beaucage SL, Caruthers MH (1981) Deoxynucleoside phosphoramidites - a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett 22:1859–1862

    Article  CAS  Google Scholar 

  6. Matteucci MD, Caruthers MH (1981) Synthesis of deoxyoligonucleotides on a polymer support. J Am Chem Soc 103:3185–3191

    Article  CAS  Google Scholar 

  7. Bandy TJ, Brewer A, Burns JR, Marth G, Nguyen T, Stulz E (2011) DNA as supramolecular scaffold for functional molecules: progress in DNA nanotechnology. Chem Soc Rev 40:138–148

    Article  CAS  Google Scholar 

  8. Stulz E (2012) DNA architectonics: towards the next generation of bio-inspired materials. Chem Eur J 18:4456–4469

    Article  CAS  Google Scholar 

  9. Leumann CJ (2002) DNA analogues: from supramolecular principles to biological properties. Bioorg Med Chem 10:841–854

    Article  CAS  Google Scholar 

  10. Stulz E, Clever G, Shionoya M, Mao CD (2011) DNA in a modern world. Chem Soc Rev 40:5633–5635

    Article  CAS  Google Scholar 

  11. Varghese R, Wagenknecht HA (2009) DNA as a supramolecular framework for the helical arrangements of chromophores: towards photoactive DNA-based nanomaterials. Chem Commun 19:2615–2624

    Article  CAS  Google Scholar 

  12. Fendt LA, Bouamaied I, Thöni S, Amiot N, Stulz E (2007) DNA as supramolecular scaffold for porphyrin arrays on the nanometer scale. J Am Chem Soc 129:15319–15329

    Article  CAS  Google Scholar 

  13. Khan SI, Beilstein AE, Smith GD, Sykora M, Grinstaff MW (1999) Synthesis and excited-state properties of a novel ruthenium nucleoside: 5-[Ru(bpy)(2)(4-m-4'-pa-bpy)](2+)-2'-deoxyuridine. Inorg Chem 38:2411–2415

    Article  CAS  Google Scholar 

  14. Nakamura M, Shimomura Y, Ohtoshi Y, Sasa K, Hayashi H, Nakano H, Yamana K (2007) Pyrene aromatic arrays on RNA duplexes as helical templates. Org Biomol Chem 5:1945–1951

    Article  CAS  Google Scholar 

  15. Hrdlicka PJ, Babu BR, Sorensen MD, Wengel J (2004) Interstrand communication between 2'-N-(pyren-1-yl)methyl-2'-amino-LNA monomers in nucleic acid duplexes: directional control and signalling of full complementarity. Chem Commun 2004:1478–1479

    Article  Google Scholar 

  16. Mayer-Enthart E, Wagenknecht H-A (2006) Structure-sensitive and self-assembled helical pyrene array based on DNA architecture. Angew Chem Int Ed 45:3372–3375

    Article  CAS  Google Scholar 

  17. Brewer A, Siligardi G, Neylon C, Stulz E (2011) Introducing structural flexibility into porphyrin-DNA zipper arrays. Org Biomol Chem 9:777–782

    Article  CAS  Google Scholar 

  18. Baumstark D, Wagenknecht HA (2008) Perylene bisimide dimers as fluorescent “glue” for DNA and for base-mismatch detection. Angew Chem Int Ed Engl 47:2612–2614

    Article  CAS  Google Scholar 

  19. Mammana A, Asakawa T, Bitsch-Jensen K, Wolfe A, Chaturantabut S, Otani Y, Li XX, Li ZM, Nakanishi K, Balaz M, Ellestad GA, Berova N (2008) Synthesis and characterization of water-soluble free-base, zinc and copper porphyrin-oligonucleotide conjugates. Bioorg Med Chem 16:6544–6551

    Article  CAS  Google Scholar 

  20. Balaz M, Holmes AE, Benedetti M, Proni G, Berova N (2005) Porphyrin substituted phosphoramidites: new building blocks for porphyrin-oligonucleotide syntheses. Bioorg Med Chem 13:2413–2421

    Article  CAS  Google Scholar 

  21. Kashida H, Asanuma H (2012) Preparation of supramolecular chromophoric assemblies using a DNA duplex. Phys Chem Chem Phys 14:7196–7204

    Article  CAS  Google Scholar 

  22. Barbaric J, Wagenknecht H-A (2006) DNA as a supramolecular scaffold for the helical arrangement of a stack of 1-ethynylpyrene chromophores. Org Biomol Chem 4:2088–2090

    Article  CAS  Google Scholar 

  23. Nguyen T, Brewer A, Stulz E (2009) Duplex stabilization and energy transfer in zipper porphyrin-DNA. Angew Chem Int Ed 48:1974–1977

    Article  CAS  Google Scholar 

  24. Albinsson B, Hannestad JK, Borjesson K (2012) Functionalized DNA nanostructures for light harvesting and charge separation. Coord Chem Rev 256:2399–2413

    Article  CAS  Google Scholar 

  25. Doluca O, Withers JM, Loo TS, Edwards PJB, Gonzalez C, Filichev VV (2015) Interdependence of pyrene interactions and tetramolecular G4-DNA assembly. Org Biomol Chem 13:3742–3748

    Article  CAS  Google Scholar 

  26. Mutsamwira S, Ainscough EW, Partridge AC, Derrick PJ, Filichev VV (2016) G-Quadruplex supramolecular assemblies in photochemical upconversion. Chem Eur J 22:10376–10381

    Article  CAS  Google Scholar 

  27. Ensslen P, Gartner S, Glaser K, Colsmann A, Wagenknecht HA (2016) A DNA-fullerene conjugate as a template for supramolecular chromophore assemblies: towards DNA-based solar cells. Angew Chem Int Ed 55:1904–1908

    Article  CAS  Google Scholar 

  28. Østergaard ME, Hrdlicka PJ (2011) Pyrene-functionalized oligonucleotides and locked nucleic acids (LNAs): tools for fundamental research, diagnostics, and nanotechnology. Chem Soc Rev 40:5771–5788

    Article  CAS  Google Scholar 

  29. Kashida H, Takatsu T, Sekiguchi K, Asanuma H (2010) An efficient fluorescence resonance energy transfer (FRET) between pyrene and perylene assembled in a DNA duplex and its potential for discriminating single-base changes. Chem Eur J 16:2479–2486

    Article  CAS  Google Scholar 

  30. Ohya Y, Hashimoto N, Jo S, Nohori T, Yoshikuni T, Ouchi T, Tamiaki H (2009) Synthesis of oligo-DNA containing hydrophilic porphyrin in the main chain, and its energy transfer behaviour in duplex state. Supramol Chem 21:301–309

    Article  CAS  Google Scholar 

  31. Börjesson K, Tumpane J, Ljungdahl T, Wilhelmsson LM, Norden B, Brown T, Martensson J, Albinsson B (2009) Membrane-anchored DNA assembly for energy and electron transfer. J Am Chem Soc 131:2831–2839

    Article  CAS  Google Scholar 

  32. Borjesson K, Wiberg J, El-Sagheer AH, Ljungdahl T, Martensson J, Brown T, Norden B, Albinsson B (2010) Functionalized nanostructures: redox-active porphyrin anchors for supramolecular DNA assemblies. ACS Nano 4:5037–5046

    Article  CAS  Google Scholar 

  33. Börjesson K, Woller JG, Parsa E, Martensson J, Albinsson B (2012) A bioinspired self assembled dimeric porphyrin pocket that binds electron accepting ligands. Chem Commun 48:1793–1795

    Article  CAS  Google Scholar 

  34. Takada T, Iwaki T, Nakamura M, Yamana K (2017) Photoresponsive electrodes modified with DNA duplexes possessing a porphyrin dimer. Chem Eur J 23:18258–18263

    Article  CAS  Google Scholar 

  35. Endo M, Fujitsuka M, Majima T (2008) Diastereochemically controlled porphyrin dimer formation on a DNA duplex scaffold. J Org Chem 73:1106–1112

    Article  CAS  Google Scholar 

  36. Endo M, Fujitsuka M, Majima T (2008) Programmable conformational regulation of porphyrin dimers on geometric scaffold of duplex DNA. Tetrahedron 64:1839–1846

    Article  CAS  Google Scholar 

  37. Reddy MR, Shibata N, Kondo Y, Nakamura S, Toru T (2006) Design, synthesis, and spectroscopic investigation of zinc dodecakis (trifluoroethoxy) phthalocyanines conjugated with deoxyribonucleosides. Angew Chem Int Ed 45:8163–8166

    Article  CAS  Google Scholar 

  38. Buckhout-White S, Spillmann CM, Algar WR, Khachatrian A, Melinger JS, Goldman ER, Ancona MG, Medintz IL (2014) Assembling programmable FRET-based photonic networks using designer DNA scaffolds. Nat Commun

    Google Scholar 

  39. Balaz M, Li BC, Steinkruger JD, Ellestad GA, Nakanishi K, Berova N (2006) Porphyrins conjugated to DNA as CD reporters of the salt-induced B to Z-DNA transition. Org Biomol Chem 4:1865–1867

    Article  CAS  Google Scholar 

  40. Balaz M, Bitsch-Jensen K, Mammana A, Ellestad GA, Nakanishi K, Berova N (2007) Porphyrins as spectroscopic sensors for conformational studies of DNA. Pure Appl Chem 79:801–809

    Article  CAS  Google Scholar 

  41. Mammana A, Pescitelli G, Asakawa T, Jockusch S, Petrovic AG, Monaco RR, Purrello R, Turro NJ, Nakanishi K, Ellestad GA, Balaz M, Berova N (2009) Role of environmental factors on the structure and spectroscopic response of 5'-DNA-porphyrin conjugates caused by changes in the porphyrin-porphyrin interactions. Chem Eur J 15:11853–11866

    Article  CAS  Google Scholar 

  42. Singleton DG, Hussain R, Siligardi G, Kumar P, Hrdlicka PJ, Berova N, Stulz E (2016) Increased duplex stabilization in porphyrin-LNA zipper arrays with structure dependent exciton coupling. Org Biomol Chem 14:149–157

    Article  CAS  Google Scholar 

  43. Lewis FD, Zhang LG, Liu XY, Zuo XB, Tiede DM, Long H, Schatz GC (2005) DNA as helical ruler: exciton-coupled circular dichroism in DNA conjugates. J Am Chem Soc 127:14445–14453

    Article  CAS  Google Scholar 

  44. Burns JR, Wood JW, Stulz E (2020) A porphyrin-DNA chiroptical molecular ruler with base pair resolution. Front Chem 8:8

    Article  CAS  Google Scholar 

  45. Joseph J, Baumann KN, Koehler P, Zuehlsdorff TJ, Cole DJ, Weber J, Bohndiek SE, Hernandez-Ainsa S (2017) Distance dependent photoacoustics revealed through DNA nanostructures. Nanoscale 9:16193–16199

    Article  CAS  Google Scholar 

  46. Nguyen T, Hakansson P, Edge R, Collison D, Goodman BA, Burns JR, Stulz E (2014) EPR based distance measurement in Cu-porphyrin-DNA. New J Chem 38:5254–5259

    Article  CAS  Google Scholar 

  47. Sonnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23:741–745

    Article  CAS  Google Scholar 

  48. Liu GL, Yin YD, Kunchakarra S, Mukherjee B, Gerion D, Jett SD, Bear DG, Gray JW, Alivisatos AP, Lee LP, Chen FQF (2006) A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting. Nat Nanotechnol 1:47–52

    Article  CAS  Google Scholar 

  49. Berlin K, Jain RK, Simon MD, Richert C (1998) A porphyrin embedded in DNA. J Org Chem 63:1527–1535

    Article  CAS  Google Scholar 

  50. Morales-Rojas H, Kool ET (2002) A porphyrin C-nucleoside incorporated into DNA. Org Lett 4:4377–4380

    Article  CAS  Google Scholar 

  51. Vybornyi M, Nussbaumer AL, Langenegger SM, Häner R (2014) Assembling multiporphyrin stacks inside the DNA double Helix. Bioconjug Chem 25:1785–1793

    Article  CAS  Google Scholar 

  52. Malinovskii VL, Samain F, Häner R (2007) Helical arrangement of interstrand stacked pyrenes in a DNA framework. Angew Chem Int Ed 46:4464–4467

    Article  CAS  Google Scholar 

  53. Clever GH, Carell T (2007) Controlled stacking of 10 transition-metal ions inside a DNA duplex. Angew Chem Int Ed 46:250–253

    Article  CAS  Google Scholar 

  54. Baumstark D, Wagenknecht HA (2008) Fluorescent hydrophobic zippers inside duplex DNA: interstrand stacking of perylene-3,4: 9,10-tetracarboxylic acid bisimides as artificial DNA base dyes. Chem Eur J 14:6640–6645

    Article  CAS  Google Scholar 

  55. Takada T, Ido M, Ashida A, Nakamura M, Yamana K (2016) DNA-templated synthesis of perylenediimide stacks utilizing Abasic sites as binding pockets and reactive sites. Chembiochem 17:2230–2233

    Article  CAS  Google Scholar 

  56. Probst M, Aeschimann W, Chau TTH, Langenegger SM, Stocker A, Haner R (2016) Structural insight into DNA-assembled oligochromophores: crystallographic analysis of pyrene- and phenanthrene-modified DNA in complex with BpuJI endonuclease. Nucleic Acids Res 44:7079–7089

    Article  Google Scholar 

  57. Malinovskii VL, Wenger D, Häner R (2010) Nucleic acid-guided assembly of aromatic chromophores. Chem Soc Rev 39:410–422

    Article  CAS  Google Scholar 

  58. Bouquin N, Malinovskii VL, Guegano X, Liu SX, Decurtins S, Häner R (2008) TTF-modified DNA. Chem Eur J 14:5732–5736

    Article  CAS  Google Scholar 

  59. Bouquin N, Malinovskii VL, Haner R (2008) Highly efficient quenching of excimer fluorescence by perylene diimide in DNA. Chem Commun 7:1974–1976

    Article  CAS  Google Scholar 

  60. Häner R, Samain F, Malinovskii VL (2009) DNA-assisted self-assembly of pyrene Foldamers. Chem Eur J 15:5701–5708

    Article  CAS  Google Scholar 

  61. Xiang YG, Zhang QY, Li ZB, Chen H (2017) Role of electrostatic complementarity between perylenediimide and porphyrin in highly stabilized GNA. Mater Sci Eng C Mater Biol Appl 70:1156–1162

    Article  CAS  Google Scholar 

  62. Kashida H, Sekiguchi K, Liang X, Asanuma H (2010) Accumulation of fluorophores into DNA duplexes to mimic the properties of quantum dots. J Am Chem Soc 132:6223–6230

    Article  CAS  Google Scholar 

  63. Probst M, Langenegger SM, Häner R (2014) A modular LHC built on the DNA three-way junction. Chem Commun 50:159–161

    Article  CAS  Google Scholar 

  64. Winiger CB, Langenegger SM, Calzaferri G, Haner R (2015) Formation of two homo-chromophoric H-aggregates in DNA-assembled alternating dye stacks. Angew Chem Int Ed 54:3643–3647

    Article  CAS  Google Scholar 

  65. Duprey J, Carr-Smith J, Horswell SL, Kowalski J, Tucker JHR (2016) Macrocyclic metal complex-DNA conjugates for electrochemical sensing of single nucleobase changes in DNA. J Am Chem Soc 138:746–749

    Article  CAS  Google Scholar 

  66. Yang H, Rys AZ, McLaughlin CK, Sleiman HF (2009) Templated ligand environments for the selective incorporation of different metals into DNA. Angew Chem Int Ed 48:9919–9923

    Article  CAS  Google Scholar 

  67. Clever GH, Kaul C, Carell T (2007) DNA-metal base pairs. Angew Chem Int Ed 46:6226–6236

    Article  CAS  Google Scholar 

  68. Clever GH, Shionoya M (2010) Metal-base pairing in DNA. Coord Chem Rev 254:2391–2402

    Article  CAS  Google Scholar 

  69. Zimmermann N, Meggers E, Schultz PG (2004) A second-generation copper(II)-mediated metallo-DNA-base pair. Bioorg Chem 32:13–25

    Article  CAS  Google Scholar 

  70. Clever GH, Polborn K, Carell T (2005) A highly DNA-duplex-stabilizing metal-Salen Base pair. Angew Chem Int Ed 44:7204–7208

    Article  CAS  Google Scholar 

  71. Clever GH, Soltl Y, Burks H, Spahl W, Carell T (2006) Metal-salen-base-pair complexes inside DNA: complexation overrides sequence information. Chem Eur J 12:8708–8718

    Article  CAS  Google Scholar 

  72. Clever GH, Reitmeier SJ, Carell T, Schiemann O (2010) Antiferromagnetic coupling of stacked Cu-II-Salen complexes in DNA. Angew Chem Int Ed 49:4927–4929

    Article  CAS  Google Scholar 

  73. Mandal S, Hebenbrock M, Muller J (2018) A dinuclear silver(I)-mediated base pair in DNA formed from 1,N-6-ethenoadenine and thymine. Inorg Chim Acta 472:229–233

    Article  CAS  Google Scholar 

  74. Mendez-Arriaga JM, Maldonado CR, Dobado JA, Galindo MA (2018) Silver(I)-Mediated Base pairs in DNA sequences containing 7-Deazaguanine/cytosine: towards DNA with entirely metallated Watson-Crick base pairs. Chem Eur J 24:4583–4589

    Article  CAS  Google Scholar 

  75. Jash B, Muller J (2018) Concomitant site-specific incorporation of silver(I) and mercury(II) ions into a DNA duplex. Chem Eur J 24:10636–10640

    Article  CAS  Google Scholar 

  76. Jash B, Muller J (2020) Stable Hg(II)-mediated base pairs with a phenanthroline-derived nucleobase surrogate in antiparallel-stranded DNA. J Biol Inorg Chem 25:647–654

    Article  CAS  Google Scholar 

  77. Takezawa Y, Maeda W, Tanaka K, Shionoya M (2009) Discrete self-assembly of iron(III) ions inside triple-stranded artificial DNA. Angew Chem Int Ed 48:1081–1084

    Article  CAS  Google Scholar 

  78. Takezawa Y, Suzuki A, Nakaya M, Nishiyama K, Shionoya M (2020) Metal-dependent dna base pairing of 5-carboxyuracil with itself and all four canonical nucleobases. J Am Chem Soc 142(52):21640–22164

    Article  CAS  Google Scholar 

  79. Zhang YW, Seeman NC (1994) Construction of a DNA-truncated octahedron. J Am Chem Soc 116:1661–1669

    Article  CAS  Google Scholar 

  80. Goodman RP, Schaap IAT, Tardin CF, Erben CM, Berry RM, Schmidt CF, Turberfield AJ (2005) Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310:1661–1665

    Article  CAS  Google Scholar 

  81. Goodman RP, Berry RM, Turberfield AJ (2004) The single-step synthesis of a DNA tetrahedron. Chem Commun 12:1372–1373

    Article  CAS  Google Scholar 

  82. Pistol C, Dwyer C (2007) Scalable, low-cost, hierarchical assembly of programmable DNA nanostructures. Nanotechnology

    Google Scholar 

  83. Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH (2003) DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301:1882–1884

    Article  CAS  Google Scholar 

  84. Park SH, Pistol C, Ahn SJ, Reif JH, Lebeck AR, Dwyer C, LaBean TH (2006) Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures. Angew Chem Int Ed 45:735–739

    Article  CAS  Google Scholar 

  85. Batalia MA, Protozanova E, MacGregor RB Jr, Erie DA (2002) Self-assembly of frayed wires and frayed-wire networks: nanoconstruction with multistranded DNA. Nano Lett 2:269–274

    Article  CAS  Google Scholar 

  86. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  CAS  Google Scholar 

  87. O'Neill P, Rothemund PW, Kumar A, Fygenson DK (2006) Sturdier DNA nanotubes via ligation. Nano Lett 6:1379–1383

    Article  CAS  Google Scholar 

  88. Endo M, Seeman NC, Majima T (2005) DNA tube structures controlled by a four-way-branched DNA connector. Angew Chem Int Ed 44:6074–6077

    Article  CAS  Google Scholar 

  89. Erben CM, Goodman RP, Turberfield AJ (2007) A self-assembled DNA bipyramid. J Am Chem Soc 129:6992–6993

    Article  CAS  Google Scholar 

  90. Hamblin GD, Rahbani JF, Sleiman HF (2015) Sequential growth of long DNA strands with user-defined patterns for nanostructures and scaffolds. Nat Commun 6:8

    Article  CAS  Google Scholar 

  91. Burns JR, Gopfrich K, Wood JW, Thacker VV, Stulz E, Keyser UF, Howorka S (2013) Lipid-bilayer-spanning DNA nanopores with a bifunctional porphyrin anchor. Angew Chem Int Ed 52:12069–12072

    Article  CAS  Google Scholar 

  92. Burns JR, Stulz E, Howorka S (2013) Self-assembled DNA nanopores that span lipid bilayers. Nano Lett 13:2351–2356

    Article  CAS  Google Scholar 

  93. Burns JR, Al-Juffali N, Janes SM, Howorka S (2014) Membrane-spanning DNA nanopores with cytotoxic effect. Angew Chem-Int Ed 53:12466–12470

    Article  CAS  Google Scholar 

  94. Göpfrich K, Li C-Y, Mames I, Bhamidimarri SP, Ricci M, Yoo J, Mames A, Ohmann A, Winterhalter M, Stulz E, Aksimentiev A, Keyser UF (2016) Ion channels made from a single membrane-spanning DNA Duplex. Nano Lett 16:4665–4669

    Article  CAS  Google Scholar 

  95. Li Q, Zhao JM, Liu LF, Jonchhe S, Rizzuto FJ, Mandal S, He HW, Wei SS, Sleiman HF, Mao HB, Mao CD (2020) A poly(thymine)-melamine duplex for the assembly of DNA nanomaterials. Nat Mater 19:1012

    Article  CAS  Google Scholar 

  96. Green SJ, Lubrich D, Turberfield AJ (2006) DNA hairpins: fuel for autonomous DNA devices. Biophys J 91:2966–2975

    Article  CAS  Google Scholar 

  97. Yurke B, Turberfield AJ, Mills AP, Simmel FC, Neumann JL (2000) A DNA-fuelled molecular machine made of DNA. Nature 406:605–608

    Article  CAS  Google Scholar 

  98. Zheng JP, Birktoft JJ, Chen Y, Wang T, Sha RJ, Constantinou PE, Ginell SL, Mao CD, Seeman NC (2009) From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461:74–77

    Article  CAS  Google Scholar 

  99. Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R, Mamdouh W, Golas MM, Sander B, Stark H, Oliveira CLP, Pedersen JS, Birkedal V, Besenbacher F, Gothelf KV, Kjems J (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459:73–76

    Article  CAS  Google Scholar 

  100. Turberfield AJ, Mitchell JC, Yurke B, Mills AP, Blakey MI, Simmel FC (2003) DNA fuel for free-running nanomachines. Phys Rev Lett 90

    Google Scholar 

  101. Li Z, Liu MH, Wang L, Nangreave J, Yan H, Liu Y (2010) Molecular behavior of DNA origami in higher-order self-assembly. J Am Chem Soc 132:13545–13552

    Article  CAS  Google Scholar 

  102. Han DR, Pal S, Nangreave J, Deng ZT, Liu Y, Yan H (2011) DNA origami with complex curvatures in three-dimensional space. Science 332:342–346

    Article  CAS  Google Scholar 

  103. Lo PK, Karam P, Aldaye FA, McLaughlin CK, Hamblin GD, Cosa G, Sleiman HF (2010) Loading and selective release of cargo in DNA nanotubes with longitudinal variation. Nat Chem 2:319–328

    Article  CAS  Google Scholar 

  104. Dunn KE, Dannenberg F, Ouldridge TE, Kwiatkowska M, Turberfield AJ, Bath J (2015) Guiding the folding pathway of DNA origami. Nature 525:82–86

    Article  CAS  Google Scholar 

  105. Hernandez-Ainsa S, Keyser UF (2014) DNA origami nanopores: developments, challenges and perspectives. Nanoscale 6:14121–14132

    Article  CAS  Google Scholar 

  106. Keller A, Linko V (2020) Challenges and perspectives of DNA nanostructures in biomedicine. Angew Chem Int Ed 59:15818–15833

    Article  CAS  Google Scholar 

  107. Sun QY, Han Y, Yang YM, de La Fuente JM, Cui DX, Wang XQ (2020) Application of DNA nanostructures in cancer therapy. Appl Mater Today 21:15

    Google Scholar 

  108. Wang H, Luo D, Wang H, Wang F, Liu X (2020) Construction of smart stimuli-responsive DNA Nanostructures for biomedical applications. Chem Eur J 16

    Google Scholar 

  109. Jahanban-Esfahlan A, Seidi K, Jaymand M, Schmidt TL, Majdi H, Javaheri T, Jahanban-Esfahlan R, Zare P (2019) Dynamic DNA nanostructures in biomedicine: beauty, utility and limits. J Control Release 315:166–185

    Article  CAS  Google Scholar 

  110. Huang XG, Blum NT, Lin J, Shi JJ, Zhang C, Huang P (2021) Chemotherapeutic drug-DNA hybrid nanostructures for anti-tumor therapy. Mater Horizons 8:78–101

    Article  CAS  Google Scholar 

  111. Yoon Y, Lee C, Kim SJ (2021) Structural DNA nanotechnology towards therapeutic applications. J Korean Phys Soc 8

    Google Scholar 

  112. Zhang XY, Gong CC, Akakuru OU, Su ZQ, Wu AG, Wei G (2019) The design and biomedical applications of self-assembled two-dimensional organic biomaterials. Chem Soc Rev 48:5564–5595

    Article  CAS  Google Scholar 

  113. Hu QQ, Li H, Wang LH, Gu HZ, Fan CH (2019) DNA nanotechnology-enabled drug delivery systems. Chem Rev 119:6459–6506

    Article  CAS  Google Scholar 

  114. Lu XH, Liu JB, Wu XH, Ding BQ (2019) Multifunctional DNA origami Nanoplatforms for drug delivery. Chem Asian J 14:2193–2202

    Article  CAS  Google Scholar 

  115. Xu F, Xia Q, Wang PF (2020) Rationally designed DNA nanostructures for drug delivery. Front Chem 8:13

    Article  CAS  Google Scholar 

  116. Sameiyan E, Bagheri E, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM (2019) DNA origami-based aptasensors. Biosens Bioelectron 143:12

    Article  CAS  Google Scholar 

  117. Xiao MS, Lai W, Man TT, Chang BB, Li L, Chandrasekaran AR, Pei H (2019) Rationally engineered nucleic acid architectures for biosensing applications. Chem Rev 119:11631–11717

    Article  CAS  Google Scholar 

  118. Loretan M, Domljanovic I, Lakatos M, Ruegg C, Acuna GP (2020) DNA origami as emerging technology for the engineering of fluorescent and plasmonic-based biosensors. Materials 13:24

    Article  CAS  Google Scholar 

  119. Fu XY, Peng FQ, Lee J, Yang Q, Zhang F, Xiong MY, Kong GZ, Meng HM, Ke GL, Zhang XB (2020) Aptamer-functionalized DNA nanostructures for biological applications. Top Curr Chem 378:43

    Article  CAS  Google Scholar 

  120. Kogikoski S, Paschoalino WJ, Cantelli L, Silva W, Kubota LT (2019) Electrochemical sensing based on DNA nanotechnology. TrAC Trends Anal Chem 118:597–605

    Article  CAS  Google Scholar 

  121. Feng L, Li J, Sun J, Wang L, Fan C, Shen J (2021) Recent advances of DNA nanostructure-based cell membrane engineering. Adv Healthcare Mater

    Google Scholar 

  122. Liu XG, Zhao Y, Liu P, Wang LH, Lin JP, Fan CH (2019) Biomimetic DNA nanotubes: nanoscale channel design and applications. Angew Chem Int Ed 58:8996–9011

    Article  CAS  Google Scholar 

  123. Stephanopoulos N (2020) Hybrid nanostructures from the self-assembly of proteins and DNA. Chem 6:364–405

    Article  CAS  Google Scholar 

  124. Dong YC, Mao YD (2019) DNA origami as scaffolds for self-assembly of lipids and proteins. Chembiochem 20:2422–2431

    Article  CAS  Google Scholar 

  125. Mishra S, Feng YH, Endo M, Sugiyama H (2020) Advances in DNA origami-cell interfaces. Chembiochem 21:33–44

    Article  CAS  Google Scholar 

  126. Li X, Yang DL, Shen LY, Xu F, Wang PF (2020) Programmable assembly of DNA-protein hybrid structures. Chem Res Chin Univ 36:211–218

    Article  CAS  Google Scholar 

  127. Bae W, Kocabey S, Liedl T (2019) DNA nanostructures in vitro, in vivo and on membranes. Nano Today 26:98–107

    Article  CAS  Google Scholar 

  128. Yin J, Wang JK, Niu RJ, Ren SK, Wang DX, Chao J (2020) DNA nanotechnology-based biocomputing. Chem Res Chin Univ 36:219–226

    Article  CAS  Google Scholar 

  129. Wang JK, Yin J, Niu RJ, Ren SK, Chao J (2020) DNA computing and DNA nanotechnology. J Electron Inf Technol 42:1313–1325

    Google Scholar 

  130. Vittala SK, Han D (2020) DNA-guided assemblies toward nanoelectronic applications. ACS Appl Biol Mater 3:2702–2722

    Article  CAS  Google Scholar 

  131. Nummelin S, Shen BX, Piskunen P, Liu Q, Kostiainen MA, Linko V (2020) Robotic DNA nanostructures. ACS Synth Biol 9:1923–1940

    Article  CAS  Google Scholar 

  132. Li H, Hao YY, Wang F, Wang LH, Liu G (2020) DNA nanostructures in the study of molecular interactions. Acta Polym Sin 51:728–737

    Google Scholar 

  133. Hannewald N, Winterwerber P, Zechel S, Ng DYW, Hager MD, Weil T, Schubert US (2020) DNA origami meets polymers: a powerful tool for the design of defined nanostructures. Angew Chem Int Ed

    Google Scholar 

  134. Ghosh D, Datta LP, Govindaraju T (2020) Molecular architectonics of DNA for functional nanoarchitectures. Beilstein J Nanotechnol 11:124–140

    Article  CAS  Google Scholar 

  135. Lombardo D, Calandra P, Pasqua L, Magazu S (2020) Self-assembly of organic nanomaterials and biomaterials: the bottom-up approach for functional nanostructures formation and advanced applications. Materials 13:42

    Google Scholar 

  136. Johnson JA, Dehankar A, Robbins A, Kabtiyal P, Jergens E, Lee KH, Johnston-Halperin E, Poirier M, Castro CE, Winter JO (2019) The path towards functional nanoparticle-DNA origami composites. Mater Sci Eng R Rep 138:153–209

    Article  Google Scholar 

  137. Shin SW, Yuk JS, Chun SH, Lim YT, Um SH (2020) Hybrid material of structural DNA with inorganic compound: synthesis, applications, and perspective. Nano Converg 7:12

    Article  CAS  Google Scholar 

  138. DeLuca M, Shi Z, Castro CE, Arya G (2020) Dynamic DNA nanotechnology: toward functional nanoscale devices. Nanoscale Horiz 5:182–201

    Article  CAS  Google Scholar 

  139. Zhang YW, Pan V, Li X, Yang XQ, Li HF, Wang PF, Ke YG (2019) Dynamic DNA structures. Small 15:9

    Google Scholar 

  140. Ma NN, Minevich B, Liu JL, Ji M, Tian Y, Gang O (2020) Directional assembly of nanoparticles by DNA shapes: towards designed architectures and functionality. Top Curr Chem 378:34

    Article  CAS  Google Scholar 

  141. Heuer-Jungemann A, Liedl T (2019) From DNA tiles to functional DNA materials. Trends Chem 1:799–814

    Article  CAS  Google Scholar 

  142. Yang Y, Zhang R, Fan CH (2020) Shaping functional materials with DNA frameworks. Trends Chem 2:137–147

    Article  CAS  Google Scholar 

  143. Chen YH, Sun W, Yang CY, Zhu Z (2020) Scaling up DNA self-assembly. ACS Appl Bio Mater 3:2805–2815

    Article  CAS  Google Scholar 

  144. Platnich CM, Rizzuto FJ, Cosa G, Sleiman HF (2020) Single-molecule methods in structural DNA nanotechnology. Chem Soc Rev 49:4220–4233

    Article  CAS  Google Scholar 

  145. Kekic T, Barisic I (2020) In silico modelling of DNA nanostructures. Comp Struct Biotechnol J 18:1191–1201

    Article  CAS  Google Scholar 

  146. Bush J, Singh S, Vargas M, Oktay E, Hu CH, Veneziano R (2020) Synthesis of DNA origami scaffolds: current and emerging strategies. Molecules 25:18

    Google Scholar 

  147. Dunn KE (2020) The business of DNA nanotechnology: commercialization of origami and other technologies. Molecules 25:11

    Article  CAS  Google Scholar 

  148. Jaekel A, Lill P, Whitelam S, Sacca B (2020) Insights into the structure and energy of DNA nanoassemblies. Molecules 25:25

    Article  CAS  Google Scholar 

  149. Piskunen P, Nummelin S, Shen BX, Kostiainen MA, Linko V (2020) Increasing complexity in wireframe DNA nanostructures. Molecules 25:17

    Article  CAS  Google Scholar 

  150. Zhao Y, Dai XP, Wang F, Zhang XL, Fan CH, Liu XG (2019) Nanofabrication based on DNA nanotechnology. Nano Today 26:123–148

    Article  CAS  Google Scholar 

  151. Yan XH, Huang SJ, Wang Y, Tang YY, Tian Y (2020) Bottom-up self-assembly based on DNA nanotechnology. Nano 10:14

    Google Scholar 

  152. Fan SS, Wang DF, Kenaan A, Cheng J, Cui DX, Song J (2019) Create nanoscale patterns with DNA Origami. Small 15:12

    Google Scholar 

  153. Dong JY, Zhou C, Wang QB (2020) Towards active self-assembly through DNA nanotechnology. Top Curr Chem 378:25

    Article  CAS  Google Scholar 

  154. Scalvini B, Sheikhhassani V, Woodard J, Aupi J, Dame RT, Jerala R, Mashaghi A (2020) Topology of folded molecular chains: from single biomolecules to engineered origami. Trends Chem 2:609–622

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugen Stulz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stulz, E. (2022). Bio-inspired Functional DNA Architectures. In: Govindaraju, T., Ariga, K. (eds) Molecular Architectonics and Nanoarchitectonics. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-4189-3_11

Download citation

Publish with us

Policies and ethics