Skip to main content

Abstract

It has been clarified that the whole globe will experience a rapid increase in population. Therefore, there is a need to identify a sustainable solution that could help to meet the demand of the ever-growing population. Some of the rising question from the majority of the globe is how to proffer solution of the challenges of foods insecurity, climates changes, high level of anthropogenic activities in the environment, and high level of unemployment among the youths, as well as a higher level of mortality rate as a result of the recent pandemic activity due to COVID-19. Furthermore, some other challenges include malnutrition and several nutrition challenges. Therefore, provides comprehensive details on the numerous microorganism that could influence soil health in promoting plant growth, and serves as potential bioremediation of polluted soil as well as provide detailed information on the application of plant growth-promoting rhizobacteria (PGPR) in sustainable agriculture and environment as well as provide detailed information on other beneficial microorganisms that could boost Agricultural production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aamir M et al (2013) Co-inoculation with rhizobium and plant growth promoting rhizobacteria (PGPR) for inducing salinity tolerance in mung bean under field condition of semi-arid climate. Asian J Agric Biol 1(1):7–12

    Google Scholar 

  • Adedeji AA, Häggblom MM, Babalola OO (2020) Sustainable agriculture in Africa: plant growth-promoting rhizobacteria (PGPR) to the rescue. Sci Afr 9:e00492. https://doi.org/10.1016/j.sciaf.2020.e00492

    Article  Google Scholar 

  • Adetunji CO, Anani OA (2020) Bio-fertilizer from trichoderma: boom for agriculture production and management of soil- and root-borne plant pathogens. In: Mishra P, Mishra RR, Adetunji CO (eds) Innovations in food technology. Springer, Singapore, pp 245–256

    Google Scholar 

  • Afzal A, Bano A (2008) Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). Int J Agric Biol 10(1):85–88

    CAS  Google Scholar 

  • Agbodjato NA, Noumavo PA, Baba-Moussa F, Salami HA, Sina H, Sèzan A, Bankolé H, Adjanohoun A, Baba-Moussa L (2015) Characterization of potential plant growth promoting rhizobacteria isolated from maize (Zea mays L.) in central and northern Benin (West Africa). Hindawi Publishing Corporation Appl Environ Soil Sci 2015:901656, 9 pages. https://doi.org/10.1155/2015/901656

  • Ahirwar NK, Singh R, Chaurasia S, Chandra R, Prajapati S, Ramana S (2019) Effective role of beneficial microbes in achieving the sustainable agriculture and eco-friendly environment development goals: a review. Front Environ Microbiol 5(6):111–123. http://www.sciencepublishinggroup.com/j/fem. https://doi.org/10.11648/j.fem.20190506.12

    Article  Google Scholar 

  • Ajao AT, Oluwajobi AO, Olatayo VS (2011) Bioremediation of soil microcosms from auto-mechanic workshops. J Appl Sci Environ Manag 15(3):473–477

    Google Scholar 

  • Alavi P et al (2013) Root-microbe systems: the effect and mode of interaction of stress protecting agent (SPA) Stenotrophomonas rhizophila DSM14405T. Front Plant Sci 4:1–10. https://doi.org/10.3389/fpls.2013.00141

    Article  Google Scholar 

  • Alexander A, Chong KP (2014) The impact of biological control agents on soil microbial communities in oil palm plantation soils. Am-Eurasian J Sustain Agric 8:8–17

    Google Scholar 

  • Alooa BN, Makumba BA, Mbega ER (2019) The potential of bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiol Res 219:26–39

    Article  Google Scholar 

  • Amaya-Gómez CV, Porcel M, MesaGarriga L, Gómez-Álvarez MI (2020) A framework for the selection of plant growth promoting rhizobacteria based on bacterial competence mechanisms. Appl Environ Microbiol 86:e00760–e00720. https://doi.org/10.1128/AEM.00760-20

    Article  PubMed  PubMed Central  Google Scholar 

  • Anani OA, Olomukoro JO (2019) Assessment of metal accumulation and bioaccumulation factor of some trace and heavy metals in freshwater prawn and crab. IntechOpen. https://doi.org/10.5772/intechopen.88103

  • Anani OA, Olomukoro JO, Ezenwa IM (2020a) Limnological evaluation in terms of water quality of Ossiomo River, Southern Nigeria. Int J Conserv Sci 11(2):571–588

    CAS  Google Scholar 

  • Anani OA, Olomukoro JO, Enuneku AA (2020b) Geospatial mapping, environmetrics and indexing approach for a tropical river sediment in Southern Nigeria. Pak J Sci Ind Res Ser A Phys Sci 63A(3):176–187

    Article  Google Scholar 

  • Audenaert K, De Meyer G, Höfte M (2002) Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid dependent signaling mechanisms. Plant Physiol 128:491–501

    Article  PubMed  PubMed Central  Google Scholar 

  • Barassi CA, Sueldo RJ, Creus CM, Carrozzi LE, Casanovas EM, Pereyra MA (2007) Dynamic soil, dynamic plant. Global science books Azospirillum spp., a dynamic soil bacterium favourable to vegetable crop production. Dyn Soil Dyn Plant 1(2):68–82

    Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:41044–41051

    Article  Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473. https://doi.org/10.3389/fpls.2018.01473

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakker PAHM, Lamers JG, Bakker AW, Marugg JD, Weisbeek PJ, Schippers B (1986) The role of siderophores in potato tuber yield increase by Pseudomonas putida in a short rotation of potato. Neth J Plant Pathol 92:249–256

    Article  Google Scholar 

  • Bankole SO et al (2019) Potential significance of beneficial microbes for sustainable soil management and plant utilization. Acta Sci Microbiol 2(6):88–95

    Google Scholar 

  • Barea JM (2015) Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. J Soil Sci Plant Nutr 15(2):261–282

    Google Scholar 

  • Barea JM, Palenzuela J, Cornejo P, Sánchez-Castro I, Navarro-Fernández C, Lopéz-García A, Estrada B, Azcón R, Ferrol N, Azcón-Aguilar C (2011) Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. J Arid Environ 75:1292–1301

    Article  Google Scholar 

  • Bashan Y, de-Bashan LE (2010) How the plant growth-promoting bacterium azospirillum promotes plant growth—a critical assessment. Adv Agron 108(2):77–136. https://doi.org/10.1016/S0065-2113(10)08002-8

    Article  CAS  Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez J-P (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33. https://doi.org/10.1007/s11104-013-1956-x

    Article  CAS  Google Scholar 

  • Baudoin E et al (2009) Impact of inoculation with the phytostimulatory PGPR Azospirillum lipoferum CRT1 on the genetic structure of the rhizobacterial community of field-grown maize. Soil Biol Biochem 41(2):409–413. https://doi.org/10.1016/j.soilbio.2008.10.015

    Article  CAS  Google Scholar 

  • Bechtaoui N, Raklami A, Tahiri A-I, Benidire L, El Alaoui A, Meddich A, Göttfert M, Oufdou K (2019) Characterization of plant growth promoting rhizobacteria and their benefits on growth and phosphate nutrition of faba bean and wheat. 2019. Published by The Company of Biologists Ltd. Biol Open 8:bio043968. https://doi.org/10.1242/bio.043968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beg MA, Singh JK (2009) Effects of biofertilizers and fertility levels on growth, yield and nutrient removal of green gram (Vigna radiata) under Kashmir conditions. Indian J Agric Sci 79(5):388–390

    Google Scholar 

  • Bengtsson J, Ahnstrom J, Weibull AC (2005) The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Appl Ecol 42:261–269. https://doi.org/10.1111/j.1365-2664.2005.01005.x

    Article  Google Scholar 

  • Berg G, Rybakova D, Grube M, Koberl M (2016) The plant microbiome explored: implications for experimental botany. J Exp Bot 67:995–1002. https://doi.org/10.1093/jxb/erv466

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13:66. http://www.microbialcellfactories.com/content/13/1/66

    Article  Google Scholar 

  • Bhat MA et al (2019) Plant growth promoting rhizobacteria (PGPR) for sustainable and eco-friendly agriculture. Acta Sci Agric 3(1):23–25

    Google Scholar 

  • Boelling D, Groen AF, Sørensen P, Madsen P, Jensen J (2003) Genetic improvement of livestock for organic farming systems. Livest Prod Sci 80:79–88

    Article  Google Scholar 

  • Borges CS, de Sá EL, Muniz AW, Filho O (2019) Potential use of rhizobium for vegetable crops growth promotion. Afr J Agric Res 14(8):477–483. https://doi.org/10.5897/AJAR2017.12885

    Article  CAS  Google Scholar 

  • Cassan F, Diaz-Zorita M (2016) Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biol Biochem 103:117–130

    Article  CAS  Google Scholar 

  • Cassán F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35. https://doi.org/10.1016/j.ejsobi.2008.08.005

    Article  CAS  Google Scholar 

  • Chakrabarty T, Akter A, Saifullah ASM, Sheikh MS, Bhowmick AC (2014) Use of fertilizer and pesticide for crop production in agrarian area of Tangail district, Bangladesh. Environ Ecol Res 2(6):253–261. https://doi.org/10.13189/eer.2014.020605

    Article  Google Scholar 

  • Costa C, Garcia-Lestion J, Costa S, Coelho P, Silva S, Pingqarilho M, Valdiqlesias V, Mattei F, Dali Armi V, Bonassi S, Laffon B, Snawder J, Teixeira JP (2014) Is organic farming safer to farmers’ health? A comparison between organic and traditional farming. Toxicol Lett 230:166–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couillerot O et al (2010) Development of a real-time PCR method to quantify the PGPR strain Azospirillum lipoferum CRT1 on maize seedlings. Soil Biol Biochem 42(12):2298–2305. https://doi.org/10.1016/j.soilbio.2010.09.003

    Article  CAS  Google Scholar 

  • Cummings SP (2009) The application of plant growth promoting rhizobacteria (PGPR) in low input and organic cultivation of graminaceous crops; potential and problems. Environ Biotechnol 5(2):43–50

    Google Scholar 

  • Dago ND, Diarrassouba N, Saraka MDY, Moroh J-LA, Fofana IJ, Baba-Moussa L, Coulibaly A (2018) Predicting maize and soybean crops dry biomass through rhizobacteria microorganisms activity on foliar bio-fertilizer in an arid agro-climate: a multiple linear regression analysis. Afr J Microbiol Res 12(34):835–848. https://doi.org/10.5897/AJMR2018.8899

    Article  CAS  Google Scholar 

  • Di Benedetto A, Corbo MR, Campaniello D, Cataldi MP, Bevilacqua A, Sinigaglia M, Flagella Z (2017) The role of plant growth promoting bacteria in improving nitrogen use efficiency for sustainable crop production: a focus on wheat Nilde. AIMS Microbiol 3(3):413–434. https://doi.org/10.3934/microbiol.2017.3.413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta A, Singh RK, Kumar S, Kumar S (2015) An effective and beneficial plant growth promoting soil bacterium “Rhizobium”: a review. Ann Plant Sci 4(1):933–942

    Google Scholar 

  • de Souza R, Ambrosini A, Passaglia L (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38(4):401–419. https://doi.org/10.1590/S1415-475738420150053

    Article  PubMed  PubMed Central  Google Scholar 

  • dos Santos RM, Diaz PAE, Lobo LLB, Rigobelo EC (2020) Use of plant growth-promoting rhizobacteria in maize and sugarcane: characteristics and applications. Front Sustain Food Syst 4:136. https://doi.org/10.3389/fsufs.2020.00136

    Article  Google Scholar 

  • Ejaz S et al (2020) Effects of inoculation of root-associative azospirillum and agrobacterium strains on growth, yield and quality of pea (Pisum sativum L.) grown under different nitrogen and phosphorus regimes. Sci Hortic 270:109401. https://doi.org/10.1016/j.scienta.2020.109401

    Article  CAS  Google Scholar 

  • Escoba O, Hue NV (2007) Current developments in organic farming. Recent Res Dev Soilsci 2:29–62

    Google Scholar 

  • Fatnassi IC et al (2015) Comptes Rendus Biologies impact of dual inoculation with rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress. C R Biol 338:241–254

    Article  PubMed  Google Scholar 

  • Fernando PC (2017) Pesticides, environment, and food safety. Food Energy Secur 6(2):48–60

    Google Scholar 

  • FiBL & IFOAM (2016) The world of organic agriculture statistics & emerging trends. Research Institute of Organic Agriculture FiBL & IFOAM Organics International. https://shop.fibl.org

  • Flores-félix JD et al (2013) Use of rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. J Plant Nutr Soil Sci 176(6):876–882. https://doi.org/10.1002/jpln.201300116

    Article  CAS  Google Scholar 

  • Foley JA et al (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  CAS  PubMed  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2013) Food wastage footprint: impacts on natural resources: summary reports. FAO, Rome

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (2015) How to feed the world in 2050. https://www.fao.org

  • Foyer CH, Nguyen H, Lam H-M (2019) Legumes—the art and science of environmentally sustainable agriculture. Plant Cell Environ 42:1–5

    Article  CAS  PubMed  Google Scholar 

  • Francis CA (2013) Reference module in earth systems and environmental sciences, organic farming

    Google Scholar 

  • Fukami J, Cerezini P, Hungria M (2018) Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Expr 8:73. https://doi.org/10.1186/s13568-018-0608-1

    Article  CAS  Google Scholar 

  • García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. 2(3):183–205. https://doi.org/10.3934/bioeng.2015.3.183

  • Garg A, Balodi R (2014) Recent trends in agriculture: vertical farming and organic farming. Adv Plants Agric Res 1(4):142–144

    Google Scholar 

  • Garg N, Chandel S (2010) Arbuscular mycorrhizal networks: process and functions. A review. Agron Sustain Dev 30(3). https://doi.org/10.1051/agro/2009054. Springer Verlag/EDP Sciences/INRA. hal-00886481

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Laxmipathi Gowda CL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. Biotech 5:355–377. https://doi.org/10.1007/s13205-014-0241-x

    Article  Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1127500. https://doi.org/10.1080/23311932.2015.1127500. Soil and Crop Sciences, Review Article

    Article  CAS  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:2. https://doi.org/10.4172/1948-5948.1000188

    Article  CAS  Google Scholar 

  • Hashem A, Tabassum B, Abd_Allah EF (2019) Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci 26:1291–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598. https://doi.org/10.1007/s13213-010-0117-1

    Article  Google Scholar 

  • Hole DG, Perkins AJ, Wilson JD, Alexander IH, Grice PV, Evans AD (2005) Does organic farming benefit biodiversity? Biol Conserv 122:113–130. https://doi.org/10.1016/j.biocon.2004.07.018

    Article  Google Scholar 

  • Hirsch PR, Mauchline TH, Clark IM (2013) Culture-independent molecular approaches to microbial ecology in soil and the rhizosphere. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vol 1. Wiley Blackwell, Hoboken, NJ, pp 45–55. https://doi.org/10.1186/s13568-018-0608-1

  • Iqbal MA, Khalid M, Shahzad SM, Ahmad M, Soleman N, Akhtar N (2012) Integrated use of rhizobium leguminosarum, plant growth promoting Rhizobacteria and enriched compost for improving growth, nodulation and yield of lentil (Lens culinaris Medik.). Chil J Agric Res 72:104–110

    Article  Google Scholar 

  • Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017) The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front Plant Sci 8:1617. https://doi.org/10.3389/fpls.2017.01617

    Article  PubMed  PubMed Central  Google Scholar 

  • Jakhar SR, Kumar S, Jangir CK, Meena RS (2017) The role of mycorrhizal relationship in sustainable manner towards plant growth and soil fertility. Indian J Agric Allied Sci 3(4):19–24

    Google Scholar 

  • Jalota SK et al (2018) Understanding climate change impacts on crop productivity and water balance. Elsevier, Amsterdam

    Google Scholar 

  • Jamal Q, Lee YS, Jeon HD, Kim KY (2018) Effect of plant growth-promoting bacteria Bacillus amyloliquefaciens Y1 on soil properties, pepper seedling growth, rhizosphere bacterial flora and soil enzymes. Plant Protect Sci 54:129–137

    Article  CAS  Google Scholar 

  • Javaid A (2011) Effects of biofertilizers combined with different soil amendments on potted rice plants. Chil J Agric Res 71(1):157–163

    Article  Google Scholar 

  • Jiménez-Gómez A, Celador-Lera L, Fradejas-Bayón M, Rivas R (2017) Plant probiotic bacteria enhance the quality of fruit and horticultural crops. AIMS Microbiol 3(3):483–501. https://doi.org/10.3934/microbiol.2017.3.483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawalekar JS (2013) Role of biofertilizers and biopesticides for sustainable agriculture. J Biol Innov 2(3):73–78

    Google Scholar 

  • Kalayu G (2019) Phosphate solubilizing microorganisms: promising approach as biofertilizers. Hindawi Int J Agron 2019:4917256, 7 pages. https://doi.org/10.1155/2019/4917256

  • Katherine K, Hendrik W (2010) Environmental impacts of agricultural technologies. Evans School Policy Analysis & Research (EPAR). EPAR Brief No. 65

    Google Scholar 

  • Katiyar D, Hemantaranjan A, Singh B (2015) Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian J Plant Physiol 20(1):1–9

    Article  Google Scholar 

  • Kaur H, Kaur J, Gera R (2016) Plant growth promoting Rhizobacteria: a boon to agriculture. Int J Cell Sci Biotechnol 5:17–22

    Google Scholar 

  • Kenneth OC, Nwadibe EC, Kalu AU, Unah UV (2019) Plant growth promoting rhizobacteria (PGPR): a novel agent for sustainable food production. Am J Agric Biol Sci 14:35–54. https://doi.org/10.3844/ajabssp.2019.35.54

    Article  CAS  Google Scholar 

  • Khalid A, Tahir S, Arshad M, Zahir ZA (2004) Relative efficiency of rhizobacteria for auxin biosynthesis in rhizosphere and non-rhizosphere soils. Aust J Soil Res 42:921–926. https://doi.org/10.1071/SR04019

    Article  CAS  Google Scholar 

  • Khan N, Bano AMD, Babar A (2020) Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. PLoS One 15(4):e0231426. https://doi.org/10.1371/journal.pone.0231426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khatoon Z, Huang S, Rafique M, Fakhar A, Kamran MA, Santoyo G (2020) Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. J Environ Manag 273:111118

    Article  CAS  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V, Vyas P, Dhaliwal HS, Saxena AK (2020) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Krey T, Vassilev N, Baum C, Eichler-Löbermann B (2013) Effects of long-term phosphorus application and plant-growth promoting rhizobacteria on maize phosphorus nutrition under field conditions. Eur J Soil Biol 55:124–130. https://doi.org/10.1016/j.ejsobi.2012.12.007

    Article  CAS  Google Scholar 

  • Kuan KB, Othman R, Abdul Rahim K, Shamsuddin ZH (2016) Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS One 11(3):e0152478. https://doi.org/10.1371/journal.pone.0152478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar N, Audipudi V (2015) Exploration of a novel plant growth promoting bacteria Stenotrophomonas maltophilia AVP27 isolated from the chilli rhizosphere soil. Int J Eng Res Gen Sci 3(1):265–276

    Google Scholar 

  • Kumar A et al (2019) Stenotrophomonas: a versatile diazotrophic bacteria from the rhizospheric soils of Western Himalayas and development of its liquid biofertilizer formulation. Vegetos 32(1):103–109. https://doi.org/10.1007/s42535-019-00013-8

    Article  Google Scholar 

  • Lal R (2016) Climate change and agriculture, 2nd edn

    Google Scholar 

  • Lehman RM, Cambardella CA, Stott DE, Acosta-Martinez V, Manter DK, Buyer JS, Maul J, Smith J, Collins H, Halvorson J, Kremer R, Lundgren J, Ducey TF, Jin VL, Karlen DL (2015) Understanding and enhancing soil biological health: the solution for reversing soil degradation. Sustainability 7:988–1027. https://doi.org/10.3390/su7010988

    Article  Google Scholar 

  • Lengai GMW, Muthomi JW (2018) Biopesticides and their role in sustainable agricultural production. J Biosci Med 6:7–41. https://doi.org/10.4236/jbm.2018.66002

    Article  CAS  Google Scholar 

  • Li H et al (2016) Stenotrophomonas maltophilia HW2 enhanced cucumber resistance against cucumber green mottle mosaic virus. J Plant Biol 59:488–495. https://doi.org/10.1007/s12374-016-0246-6

    Article  CAS  Google Scholar 

  • Li S, Peng M, Liu Z, Shah S (2017) The role of soil microbes in promoting plant growth. Mol Microbiol Res 7(4):30–37

    Google Scholar 

  • Lim J, Kim S (2013) Induction of drought stress resistance by multi-functional PGPR bacillus licheniformis K11 in pepper. Plant Pathol J 29(2):201–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Mabrouk Y, Belhadj O (2012) Enhancing the biological nitrogen fixation of leguminous crops grown under stressed environments. Afr J Biotechnol 11(48):10809–10815. https://doi.org/10.5897/AJB10.2170

    Article  Google Scholar 

  • Mäder P et al (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    Article  PubMed  Google Scholar 

  • Mahmood A, Turgay OC, Farooq M, Hayat R (2016) Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol Ecol 92(8):fiw112

    Article  PubMed  Google Scholar 

  • Malviya MK, Sharma A, Pandey A, Rinu K, Sati P, Palni LMS (2012) Bacillus subtilis NRRL B-30408: a potential inoculant for crops grown under rainfed conditions in the mountains. J Soil Sci Plant Nutr 12(4):811–824

    Google Scholar 

  • Martínez OA, Encina C, Tomckowiack C, Droppelmann F, Jara R, Maldonado C, Muñoz O, García-Fraile P, Rivas R (2018) Serratia strains isolated from the rhizosphere of raulí (Nothofagus alpina) in volcanic soils harbour PGPR mechanisms and promote raulí plantlet growth. J Soil Sci Plant Nutr 18:804–819

    Google Scholar 

  • Masciandaro G, Macci C, Peruzzi E, Ceccanti B, Doni S (2013) Organic matter-microorganism-plant in soil bioremediation: a synergic approach. Rev Environ Sci Biotechnol 12(4):399–419. https://doi.org/10.1007/s11157-013-9313-3

    Article  CAS  Google Scholar 

  • Medina A, Azcón R (2010) Effectiveness of the application of arbuscular mycorrhiza fungi and organic amendments to improve soil quality and plant performance under stress conditions. J Soil Sci Plant Nutr 10:354–372

    Article  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A et al (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172. https://doi.org/10.3389/fpls.2017.00172

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehnaz S, Weselowski B, Lazarovits G (2007) Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere. Int J Syst Evol Microbiol 57:620–624

    Article  CAS  PubMed  Google Scholar 

  • Meier MS et al (2015) Environmental impacts of organic and conventional agricultural products–are the differences captured by life cycle assessment? J Environ Manag 149:193–208

    Article  Google Scholar 

  • Metin T, Melek E, Ertan Y, Adem G, Kenan K, Recep K, Dursun A (2014) Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turk J Agric For 38:327–333. https://doi.org/10.3906/tar-1308-62. © TÜBİTAK

    Article  CAS  Google Scholar 

  • Mirza MS et al (2006) Molecular characterization and PCR detection of a nitrogen-fixing Pseudomonas strain promoting rice growth. Biol Fertil Soils 43(2):163–170. https://doi.org/10.1007/s00374-006-0074-9

    Article  CAS  Google Scholar 

  • Mishra VK (2018) Plant growth promoting rhizobacteria (PGPR) mediated temperature, drought and pesticide stress tolerance of crop plants through multidisciplinary approach. Am J Res Commun 6(3):1–9

    Google Scholar 

  • Mishra P, Dash D (2014) Rejuvenation of biofertilizer for sustainable agriculture and economic development. Cons J Sustain Dev 11(1):41–61

    Google Scholar 

  • Mondelaers K, Aertsens J, Van Huylenbroeck G (2009) A meta-analysis of the differences in environmental impacts between organic and conventional farming. Br Food J 111:1098–1119. https://doi.org/10.1108/00070700910992925

    Article  Google Scholar 

  • Muller A, Schader C, Scialabba NE, Brüggemann J, Isensee A, Erb K, Smith P, Klocke P, Leiber F, Tolze MS, Niggli U (2017) Strategies for feeding the world more sustainably with organic agriculture. Nat Commun 8:1290. https://doi.org/10.1038/s41467-017-01410-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naveed M, Mehboob I, Hussain MB, Zahir ZA (2015) Perspectives of rhizobial inoculation for sustainable crop production. In: Plant microbes symbiosis: applied facets. Springer, India, pp 209–239. https://doi.org/10.1007/978-81-322-2068-8_11

    Chapter  Google Scholar 

  • Nehra V, Choudhary M (2015) A review on plant growth promoting rhizobacteria acting as bioinoculants and their biological approach towards the production of sustainable agriculture. J Appl Nat Sci 7(1):540–556

    Article  Google Scholar 

  • Nielsen KM (2019) Organic farming. In: Encyclopedia of ecology (second edition). Elsevier, Amsterdam

    Google Scholar 

  • Noumavo PA, Agbodjato NA, Baba-Moussa F, Adjanohoun A, Baba-Moussa L (2016) Plant growth promoting rhizobacteria: beneficial effects for healthy and sustainable agriculture. Afr J Biotechnol 15(27):1452–1463. https://doi.org/10.5897/AJB2016.15397

    Article  CAS  Google Scholar 

  • Nunes J, Araujola SF, Nunesal M, Carneiroaa A, Tsaib M (2012) Impact of land degradation on soil microbial biomass and activity in northeast Brazil. Pedosphere 22(1):88–95

    Article  CAS  Google Scholar 

  • Ojo OI, Olajire-Ajayi BL, Dada OV, Wahab OM (2015) Effects of fertilizers on soil’s microbial growth and populations: a review. Am J Eng Res 4(7):52–61

    Google Scholar 

  • Onder M, Ceyhan E, Kahraman A (2011) Effects of agricultural practices on environment. international conference on biology. In: International conference on biology, environment and chemistry, vol 24. IPCBEE, pp 28–32. http://ipcbee.com/vol24/6-ICBEC2011-C00015

  • Orhan E, Esitken A, Ercisli S, Turan M, Sahin F (2006) Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci Hortic 111:38–43

    Article  CAS  Google Scholar 

  • Oruru MB, Njeru EM (2016) Upscaling arbuscular mycorrhizal symbiosis and related agroecosystems services in smallholder farming systems. Hindawi Publishing Corporation BioMed Res Int 2016:4376240, 12 pages. https://doi.org/10.1155/2016/4376240

  • Osman NI, Yin S (2018) Isolation and characterization of pea plant (Pisum sativum L.) growth-promoting rhizobacteria. Afr J Microbiol Res 12(34):820–828. https://doi.org/10.5897/AJMR2018.8859

    Article  CAS  Google Scholar 

  • Otutumi AT, Oliveira TS, Mendoça ES, Lima JBF (2004) Qualidade do solo em sistemas de cultivo agroecológicos no município de Tauá-CE. In: Oliveira TS et al (eds) Solo e água: aspectos de uso e manejo com ênfase no semi-árido nordestino. Departamento de ciências do solo, UFC, Fortaleza, CE, ix, 31 pp

    Google Scholar 

  • Owens K, Feldman J, Kepner J (2010) Wide range of diseases linked to pesticides. Pestic You 30:13–21

    Google Scholar 

  • Pahari A, Pradhan A, Priyadarshini S, Nayak SK, Mishra BB (2017) Isolation and characterization of plant growth promoting rhizobacteria from coastal region and their effect on different vegetables. Int J Sci Environ Technol 6(5):3002–3010

    Google Scholar 

  • Patel T, Saraf M (2017) Exploration of novel plant growth promoting bacteria stenotrophomonas maltophilia MTP42 isolated from the rhizospheric soil of Coleus forskohlii. Int J Curr Microbiol App Sci 6(11):944–955

    Article  Google Scholar 

  • Patel R, Rathor G, Bhargav BH, Singh K, Bharti D (2017) Study and effect of rhizobium bacteria and culture suspension isolated from root nodules at Nimad area. Pharma Innov J 6(9):368–371

    CAS  Google Scholar 

  • Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34(4):737–752. https://doi.org/10.1007/s13593-014-0233-6. Springer Verlag/EDP Sciences/INRA. hal-01234840

    Article  Google Scholar 

  • Paul D, Nair S (2008) Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48:378–384

    Article  CAS  PubMed  Google Scholar 

  • Pereyra MA, González RL, Creus CM, Barassi CA (2007) Root colonization vs. seedling growth, in two Azospirillum-inoculated wheat species. Cereal Res Commun 35:1621–1629

    Article  Google Scholar 

  • Perez-Montano F, Alias-Villegas C, Bellogin RA, del Cerro P, Espuny MR, Jimenez-Guerrero I et al (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336. https://doi.org/10.1016/j.micres.2013.09.011

    Article  CAS  PubMed  Google Scholar 

  • Poonia S (2011) Rhizobium: a natural biofertilizer. Int J Eng Manag Res 1(1):36–38. ISSN No.: 2250-0758

    Google Scholar 

  • Probanza A et al (2002) Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Appl Soil Ecol 20:75–84

    Article  Google Scholar 

  • Qessaoui R, Bouharroud R, Furze JN, El Aalaoui M, Akroud H, Amarraque A, VanVaerenbergh J, Tahzima R, Mayad EH, Chebli B (2019) Applications of new rhizobacteria pseudomonas isolates in agroecology via fundamental processes complementing plant growth. Sci Rep 9:12832. https://doi.org/10.1038/s41598-019-49216-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan R, Hashem A, Abd_Allah EF (2017) Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front Physiol 8:667. https://doi.org/10.3389/fphys.2017.00667

    Article  PubMed  PubMed Central  Google Scholar 

  • Rafiquea M, Sultanc T, Ortasb I, Chaudharya HJ (2017) Enhancement of maize plant growth with inoculation of phosphate-solubilizing bacteria and biochar amendment in soil. Soil Sci Plant Nutr 63(5):460–469. https://doi.org/10.1080/00380768.2017.1373599

    Article  CAS  Google Scholar 

  • Raimi A, Adeleke R, Roopnarain A (2017) Soil fertility challenges and biofertiliser as a viable alternative for increasing smallholder farmer crop productivity in sub-Saharan Africa. Cogent Food Agric 3:1400933. https://doi.org/10.1080/23311932.2017.1400933

  • Ramprasad D, Debasish SD, Bhattar SB (2014) Plant growth promoting Rhizobacteria – an overview. Eur J Biotechnol Biosci 2(2):30–34

    Google Scholar 

  • Raupach GS, Liu L, Murphy JF, Tuzun S, Kloepper JW (1996) Induced systemic resistance in cucumber and tomato against cucumber mosaic virus using plant growth-promoting rhizobacteria. Plant Dis 80:891–894

    Article  Google Scholar 

  • Reganold JP, Wachter JM (2016) Organic agriculture in the twenty-first century. Nat Plants 2:1–8

    Article  Google Scholar 

  • Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Funct Plant Biol 28:829–836. https://doi.org/10.1071/PP01045

    Article  Google Scholar 

  • Romero-Perdomo F, Ocampo-Gallego J, Camelo-Rusinque M, Bonilla R (2019) Plant growth promoting rhizobacteria and their potential as bioinoculants on Pennisetum clandestinum (Poaceae). Rev Biol Trop 67(4):825–832

    Article  Google Scholar 

  • Sachidanand B, Mitra N, Kumar V, Roy R, Mishra B (2019) Soil as a huge laboratory for microorganisms. Agric Res Tech Open Access J 22(4):ARTOAJ.MS.ID.556205

    Google Scholar 

  • Sahu PK, Gupta A, Sharma L, Bakade R (2017) Mechanisms of Azospirillum in plant growth promotion. Sch J Agric Vet Sci 4(9):338–343

    Google Scholar 

  • Saikia SP, Dutta SP, Goswami A, Bhau BS, Kanjilal PB (2010) Chapter 16: Role of Azospirillum in the improvement of legumes. In: Microbes for legume improvement. Springer-Verlag, Wien, pp 389–408. https://doi.org/10.1007/978-3-211-99753-6_16

    Chapter  Google Scholar 

  • Sangkumchaliang P, Huang WC (2012) Consumers’ perceptions and attitudes of organic food products in northern Thailand. Int Food Agribus Manag Rev 15:87–102

    Google Scholar 

  • Sathya A, Vijayabharathi R, Gopalakrishnan S (2016) Soil microbes: the invisible managers of soil fertility. In: Singh DP et al (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 1–16. https://doi.org/10.1007/978-81-322-2644-4_1

    Chapter  Google Scholar 

  • Schader C, Stolze M, Gattinger A (2012) Environmental performance of organic farming. In: Boye JI, Arcand Y (eds) Green technologies in food production and processing. Springer, New York, pp 183–210

    Chapter  Google Scholar 

  • Seneviratne G, Jayakody K, Weerasekara M, Someya T, Ryuda N (2011) Microbial biofertilizer application versus compost use in agriculture: soil health implications. In: Miransari M (ed) Soil microbes and environmental health. Nova Science Publishers, pp 81–117

    Google Scholar 

  • Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature 485:229–232

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Singhvi R (2017) Effects of chemical fertilizers and pesticides on human health and environment: a review. Int J Agric Environ Biotechnol 10(6):675–679

    Article  Google Scholar 

  • Sharma K, Sharma S, Rajendra Prasad S (2019) PGPR: renewable tool for sustainable agriculture. Int J Curr Microbiol App Sci 8(1):525–530

    Article  CAS  Google Scholar 

  • Singh I (2018) Plant growth promoting rhizobacteria (PGPR) and their various mechanisms for plant growth enhancement in stressful conditions: a review. Eur J Biol Res 8(4):191–213. https://doi.org/10.5281/zenodo.1455995

    Article  CAS  Google Scholar 

  • Singh A, Vaish B, Singh RP (2016) Eco-restoration of degraded lands through microbial biomass: an ecological engineer. Acta Biomedica Scientia 3(1):133–135

    CAS  Google Scholar 

  • Sinha RK, Valani D, Chauhan K, Agarwal S (2014) Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms: reviving the dreams of Sir Charles Darwin. Int J Agric Health Saf 1:50–64

    Google Scholar 

  • Skoufogianni E, Solomou A, Molla A, Martinos K (2015) Organic farming as an essential tool of the multifunctional agriculture. IntechOpen, London. https://doi.org/10.5772/61630

    Book  Google Scholar 

  • Smith LG, Kirk GJD, Jones PJ et al (2019) The greenhouse gas impacts of converting food production in England and Wales to organic methods. Nat Commun 10:4641. https://doi.org/10.1038/s41467-019-12622-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DL, Praslickova D, Ilangumaran G (2015) Inter-organismal signaling and management of the phytomicrobiome. Front Plant Sci 6:722. https://doi.org/10.3389/fpls.2015.00722

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava R, Singh A (2017) Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. Int J Agric Sci Res (IJASR) 7(4):505–510. ISSN (P): 2250-0057; ISSN (E): 2321-0087

    Google Scholar 

  • Steffen RB, Steffen GPK, Saldanha CW (2020) Importance of mycorrhization under heat stress conditions: technological tools to stimulate mycorrhizal colonization. J Agric Environ Sci 9(1):8–14. https://doi.org/10.15640/jaes.v9n1a2

    Google Scholar 

  • Surendirakumar K, Pandey RR, Muthukumar T (2019) Influence of indigenous arbuscular mycorrhizal fungus and bacterial bioinoculants on growth and yield of Capsicum chinense cultivated in non-sterilized soil. J Agric Sci 157(1):31–44. https://doi.org/10.1017/S0021859619000261

    Article  Google Scholar 

  • Tahat MM, Alananbeh KM, Othman YA, Leskovar DI (2020) Soil health and sustainable agriculture. Sustainability 12:4859. https://doi.org/10.3390/su12124859

    Article  CAS  Google Scholar 

  • Tan KZ, Radziah O, Halimi MS, Khairuddin AR, Shamsuddin ZH (2015) Assessment of plant growth-promoting rhizobacteria (PGPR) and rhizobia as multi-strain biofertilizer on growth and N2 fixation of rice plant. AJCS 9(12):1257–1264

    CAS  Google Scholar 

  • Tiwari S, Chauhan RK, Singh R, Shukla R, Gaur R (2017) Integrated effect of rhizobium and azotobacter cultures on the leguminous crop black gram (Vigna mungo). Adv Crop Sci Tech 5(3):1–9. https://doi.org/10.4172/2329-8863.1000289

    Article  CAS  Google Scholar 

  • Tsvetkov I, Atanassov A, Vlahova M, Carlier L, Christov N, Lefort F, Rusanov K, Badjakov I, Dincheva I, Tchamitchian M, Rakleova G (2018) Plant organic farming research–current status and opportunities for future development. Biotechnol Biotechnol Equip 32(2):241–260

    Article  Google Scholar 

  • Tuhuteru S, Sulistyaningsih E, Wibowo A (2016) Effects of plant growth promoting rhizobacteria (PGPR) on growth and yield of shallot in Sandy coastal land. Ilmu Pertanian (Agric Sci) 1(3):105–110. Available online at http://journal.ugm.ac.id/jip.doi.org/10.22146/ipas.16349

    Article  Google Scholar 

  • Tuomisto H, Hodge I, Riordan P, Macdonald D (2012) Does organic farming reduce environmental impacts?–a meta-analysis of European research. J Environ Manag 112:309–320

    Article  CAS  Google Scholar 

  • Ulm F, Avelar D, Hobson P, Penha-Lopes G, Dias T, Maguas C, Cruz C (2019) Sustainable urban agriculture using compost and an open-pollinated maize variety. J Clean Prod 212:622–629

    Article  CAS  Google Scholar 

  • United Nations (2015) Population pyramids of the world from 1950 to 2100. World population prospects. https://un.org

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Boyce AN (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21:573. https://doi.org/10.3390/molecules21050573

    Article  CAS  PubMed Central  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586. https://doi.org/10.1023/A:1026037216893

    Article  CAS  Google Scholar 

  • Villarreal-Delgado MF, Villa-Rodríguez ED, CiraChávez LA, Estrada-Alvarado MI, Parra-Cota FI, De los Santos-Villalobos S (2017) The genus Bacillus as a biological control agent and its implications in the agricultural biosecurity. Rev Mex Fitopatol 36(1):95–130. https://doi.org/10.18781/R.MEX.FIT.1706-5

    Article  Google Scholar 

  • Yadav N, Yadav AN (2019) Actinobacteria for sustainable agriculture. J Appl Biotechnol Bioeng 6(1):38–41

    Google Scholar 

  • Yadav AN, Verma P, Singh B, Chauahan VS, Suman A, Saxena AK (2017) Plant growth promoting bacteria: biodiversity and multifunctional attributes for sustainable agriculture. Adv Biotechnol Microbiol 5(5):AIBM.MS.ID.555671. https://doi.org/10.19080/AIBM.2017.05.5556671

    Article  Google Scholar 

  • Yadegari M, Rahmani HA (2010) Evaluation of bean (Phaseolus vulgaris) seeds’ inoculation with rhizobium phaseoli and plant growth promoting rhizobacteria (PGPR) on yield and yield components. Afr J Agric Res 5(9):792–799

    Google Scholar 

  • Yanakittkul P, Aungvaravong C (2019) Proposed conceptual framework for studying the organic farmer behaviors. Kasetsart J Soc Sci 40:491–498

    Google Scholar 

  • Yanakittkul P, Aungvaravong C (2020) A model of farmers intentions towards organic farming: a case study on rice farming in Thailand. Heliyon 6(2020):e03039

    Article  PubMed  Google Scholar 

  • Yu H, Ling N, Wang T, Zhu C, Wang Y, Wang S et al (2019) Responses of soil biological traits and bacterial communities to nitrogen fertilization mediate maize yields across three soil types. Soil Till Res 185:61–69. https://doi.org/10.1016/j.still.2018.08.017

    Article  Google Scholar 

  • Zeffa DM, Perini LJ, Silva MB, de Sousa NV, Scapim CA, Oliveira ALM et al (2019) Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes. PLoS One 14(4):e0215332. https://doi.org/10.1371/journal.pone.0215332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerihun T, Birhanu G, Genene T, Adey F, Solomon C, Tesfaye A, Fasil A (2019) Isolation and biochemical characterization of plant growth promoting (PGP) bacteria colonizing the rhizosphere of Tef crop during the seedling stage. Biomed J Sci Tech Res 14(2):MS.ID.002534

    Google Scholar 

  • Zuluaga MYA, Lima Milani KM, Azeredo Gonçalves LS, Martinez de Oliveira AL (2020) Diversity and plant growth-promoting functions of diazotrophic/N-scavenging bacteria isolated from the soils and rhizospheres of two species of Solanum. PLoS One 15(1):e0227422. https://doi.org/10.1371/journal.pone.0227422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Oluwaseun Adetunji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adetunji, C.O. et al. (2021). Recent Trends in Organic Farming. In: Soni, R., Suyal, D.C., Bhargava, P., Goel, R. (eds) Microbiological Activity for Soil and Plant Health Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-2922-8_20

Download citation

Publish with us

Policies and ethics