Skip to main content

Cocrystallization and Coamorphization for Druggability Enhancement of Chinese Medicines

  • Chapter
  • First Online:
Novel Drug Delivery Systems for Chinese Medicines

Abstract

Cocrystallization and coamorphization techniques incorporating active ingredient of Chinese medicine and an or more appropriate coformer(s) into a homogeneous single-phase system have been employed as promising formulation strategies to improve the druggability (e.g., solubility, dissolution, stability, hygroscopicity, and tabletability, etc.) of Chinese medicines. Over the past decade, increasing reports have been published on investigations of cocrystal and coamorphous drug delivery systems of Chinese medicines. This chapter summarizes recent findings of cocrystallization and coamorphization for druggability improvement of Chinese medicines and provides their updates as a comprehensive overview in terms of definition and classification, preparation methods, druggability-related pharmaceutical properties, in vivo performances, and physicochemical characterizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheung, F. (2011). TCM: Made in China. Nature, 480, S82–S83.

    Article  CAS  PubMed  Google Scholar 

  2. Li, P., Feng, B., Jiang, H., Han, X., Wu, Z., Wang, Y., Lin, J., Zhang, Y., Yang, M., Han, L., & Zhang, D. (2018). A novel forming method of traditional Chinese medicine dispersible tablets to achieve rapid disintegration based on the powder modification principle. Scientific Reports, 8(1), 10319.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Xu, H., Zhang, Y., Liu, Z., Chen, T., Lv, C., Tang, S., Zhang, X., Zhang, W., Li, Z., Zhou, R., Yang, H., Wang, X., & Huang, L. (2019). ETCM: An encyclopaedia of traditional Chinese medicine. Nucleic Acids Research, 47, D976–D982.

    Article  CAS  PubMed  Google Scholar 

  4. D’Arrigo, G., Navarro, G., Meo, C. D., Matricardi, P., & Torchilin, V. (2014). Gellan gum nanohydrogel containing anti-inflammatory and anti-cancer drugs: A multi-drug delivery system for a combination therapy in cancer treatment. European Journal of Pharmaceutics and Biopharmaceutics, 87(1), 208–216.

    Article  PubMed  Google Scholar 

  5. Serajuddin, A. T. (2007). Salt formation to improve drug solubility. Advanced Drug Delivery Reviews, 59(7), 603–616.

    Article  CAS  PubMed  Google Scholar 

  6. Hsu, C. M., Yu, S. C., Tsai, F. J., & Tsai, Y. (2019). Characterization of in vitro and in vivo bioactivity of a ferulic acid-2-hydroxypropyl-beta-cyclodextrin inclusion complex. Colloids and Surfaces. B, Biointerfaces, 180, 68–74.

    Article  CAS  PubMed  Google Scholar 

  7. Ahmed, S., Corvis, Y., Gahoual, R., Euan, A., Lai-Kuen, R., Couillaud, B. M., Seguin, J., Alhareth, K., & Mignet, N. (2019). Conception of nanosized hybrid liposome/poloxamer particles to thicken the interior core of liposomes and delay hydrophilic drug delivery. International Journal of Pharmaceutics, 567, 118488.

    Article  CAS  PubMed  Google Scholar 

  8. Vasconcelos, T., Marques, S., das Neves, J., & Sarmento, B. (2016). Amorphous solid dispersions: Rational selection of a manufacturing process. Advanced Drug Delivery Reviews, 100, 85–101.

    Article  CAS  PubMed  Google Scholar 

  9. Abdulkarim, M., Sharma, P. K., & Gumbleton, M. (2019). Self-emulsifying drug delivery system: Mucus permeation and innovative quantification technologies. Advanced Drug Delivery Reviews, 142, 62–74.

    Article  CAS  PubMed  Google Scholar 

  10. Hou, G., Wang, Z., Ma, H., Ji, Y., Yu, L., Xu, J., & Chen, K. (2019). High-temperature stable plasmonic and cavity resonances in metal nanoparticle-decorated silicon nanopillars for strong broadband absorption in photothermal applications. Nanoscale, 11(31), 14777–14784.

    Article  CAS  PubMed  Google Scholar 

  11. Trubitsyn, G., Nguyen, V. N., Di Tommaso, C., Borchard, G., Gurny, R., & Moller, M. (2019). Impact of covalently Nile Red and covalently Rhodamine labeled fluorescent polymer micelles for the improved imaging of the respective drug delivery system. European Journal of Pharmaceutics and Biopharmaceutics, 142, 480–487.

    Article  CAS  PubMed  Google Scholar 

  12. Sverdlov Arzi, R., & Sosnik, A. (2018). Electrohydrodynamic atomization and spray-drying for the production of pure drug nanocrystals and co-crystals. Advanced Drug Delivery Reviews, 131, 79–100.

    Article  CAS  PubMed  Google Scholar 

  13. Bak, A., Gore, A., Yanez, E., Stanton, M., Tufekcic, S., Syed, R., Akrami, A., Rose, M., Surapaneni, S., Bostick, T., King, A., Neervannan, S., Ostovic, D., & Koparkar, A. (2008). The co-crystal approach to improve the exposure of a water-insoluble compound: AMG 517 sorbic acid co-crystal characterization and pharmacokinetics. Journal of Pharmaceutical Sciences, 97(9), 3942–3956.

    Article  CAS  PubMed  Google Scholar 

  14. Good, D. J., & Rodríguez-Hornedo, N. (2009). Solubility advantage of pharmaceutical cocrystals. Crystal Growth & Design, 9(5), 2252–2264.

    Article  CAS  Google Scholar 

  15. Babu, N. J., & Nangia, A. (2011). Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Crystal Growth & Design, 11(7), 2662–2679.

    Article  CAS  Google Scholar 

  16. Huang, Y., Zhang, B., Gao, Y., Zhang, J., & Shi, L. (2014). Baicalein-nicotinamide cocrystal with enhanced solubility, dissolution, and oral bioavailability. Journal of Pharmaceutical Sciences, 103(8), 2330–2337.

    Article  CAS  PubMed  Google Scholar 

  17. Smith, A. J., Kavuru, P., Wojtas, L., Zaworotko, M. J., & Shytle, R. D. (2011). Cocrystals of quercetin with improved solubility and oral bioavailability. Molecular Pharmaceutics, 8(5), 1867–1876.

    Article  CAS  PubMed  Google Scholar 

  18. Chadha, K., Karan, M., Chadha, R., Bhalla, Y., & Vasisht, K. (2017). Is failure of cocrystallization actually a failure? Eutectic formation in cocrystal screening of hesperetin. Journal of Pharmaceutical Sciences, 106(8), 2026–2036.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, R., Han, J., Jiang, A., Huang, R., Fu, T., Wang, L., Zheng, Q., Li, W., & Li, J. (2019). Involvement of metabolism-permeability in enhancing the oral bioavailability of curcumin in excipient-free solid dispersions co-formed with piperine. International Journal of Pharmaceutics, 561, 9–18.

    Article  CAS  PubMed  Google Scholar 

  20. Shi, X., Song, S., Ding, Z., Fan, B., Huang, W., & Xu, T. (2019). Improving the solubility, dissolution, and bioavailability of ibrutinib by preparing it in a coamorphous state with saccharin. Journal of Pharmaceutical Sciences, 108(9), 3020–3028.

    Article  CAS  PubMed  Google Scholar 

  21. Kasten, G., Lobmann, K., Grohganz, H., & Rades, T. (2019). Co-former selection for co-amorphous drug-amino acid formulations. International Journal of Pharmaceutics, 557, 366–373.

    Article  CAS  PubMed  Google Scholar 

  22. Wu, W., Lobmann, K., Rades, T., & Grohganz, H. (2018). On the role of salt formation and structural similarity of co-formers in co-amorphous drug delivery systems. International Journal of Pharmaceutics, 535(1–2), 86–94.

    Article  CAS  PubMed  Google Scholar 

  23. Fung, M. H., DeVault, M., Kuwata, K. T., & Suryanarayanan, R. (2018). Drug-excipient interactions: Effect on molecular mobility and physical stability of ketoconazole-organic acid coamorphous systems. Molecular Pharmaceutics, 15(3), 1052–1061.

    Article  CAS  PubMed  Google Scholar 

  24. Chavan, R. B., Thipparaboina, R., Kumar, D., & Shastri, N. R. (2016). Co amorphous systems: A product development perspective. International Journal of Pharmaceutics, 515(1–2), 403–415.

    Article  CAS  PubMed  Google Scholar 

  25. Li, B., Konecke, S., Wegiel, L. A., Taylor, L. S., & Edgar, K. J. (2013). Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices. Carbohydrate Polymers, 98(1), 1108–1116.

    Article  CAS  PubMed  Google Scholar 

  26. Korhonen, O., Pajula, K., & Laitinen, R. (2017). Rational excipient selection for co-amorphous formulations. Expert Opinion on Drug Delivery, 14(4), 551–569.

    Article  CAS  PubMed  Google Scholar 

  27. Gao, Y., Zu, H., & Zhang, J. (2011). Enhanced dissolution and stability of adefovir dipivoxil by cocrystal formation. The Journal of Pharmacy and Pharmacology, 63(4), 483–490.

    Article  CAS  PubMed  Google Scholar 

  28. Thakuria, R., Delori, A., Jones, W., Lipert, M. P., Roy, L., & Rodriguez-Hornedo, N. (2013). Pharmaceutical cocrystals and poorly soluble drugs. International Journal of Pharmaceutics, 453(1), 101–125.

    Article  CAS  PubMed  Google Scholar 

  29. Ong, T. T., Kavuru, P., Nguyen, T., Cantwell, R., Wojtas, L., & Zaworotko, M. J. (2011). 2:1 cocrystals of homochiral and achiral amino acid zwitterions with Li+ salts: Water-stable zeolitic and diamondoid metal-organic materials. Journal of the American Chemical Society, 133(24), 9224–9227.

    Article  CAS  PubMed  Google Scholar 

  30. Velaga, S. P., Basavoju, S., & Bostrom, D. (2008). Norfloxacin saccharinate-saccharin dihydrate cocrystal - A new pharmaceutical cocrystal with an organic counter ion. Journal of Molecular Structure, 889(1–3), 150–153.

    Article  CAS  Google Scholar 

  31. Aitipamula, S., Banerjee, R., Bansal, A. K., Biradha, K., Cheney, M. L., Choudhury, A. R., Desiraju, G. R., Dikundwar, A. G., Dubey, R., Duggirala, N., Ghogale, P. P., Ghosh, S., Goswami, P. K., Goud, N. R., Jetti, R. R. K. R., Karpinski, P., Kaushik, P., Kumar, D., Kumar, V., … Zaworotko, M. J. (2012). Polymorphs, salts, and cocrystals: What’s in a name? Crystal Growth & Design, 12(5), 2147–2152.

    Article  CAS  Google Scholar 

  32. Lu, W., Rades, T., Rantanen, J., & Yang, M. (2019). Inhalable co-amorphous budesonide-arginine dry powders prepared by spray drying. International Journal of Pharmaceutics, 565, 1–8.

    Article  CAS  PubMed  Google Scholar 

  33. Moinuddin, S. M., Ruan, S., Huang, Y., Gao, Q., Shi, Q., Cai, B., & Cai, T. (2017). Facile formation of co-amorphous atenolol and hydrochlorothiazide mixtures via cryogenic-milling: Enhanced physical stability, dissolution and pharmacokinetic profile. International Journal of Pharmaceutics, 532(1), 393–400.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, D. J., Zhou, C., Lv, P., Zhao, Y. L., Liang, J., Liao, X. L., & Yang, B. (2018). Preparation and characterization of a novel host-guest complex based on folate-modified beta-cyclodextrin and artesunate. Materials Science and Engineering: C, 86, 48–55.

    Article  CAS  Google Scholar 

  35. Deng, C., & Jiang, C. (2018). Preparation and characterization of a curcumin-catechol cocrystal. Journal of Zhejiang University of Science, 30(1), 16–21.

    Google Scholar 

  36. Xuan, B., Zhang, Y., & Chow, S. F. (2019). Design and characterization of a new drug-herb isoniazid-curcumin cocrystal for potentially improving tuberculosis treatment. In 2019 AAPS PharmSci 360. San Antonio, Texas.

    Google Scholar 

  37. Mannava, M. K. C., Suresh, K., Kumar Bommaka, M., Bhavani Konga, D., & Nangia, A. (2018). Curcumin-artemisinin coamorphous solid: Xenograft model preclinical study. Pharmaceutics, 10(1), 7.

    Article  PubMed Central  Google Scholar 

  38. Sanphui, P., Goud, N. R., Khandavilli, U. B. R., & Nangia, A. (2011). Fast dissolving curcumin cocrystals. Crystal Growth & Design, 11(9), 4135–4145.

    Article  CAS  Google Scholar 

  39. Deng, Y. P., Zhang, Y. J., Huang, Y. L., Zhang, M., & Lou, B. Y. (2018). Preparation, crystal structures, and oral bioavailability of two cocrystals of emodin with berberine chloride. Crystal Growth & Design, 18(12), 7481–7488.

    Article  CAS  Google Scholar 

  40. Sowa, M., Slepokura, K., & Matczak-Jon, E. (2013). Cocrystals of fisetin, luteolin and genistein with pyridinecarboxamide coformers: Crystal structures, analysis of intermolecular interactions, spectral and thermal characterization. CrystEngComm, 15(38), 7696–7708.

    Article  CAS  Google Scholar 

  41. Sowa, M., Slepokura, K., & Matczak-Jon, E. (2013). A 1:2 cocrystal of genistein with isonicotinamide: Crystal structure and Hirshfeld surface analysis. Acta Crystallographica. Section C, 69(Pt 11), 1267–1272.

    CAS  Google Scholar 

  42. Zhang, Y. N., Yin, H. M., Zhang, Y., Zhang, D. J., Su, X., & Kuang, H. X. (2017). Preparation of a 1:1 cocrystal of genistein with 4,4′-bipyridine. Journal of Crystal Growth, 458, 103–109.

    Article  CAS  Google Scholar 

  43. Chadha, K., Karan, M., Bhalla, Y., Chadha, R., Khullar, S., Mandal, S., & Vasisht, K. (2017). Cocrystals of hesperetin: Structural, pharmacokinetic, and pharmacodynamic evaluation. Crystal Growth & Design, 17(5), 2386–2405.

    Article  CAS  Google Scholar 

  44. He, M. Y. (2017). Synthesis and properties of natural pharmaceutical cocrystals of polyhydroxy flavonoids. Jiamusi University.

    Google Scholar 

  45. Zhang, Y. N., Yin, H. M., Zhang, Y., Zhang, D. J., Su, X., & Kuang, H. X. (2017). Cocrystals of kaempferol, quercetin and myricetin with 4,4′-bipyridine: Crystal structures, analyses of intermolecular interactions and antibacterial properties. Journal of Molecular Structure, 1130, 199–207.

    Article  CAS  Google Scholar 

  46. Hu, C., Cheng, H., Xu, J., Qian, S., Zhang, J., & Gao, Y. (2017). Formation thermodynamics of myricetin-caffeine cocrystal in different organic solvents. Journal of Central South University, 15, 567–572.

    Google Scholar 

  47. Xu, J., Wei, Y., Qian, S., & Zhang, J. (2016). Preparation of myricetin-caffeine cocrystal and its single crystal analysis. Journal of China Pharmaceutical University, 47, 324–328.

    Google Scholar 

  48. Sowa, M., Slepokura, K., & Matczak-Jon, E. (2014). A 1:1 pharmaceutical cocrystal of myricetin in combination with uncommon piracetam conformer: X-ray single crystal analysis and mechanochemical synthesis. Journal of Molecular Structure, 1058, 114–121.

    Article  CAS  Google Scholar 

  49. Luo, C., Liang, W. D., Chen, X., Wang, J. M., Deng, Z. W., & Zhang, H. L. (2018). Pharmaceutical cocrystals of naringenin with improved dissolution performance. CrystEngComm, 20(22), 3025–3033.

    Article  CAS  Google Scholar 

  50. Schultheiss, N., Bethune, S., & Henck, J. O. (2010). Nutraceutical cocrystals: Utilizing pterostilbene as a cocrystal former. CrystEngComm, 12(8), 2436–2442.

    Article  CAS  Google Scholar 

  51. Bethune, S. J., Schultheiss, N., & Henck, J. O. (2011). Improving the poor aqueous solubility of nutraceutical compound pterostilbene through cocrystal formation. Crystal Growth & Design, 11(7), 2817–2823.

    Article  CAS  Google Scholar 

  52. Suresh, K., Mannava, M. K. C., & Nangia, A. (2014). A novel curcumin-artemisinin coamorphous solid: Physical properties and pharmacokinetic profile. RSC Advances, 4(102), 58357–58361.

    Article  CAS  Google Scholar 

  53. Skieneh, J. M., Sathisaran, I., Dalvi, S. V., & Rohani, S. (2017). Co-amorphous form of curcumin-folic acid dihydrate with increased dissolution rate. Crystal Growth & Design, 17(12), 6273–6280.

    Article  CAS  Google Scholar 

  54. Pang, W., Lv, J., Du, S., Wang, J., Wang, J., & Zeng, Y. (2017). Preparation of curcumin-piperazine coamorphous phase and fluorescence spectroscopic and density functional theory simulation studies on the interaction with bovine serum albumin. Molecular Pharmaceutics, 14(9), 3013–3024.

    Article  CAS  PubMed  Google Scholar 

  55. Wei, Y. F., Zhou, S. Y., Hao, T. Y., Zhang, J. J., Gao, Y., & Qian, S. (2019). Further enhanced dissolution and oral bioavailability of docetaxel by coamorphization with a natural P-gp inhibitor myricetin. European Journal of Pharmaceutical Sciences, 129, 21–30.

    Article  CAS  PubMed  Google Scholar 

  56. Teja, A., Musmade, P. B., Khade, A. B., & Dengale, S. J. (2015). Simultaneous improvement of solubility and permeability by fabricating binary glassy materials of talinolol with naringin: Solid state characterization, in-vivo in-situ evaluation. European Journal of Pharmaceutical Sciences, 78, 234–244.

    Article  CAS  PubMed  Google Scholar 

  57. Gniado, K., MacFhionnghaile, P., McArdle, P., & Erxleben, A. (2018). The natural bile acid surfactant sodium taurocholate (NaTC) as a coformer in coamorphous systems: Enhanced physical stability and dissolution behavior of coamorphous drug-NaTc systems. International Journal of Pharmaceutics, 535(1–2), 132–139.

    Article  CAS  PubMed  Google Scholar 

  58. Gniado, K., Lobmann, K., Rades, T., & Erxleben, A. (2016). The influence of co-formers on the dissolution rates of co-amorphous sulfamerazine/excipient systems. International Journal of Pharmaceutics, 504(1–2), 20–26.

    Article  CAS  PubMed  Google Scholar 

  59. Dengale, S. J., Hussen, S. S., Krishna, B. S., Musmade, P. B., Gautham Shenoy, G., & Bhat, K. (2015). Fabrication, solid state characterization and bioavailability assessment of stable binary amorphous phases of Ritonavir with Quercetin. European Journal of Pharmaceutics and Biopharmaceutics, 89, 329–338.

    Article  CAS  PubMed  Google Scholar 

  60. Hashim Ali, K., Mohsin Ansari, M., Ali Shah, F., Ud Din, F., Abdul Basit, M., Kim, J. K., & Zeb, A. (2019). Enhanced dissolution of valsartan-vanillin binary co-amorphous system loaded in mesoporous silica particles. Journal of Microencapsulation, 36(1), 10–20.

    Article  CAS  PubMed  Google Scholar 

  61. Weyna, D. R., Shattock, T., Vishweshwar, P., & Zaworotko, M. J. (2009). Synthesis and structural characterization of cocrystals and pharmaceutical cocrystals: Mechanochemistry vs slow evaporation from solution. Crystal Growth & Design, 9(2), 1106–1123.

    Article  CAS  Google Scholar 

  62. Karagianni, A., Malamatari, M., & Kachrimanis, K. (2018). Pharmaceutical cocrystals: New solid phase modification approaches for the formulation of APIs. Pharmaceutics, 10(1), 18.

    Article  PubMed Central  Google Scholar 

  63. Jones, W., Motherwell, S., & Trask, A. V. (2006). Pharmaceutical cocrystals: An emerging approach to physical property enhancement. MRS Bulletin, 31(11), 875–879.

    Article  CAS  Google Scholar 

  64. Schultheiss, N. C., & Bethune, S. J. (2011). Pterostilbene cocrystals. US20110189275 A1.

    Google Scholar 

  65. Trask, A. V., Motherwell, W. D. S., & Jones, W. (2004). Solvent-drop grinding: Green polymorph control of cocrystallisation. Chemical Communications, 7, 890–891.

    Article  Google Scholar 

  66. Karimi-Jafari, M., Padrela, L., Walker, G. M., & Croker, D. M. (2018). Creating cocrystals: A review of pharmaceutical cocrystal preparation routes and applications. Crystal Growth & Design, 18(10), 6370–6387.

    Article  CAS  Google Scholar 

  67. Zhang, S., & Rasmuson, A. C. (2013). Thermodynamics and crystallization of the theophylline-glutaric acid cocrystal. Crystal Growth & Design, 13(3), 1153–1161.

    Article  CAS  Google Scholar 

  68. Setyawan, D., Sari, R., Yusuf, H., & Primaharinastiti, R. (2014). Preparation and characterization of artesunate-nicotinamide cocrystal by solvent evaporation and slurry method. Asian Journal of Pharmaceutical and Clinical Research, 7(Suppl 1), 62–65.

    Google Scholar 

  69. Wang, I. C., Lee, M. J., Sim, S. J., Kim, W. S., Chun, N. H., & Choi, G. J. (2013). Anti-solvent co-crystallization of carbamazepine and saccharin. International Journal of Pharmaceutics, 450(1–2), 311–322.

    Article  CAS  PubMed  Google Scholar 

  70. Lee, M. J., Wang, I. C., Kim, M. J., Kim, P., Song, K. H., Chun, N. H., Park, H. G., & Choi, G. J. (2015). Controlling the polymorphism of carbamazepine-saccharin cocrystals formed during antisolvent cocrystallization using kinetic parameters. Korean Journal of Chemical Engineering, 32(9), 1910–1917.

    Article  CAS  Google Scholar 

  71. Jayasankar, A., Somwangthanaroj, A., Shao, Z. J., & Rodriguez-Hornedo, N. (2006). Cocrystal formation during cogrinding and storage is mediated by amorphous phase. Pharmaceutical Research, 23(10), 2381–2392.

    Article  CAS  PubMed  Google Scholar 

  72. Seefeldt, K., Miller, J., Alvarez-Nunez, F., & Rodriguez-Hornedo, N. (2007). Crystallization pathways and kinetics of carbamazepine-nicotinamide cocrystals from the amorphous state by in situ thermomicroscopy, spectroscopy, and calorimetry studies. Journal of Pharmaceutical Sciences, 96(5), 1147–1158.

    Article  CAS  PubMed  Google Scholar 

  73. Ma, K., Wang, N., Cheng, L., Wei, Y., Zhang, J., Gao, Y., & Qian, S. (2019). Identification of novel adefovir dipivoxil-saccharin cocrystal polymorphs and their thermodynamic polymorphic transformations. International Journal of Pharmaceutics, 566, 361–370.

    Article  CAS  PubMed  Google Scholar 

  74. Gao, Y., Liao, J., Qi, X., & Zhang, J. (2013). Coamorphous repaglinide-saccharin with enhanced dissolution. International Journal of Pharmaceutics, 450(1–2), 290–295.

    Article  CAS  PubMed  Google Scholar 

  75. Maher, E. M., Ali, A. M., Salem, H. F., & Abdelrahman, A. A. (2016). In vitro/in vivo evaluation of an optimized fast dissolving oral film containing olanzapine co-amorphous dispersion with selected carboxylic acids. Drug Delivery, 23(8), 3088–3100.

    Article  CAS  PubMed  Google Scholar 

  76. Bi, Y., Xiao, D., Ren, S., Bi, S., Wang, J., & Li, F. (2017). The binary system of ibuprofen-nicotinamide under nanoscale confinement: From cocrystal to coamorphous state. Journal of Pharmaceutical Sciences, 106(10), 3150–3155.

    Article  CAS  PubMed  Google Scholar 

  77. Karagianni, A., Kachrimanis, K., & Nikolakakis, I. (2018). Co-amorphous solid dispersions for solubility and absorption improvement of drugs: Composition, preparation, characterization and formulations for oral delivery. Pharmaceutics, 10(3), 98.

    Article  CAS  PubMed Central  Google Scholar 

  78. Singh, A., & Van den Mooter, G. (2016). Spray drying formulation of amorphous solid dispersions. Advanced Drug Delivery Reviews, 100, 27–50.

    Article  CAS  PubMed  Google Scholar 

  79. Shi, Q., Moinuddin, S. M., & Cai, T. (2019). Advances in coamorphous drug delivery systems. Acta Pharmaceutica Sinica B, 9(1), 19–35.

    Article  PubMed  Google Scholar 

  80. Cruz-Angeles, J., Videa, M., & Martinez, L. M. (2019). Highly soluble glimepiride and irbesartan co-amorphous formulation with potential application in combination therapy. AAPS PharmSciTech, 20(4), 144.

    Article  PubMed  Google Scholar 

  81. Martinez-Jimenez, C., Cruz-Angeles, J., Videa, M., & Martinez, L. M. (2018). Co-amorphous simvastatin-nifedipine with enhanced solubility for possible use in combination therapy of hypertension and hypercholesterolemia. Molecules, 23(9), 2161.

    Article  PubMed Central  Google Scholar 

  82. Anand, V. S. K., Sakhare, S. D., Navya Sree, K. S., Nair, A. R., Raghava Varma, K., Gourishetti, K., & Dengale, S. J. (2018). The relevance of co-amorphous formulations to develop supersaturated dosage forms: In-vitro, and ex-vivo investigation of ritonavir-lopinavir co-amorphous materials. European Journal of Pharmaceutical Sciences, 123, 124–134.

    Article  Google Scholar 

  83. Jensen, K. T., Blaabjerg, L. I., Lenz, E., Bohr, A., Grohganz, H., Kleinebudde, P., Rades, T., & Lobmann, K. (2016). Preparation and characterization of spray-dried co-amorphous drug-amino acid salts. The Journal of Pharmacy and Pharmacology, 68(5), 615–624.

    Article  CAS  PubMed  Google Scholar 

  84. Lenz, E., Jensen, K. T., Blaabjerg, L. I., Knop, K., Grohganz, H., Lobmann, K., Rades, T., & Kleinebudde, P. (2015). Solid-state properties and dissolution behaviour of tablets containing co-amorphous indomethacin-arginine. European Journal of Pharmaceutics and Biopharmaceutics, 96, 44–52.

    Article  CAS  PubMed  Google Scholar 

  85. Ali, A. M., & Al-Remawi, M. M. (2016). Freeze dried quetiapine-nicotinamide binary solid dispersions: A new strategy for improving physicochemical properties and ex vivo diffusion. Journal of Pharmaceutics, 2016, 2126056.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhu, S., Gao, H., Babu, S., & Garad, S. (2018). Co-amorphous formation of high-dose zwitterionic compounds with amino acids to improve solubility and enable parenteral delivery. Molecular Pharmaceutics, 15(1), 97–107.

    Article  CAS  PubMed  Google Scholar 

  87. Ohori, R., Akita, T., & Yamashita, C. (2019). Mechanism of collapse of amorphous-based lyophilized cake induced by slow ramp during the shelf ramp process. International Journal of Pharmaceutics, 564, 461–471.

    Article  CAS  PubMed  Google Scholar 

  88. Lenz, E., Lobmann, K., Rades, T., Knop, K., & Kleinebudde, P. (2017). Hot melt extrusion and spray drying of co-amorphous indomethacin-arginine with polymers. Journal of Pharmaceutical Sciences, 106(1), 302–312.

    Article  CAS  PubMed  Google Scholar 

  89. Hitzer, P., Bauerle, T., Drieschner, T., Ostertag, E., Paulsen, K., van Lishaut, H., Lorenz, G., & Rebner, K. (2017). Process analytical techniques for hot-melt extrusion and their application to amorphous solid dispersions. Analytical and Bioanalytical Chemistry, 409(18), 4321–4333.

    Article  CAS  PubMed  Google Scholar 

  90. Descamps, M., & Willart, J. F. (2016). Perspectives on the amorphisation/milling relationship in pharmaceutical materials. Advanced Drug Delivery Reviews, 100, 51–66.

    Article  CAS  PubMed  Google Scholar 

  91. Krupa, A., Descamps, M., Willart, J. F., Strach, B., Wyska, E., Jachowicz, R., & Danede, F. (2016). High-energy ball milling as green process to vitrify tadalafil and improve bioavailability. Molecular Pharmaceutics, 13(11), 3891–3902.

    Article  CAS  PubMed  Google Scholar 

  92. Willart, J. F., & Descamps, M. (2008). Solid state amorphization of pharmaceuticals. Molecular Pharmaceutics, 5(6), 905–920.

    Article  CAS  PubMed  Google Scholar 

  93. Amidon, G. L., Lennernas, H., Shah, V. P., & Crison, J. R. (1995). A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharmaceutical Research, 12(3), 413–420.

    Article  CAS  PubMed  Google Scholar 

  94. Dai, X. L., Chen, J. M., & Lu, T. B. (2018). Pharmaceutical cocrystallization: An effective approach to modulate the physicochemical properties of solid-state drugs. CrystEngComm, 20(36), 5292–5316.

    Article  CAS  Google Scholar 

  95. Formica, J. V., & Regelson, W. (1995). Review of the biology of quercetin and related bioflavonoids. Food and Chemical Toxicology, 33(12), 1061–1080.

    Article  CAS  PubMed  Google Scholar 

  96. Murakami, A., Ashida, H., & Terao, J. (2008). Multitargeted cancer prevention by quercetin. Cancer Letters, 269(2), 315–325.

    Article  CAS  PubMed  Google Scholar 

  97. Spencer, J. P., Kuhnle, G. G., Williams, R. J., & Rice-Evans, C. (2003). Intracellular metabolism and bioactivity of quercetin and its in vivo metabolites. The Biochemical Journal, 372(Pt 1), 173–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bakay, M., Mucsi, I., Beladi, I., & Gabor, M. (1968). Effect of flavonoids and related substances. II. Antiviral effect of quercetin, dihydroquercetin and dihydrofisetin. Acta Microbiologica Academiae Scientiarum Hungaricae, 15(3), 223–227.

    CAS  PubMed  Google Scholar 

  99. Wang, J., Chang, R., Zhao, Y., Zhang, J., Zhang, T., Fu, Q., Chang, C., & Zeng, A. (2017). Coamorphous loratadine-citric acid system with enhanced physical stability and bioavailability. AAPS PharmSciTech, 18(7), 2541–2550.

    Article  CAS  PubMed  Google Scholar 

  100. Brouwers, J., Brewster, M. E., & Augustijns, P. (2009). Supersaturating drug delivery systems: The answer to solubility-limited oral bioavailability? Journal of Pharmaceutical Sciences, 98(8), 2549–2572.

    Article  CAS  PubMed  Google Scholar 

  101. Laitinen, R., Lobmann, K., Grohganz, H., Priemel, P., Strachan, C. J., & Rades, T. (2017). Supersaturating drug delivery systems: The potential of co-amorphous drug formulations. International Journal of Pharmaceutics, 532(1), 1–12.

    Article  CAS  PubMed  Google Scholar 

  102. Bavishi, D. D., & Borkhataria, C. H. (2016). Spring and parachute: How cocrystals enhance solubility. Progress in Crystal Growth and Characterization of Materials, 62(3), 1–8.

    Article  CAS  Google Scholar 

  103. Noyes, A. A., & Whitney, W. R. (1897). The rate of solution of solid substances in their own solutions. Journal of the American Chemical Society, 19(12), 930–934.

    Article  Google Scholar 

  104. Qian, S., Heng, W., Wei, Y., Zhang, J., & Gao, Y. (2015). Coamorphous lurasidone hydrochloride-saccharin with charge-assisted hydrogen bonding interaction shows improved physical stability and enhanced dissolution with pH-independent solubility behavior. Crystal Growth & Design, 15(6), 2920–2928.

    Article  CAS  Google Scholar 

  105. Schultheiss, N., & Newman, A. (2009). Pharmaceutical cocrystals and their physicochemical properties. Crystal Growth & Design, 9(6), 2950–2967.

    Article  CAS  Google Scholar 

  106. Sun, C. C. (2013). Cocrystallization for successful drug delivery. Expert Opinion on Drug Delivery, 10(2), 201–213.

    Article  CAS  PubMed  Google Scholar 

  107. Trask, A. V., Motherwell, W. D., & Jones, W. (2006). Physical stability enhancement of theophylline via cocrystallization. International Journal of Pharmaceutics, 320(1–2), 114–123.

    Article  CAS  PubMed  Google Scholar 

  108. Trask, A. V., Motherwell, W. D. S., & Jones, W. (2005). Pharmaceutical cocrystallization: Engineering a remedy for caffeine hydration. Crystal Growth & Design, 5(3), 1013–1021.

    Article  CAS  Google Scholar 

  109. Lu, Q., Dun, J. N., Chen, J. M., Liu, S. Y., & Sun, C. C. (2019). Improving solid-state properties of berberine chloride through forming a salt cocrystal with citric acid. International Journal of Pharmaceutics, 554, 14–20.

    Article  CAS  PubMed  Google Scholar 

  110. Nakagawa, H., Miyata, T., Mohri, K., Sugimoto, I., & Manabe, H. (1978). Water of crystallization of berberine chloride. Yakugaku Zasshi, 98(8), 981–985.

    Article  CAS  PubMed  Google Scholar 

  111. Yoshimatsu, K., Nakabayashi, S., Ogaki, J., Kimura, M., & Horikoshi, I. (1981). Dielectric study on the water of crystallization of berberine chloride. Yakugaku Zasshi, 101(12), 1143–1148.

    Article  CAS  PubMed  Google Scholar 

  112. Lobmann, K., Strachan, C., Grohganz, H., Rades, T., Korhonen, O., & Laitinen, R. (2012). Co-amorphous simvastatin and glipizide combinations show improved physical stability without evidence of intermolecular interactions. European Journal of Pharmaceutics and Biopharmaceutics, 81(1), 159–169.

    Article  CAS  PubMed  Google Scholar 

  113. Gao, Y., Gao, J., Liu, Z., Kan, H., Zu, H., Sun, W., Zhang, J., & Qian, S. (2012). Coformer selection based on degradation pathway of drugs: A case study of adefovir dipivoxil-saccharin and adefovir dipivoxil-nicotinamide cocrystals. International Journal of Pharmaceutics, 438(1–2), 327–335.

    Article  CAS  PubMed  Google Scholar 

  114. Dengale, S. J., Ranjan, O. P., Hussen, S. S., Krishna, B. S., Musmade, P. B., Gautham Shenoy, G., & Bhat, K. (2014). Preparation and characterization of co-amorphous ritonavir-indomethacin systems by solvent evaporation technique: Improved dissolution behavior and physical stability without evidence of intermolecular interactions. European Journal of Pharmaceutical Sciences, 62, 57–64.

    Article  CAS  PubMed  Google Scholar 

  115. Meng, W., Xiaoliang, R., Xiumei, G., Vincieri, F. F., & Bilia, A. R. (2009). Stability of active ingredients of traditional Chinese medicine (TCM). Natural Product Communications, 4(12), 1761–1776.

    Article  PubMed  Google Scholar 

  116. Duncan-Hewitt, W. C., & Weatherly, G. C. (1990). Modeling the uniaxial compaction of pharmaceutical powders using the mechanical properties of single crystals. I: Ductile materials. Journal of Pharmaceutical Sciences, 79(2), 147–152.

    Article  CAS  PubMed  Google Scholar 

  117. Meier, M., John, E., Wieckhusen, D., Wirth, W., & Peukert, W. (2009). Influence of mechanical properties on impact fracture: Prediction of the milling behaviour of pharmaceutical powders by nanoindentation. Powder Technology, 188(3), 301–313.

    Article  CAS  Google Scholar 

  118. Sun, C. C. (2011). Decoding powder tabletability: Roles of particle adhesion and plasticity. Journal of Adhesion Science and Technology, 25(4–5), 483–499.

    Article  CAS  Google Scholar 

  119. Sun, C. C. (2009). Materials science tetrahedron--A useful tool for pharmaceutical research and development. Journal of Pharmaceutical Sciences, 98(5), 1671–1687.

    Article  CAS  PubMed  Google Scholar 

  120. Sun, C., & Grant, D. J. (2001). Influence of crystal structure on the tableting properties of sulfamerazine polymorphs. Pharmaceutical Research, 18(3), 274–280.

    Article  CAS  PubMed  Google Scholar 

  121. Bag, P. P., Chen, M., Sun, C. C., & Reddy, C. M. (2012). Direct correlation among crystal structure, mechanical behaviour and tabletability in a trimorphic molecular compound. CrystEngComm, 14(11), 3865–3867.

    Article  CAS  Google Scholar 

  122. Zhao, Q., Zhang, Y., Wang, G., Hill, L., Weng, J. K., Chen, X. Y., Xue, H. W., & Martin, C. (2016). A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis. Science Advances, 2(4), e1501780.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Liu, L. L., Wang, C. G., Dun, J. N., Chow, A. H. L., & Sun, C. C. (2018). Lack of dependence of mechanical properties of baicalein cocrystals on those of the constituent components. CrystEngComm, 20(37), 5486–5489.

    Article  CAS  Google Scholar 

  124. Ojarinta, R., Saarinen, J., Strachan, C. J., Korhonen, O., & Laitinen, R. (2018). Preparation and characterization of multi-component tablets containing co-amorphous salts: Combining multimodal non-linear optical imaging with established analytical methods. European Journal of Pharmaceutics and Biopharmaceutics, 132, 112–126.

    Article  CAS  PubMed  Google Scholar 

  125. Petry, I., Lobmann, K., Grohganz, H., Rades, T., & Leopold, C. S. (2017). Solid state properties and drug release behavior of co-amorphous indomethacin-arginine tablets coated with Kollicoat(R) Protect. European Journal of Pharmaceutics and Biopharmaceutics, 119, 150–160.

    Article  CAS  PubMed  Google Scholar 

  126. Wang, C. G., Perumalla, S. R., Lu, R. L., Fang, J. G., & Sun, C. C. (2016). Sweet berberine. Crystal Growth & Design, 16(2), 933–939.

    Article  CAS  Google Scholar 

  127. Aitipamula, S., Chow, P. S., & Tan, R. B. H. (2009). Dimorphs of a 1:1 cocrystal of ethenzamide and saccharin: Solid-state grinding methods result in metastable polymorph. CrystEngComm, 11(5), 889–895.

    Article  CAS  Google Scholar 

  128. Basavoju, S., Bostrom, D., & Velaga, S. P. (2008). Indomethacin-saccharin cocrystal: Design, synthesis and preliminary pharmaceutical characterization. Pharmaceutical Research, 25(3), 530–541.

    Article  CAS  PubMed  Google Scholar 

  129. Bhatt, P. M., Ravindra, N. V., Banerjee, R., & Desiraju, G. R. (2005). Saccharin as a salt former. Enhanced solubilities of saccharinates of active pharmaceutical ingredients. Chemical Communications, 8, 1073–1075.

    Article  Google Scholar 

  130. Lu, E., Rodriguez-Hornedo, N., & Suryanarayanan, R. (2008). A rapid thermal method for cocrystal screening. CrystEngComm, 10(6), 665–668.

    Article  CAS  Google Scholar 

  131. Bolla, G., & Nangia, A. (2016). Pharmaceutical cocrystals: Walking the talk. Chemical Communications, 52, 8342–8360.

    Article  CAS  PubMed  Google Scholar 

  132. Fong, S. Y., Liu, M., Wei, H., Lobenberg, R., Kanfer, I., Lee, V. H., Amidon, G. L., & Zuo, Z. (2013). Establishing the pharmaceutical quality of Chinese herbal medicine: A provisional BCS classification. Molecular Pharmaceutics, 10(5), 1623–1643.

    Article  CAS  PubMed  Google Scholar 

  133. Sanphui, P., Devi, V. K., Clara, D., Malviya, N., Ganguly, S., & Desiraju, G. R. (2015). Cocrystals of hydrochlorothiazide: Solubility and diffusion/permeability enhancements through drug-coformer interactions. Molecular Pharmaceutics, 12(5), 1615–1622.

    Article  CAS  PubMed  Google Scholar 

  134. Yan, Y., Chen, J. M., & Lu, T. B. (2013). Simultaneously enhancing the solubility and permeability of acyclovir by crystal engineering approach. CrystEngComm, 15(33), 6457–6460.

    Article  CAS  Google Scholar 

  135. Bommaka, M. K., Mannava, M. K. C., Suresh, K., Gunnam, A., & Nangia, A. (2018). Entacapone: Improving aqueous solubility, diffusion permeability, and cocrystal stability with theophylline. Crystal Growth & Design, 18(10), 6061–6069.

    Article  CAS  Google Scholar 

  136. Khajuria, A., Thusu, N., & Zutshi, U. (2002). Piperine modulates permeability characteristics of intestine by inducing alterations in membrane dynamics: Influence on brush border membrane fluidity, ultrastructure and enzyme kinetics. Phytomedicine, 9(3), 224–231.

    Article  CAS  PubMed  Google Scholar 

  137. Di, X., Wang, X., Di, X., & Liu, Y. (2015). Effect of piperine on the bioavailability and pharmacokinetics of emodin in rats. Journal of Pharmaceutical and Biomedical Analysis, 115, 144–149.

    Article  CAS  PubMed  Google Scholar 

  138. Izutsu, K. I., Koide, T., Takata, N., Ikeda, Y., Ono, M., Inoue, M., Fukami, T., & Yonemochi, E. (2016). Characterization and quality control of pharmaceutical cocrystals. Chemical & Pharmaceutical Bulletin, 64(10), 1421–1430.

    Article  CAS  Google Scholar 

  139. Shemchuk, O., Esposti, L. D., Grepioni, F., & Braga, D. (2017). Ionic co-crystals of enantiopure and racemic histidine with calcium halides. CrystEngComm, 19(42), 6267–6273.

    Article  CAS  Google Scholar 

  140. Harris, K. D. M., Tremayne, M., & Kariuki, B. M. (2001). Contemporary advances in the use of powder X-ray diffraction for structure determination. Angewandte Chemie. International Edition, 40(9), 1626–1651.

    Article  CAS  PubMed  Google Scholar 

  141. Zhu, B. Q., Zhang, Q., Wang, J. R., & Mei, X. F. (2017). Cocrystals of baicalein with higher solubility and enhanced bioavailability. Crystal Growth & Design, 17(4), 1893–1901.

    Article  CAS  Google Scholar 

  142. Bates, S., Zografi, G., Engers, D., Morris, K., Crowley, K., & Newman, A. (2006). Analysis of amorphous and nanocrystalline solids from their X-ray diffraction patterns. Pharmaceutical Research, 23(10), 2333–2349.

    Article  CAS  PubMed  Google Scholar 

  143. Qian, S., Li, Z., Heng, W., Liang, S., Ma, D., Gao, Y., Zhang, J., & Wei, Y. (2016). Charge-assisted intermolecular hydrogen bond formed in coamorphous system is important to relieve the pH-dependent solubility behavior of lurasidone hydrochloride. RSC Advances, 6(108), 106396–106412.

    Article  CAS  Google Scholar 

  144. Forster, A., Hempenstall, J., Tucker, & Rades, T. (2001). The potential of small-scale fusion experiments and the Gordon-Taylor equation to predict the suitability of drug/polymer blends for melt extrusion. Drug Development and Industrial Pharmacy, 27(6), 549–560.

    Article  CAS  PubMed  Google Scholar 

  145. Hong, C., Xie, Y., Yao, Y. S., Li, G. W., Yuan, X. R., & Shen, H. Y. (2015). A novel strategy for pharmaceutical cocrystal generation without knowledge of stoichiometric ratio: Myricetin cocrystals and a ternary phase diagram. Pharmaceutical Research, 32(1), 47–60.

    Article  CAS  PubMed  Google Scholar 

  146. Huang, S., Xue, Q., Xu, J., Ruan, S. D., & Cai, T. (2019). Simultaneously improving the physicochemical properties, dissolution performance, and bioavailability of apigenin and daidzein by co-crystallization with theophylline. Journal of Pharmaceutical Sciences, 108(9), 2982–2993.

    Article  CAS  PubMed  Google Scholar 

  147. Vogt, F. G., Clawson, J. S., Strohmeier, M., Edwards, A. J., Pham, T. N., & Watson, S. A. (2009). Solid-state NMR analysis of organic cocrystals and complexes. Crystal Growth & Design, 9(2), 921–937.

    Article  CAS  Google Scholar 

  148. Maruyoshi, K., Iuga, D., Antzutkin, O. N., Alhalaweh, A., Velaga, S. P., & Brown, S. P. (2012). Identifying the intermolecular hydrogen-bonding supramolecular synthons in an indomethacin-nicotinamide cocrystal by solid-state NMR. Chemical Communications, 48(88), 10844–10846.

    Article  CAS  PubMed  Google Scholar 

  149. Heng, W. L., Su, M. L., Cheng, H., Shen, P. Y., Liang, S. J., Zhang, L. H., Wei, Y. F., Gao, Y., Zhang, J. J., & Qian, S. (2020). Incorporation of complexation into a coamorphous system dramatically enhances dissolution and eliminates gelation of amorphous lurasidone hydrochloride. Molecular Pharmaceutics, 17(1), 84–97.

    Article  CAS  PubMed  Google Scholar 

  150. Ghosh, S., Mondal, A., Kiran, M. S. R. N., Ramamurty, U., & Reddy, C. M. (2013). The role of weak interactions in the phase transition and distinct mechanical behavior of two structurally similar caffeine co-crystal polymorphs studied by nanoindentation. Crystal Growth & Design, 13(10), 4435–4441.

    Article  CAS  Google Scholar 

  151. Joshi, T. V., Singaraju, A. B., Shah, H. S., Morris, K. R., Stevens, L. L., & Haware, R. V. (2018). Structure-mechanics and compressibility profile study of flufenamic acid:nicotinamide cocrystal. Crystal Growth & Design, 18(10), 5853–5865.

    Article  CAS  Google Scholar 

  152. Darwish, S., Zeglinski, J., Krishna, G. R., Shaikh, R., Khraisheh, M., Walker, G. M., & Croker, D. M. (2018). A new 1:1 drug-drug cocrystal of theophylline and aspirin: Discovery, characterization, and construction of ternary phase diagrams. Crystal Growth & Design, 18(12), 7526–7532.

    Article  CAS  Google Scholar 

  153. Malecka, M., Checinska, L., Kusz, J., Biernacka, M., & Kupcewicz, B. (2020). Interactions in flavanone and chalcone derivatives: Hirshfeld surface analysis, energy frameworks and global reactivity descriptors. Acta Crystallographica Section C: Structural Chemistry, 76(Pt 3), 212–224.

    CAS  Google Scholar 

  154. Wang, C., & Sun, C. C. (2019). Computational techniques for predicting mechanical properties of organic crystals: A systematic evaluation. Molecular Pharmaceutics, 16(4), 1732–1741.

    Article  CAS  PubMed  Google Scholar 

  155. Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D., & Spackman, M. A. (2015). Energy frameworks: Insights into interaction anisotropy and the mechanical properties of molecular crystals. Chemical Communications, 51(18), 3735–3738.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheng, H. et al. (2021). Cocrystallization and Coamorphization for Druggability Enhancement of Chinese Medicines. In: Feng, N., Yang, Z. (eds) Novel Drug Delivery Systems for Chinese Medicines. Springer, Singapore. https://doi.org/10.1007/978-981-16-3444-4_11

Download citation

Publish with us

Policies and ethics