Skip to main content

Classification, Synthesis and Application of Nanoparticles Against Infectious Diseases

  • Chapter
  • First Online:
Bio-Nano Interface

Abstract

Nowadays, resistant bacterial strains have become major threats to medical science, causing various infectious disease conditions against different traditional antibiotics. Medical world is also looking for potential antimicrobial agents against different resistant bacterial strains to replace conventional antibiotics. Due to advance physico-chemical properties, nanoparticles have pulled tremendous recognition from different groups of research for their advance uses in various streams of medical science. Unfortunately, currently engineered nanoparticles became a major challenge towards researcher for using nanoparticles against drug-resistant bacterial species. Although, there are several physical and chemical synthesis approaches to engineer nanomaterials, nevertheless most of them are not eco-friendly. Hence, different research groups have adopted green synthesis approaches for synthesis of nanoparticles. In this context, we highlights about different synthesis ways such as physical as well as chemical synthesis approaches to engineered nanoparticles along with green synthesis method, an eco-friendly approach in comparison to other conventional methods. Nanoantibiotics also deliver a new way of escaping present antimicrobial discovery model and also holds potential to become a new bioweapon toward bacterial resistant strains. Therefore, in this chapter we have discussed application of nanoparticle as a novel antibiotics with their antibacterial mechanism, could be potential solutions against different infectious diseases caused by various microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adair JH, Parette MP, Altınoglu EI, Kester M (2010) Nanoparticulate alternatives for drug delivery. ACS Nano 4(9):4967–4970

    Article  CAS  PubMed  Google Scholar 

  • Ahmed A, Khan AK, Anwar A, Ali SA, Shah MR (2016) Biofilm inhibitory effect of chlorhexidine conjugated gold nanoparticles against Klebsiella pneumoniae. Microb Pathog 98:50–56

    Article  CAS  PubMed  Google Scholar 

  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102

    Article  PubMed  PubMed Central  Google Scholar 

  • Arakha M, Jha S (2018) Interfacial phenomena on biological membranes. Springer

    Book  Google Scholar 

  • Arakha M, Borah SM, Saleem M, Jha AN, Jha S (2016) Interfacial assembly at silver nanoparticle enhances the antibacterial efficacy of nisin. Free Radic Biol Med 101:434–445

    Article  CAS  PubMed  Google Scholar 

  • Arakha M, Pal S, Samantarrai D, Panigrahi TK, Mallick BC, Pramanik K, Mallick B, Jha S (2015a) Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Rep 5:14813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arakha M, Roy J, Nayak PS, Mallick B, Jha S (2017) Zinc oxide nanoparticle energy band gap reduction triggers the oxidative stress resulting into autophagy-mediated apoptotic cell death. Free Radic Biol Med 110:42–53

    Article  CAS  PubMed  Google Scholar 

  • Arakha M, Saleem M, Mallick BC, Jha S (2015b) The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci Rep 5:9578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arya A, Mishra V, Chundawat TS (2019) Green synthesis of silver nanoparticles from green algae (Botryococcus braunii) and its catalytic behavior for the synthesis of benzimidazoles. Chem Data Collect 20:100190

    Article  CAS  Google Scholar 

  • Aswathanarayan JB, Vittal RR (2019) Nanoemulsions and their potential applications in food industry. Front Sustain Food Syst 3(95):2571–2581

    Google Scholar 

  • Bayda S, Hadla M, Palazzolo S, Riello P, Corona G, Toffoli G, Rizzolio F (2018) Inorganic nanoparticles for cancer therapy: a transition from lab to clinic. Curr Med Chem 25(34):4269–4303

    Article  CAS  PubMed  Google Scholar 

  • Bertrand N, Leroux J-C (2012) The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release 161(2):152–163

    Article  CAS  PubMed  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71

    Article  PubMed  Google Scholar 

  • Cao W (2007) Synthesis of nanomaterials by high energy ball milling. Skyspring Nanomaterials, Houston, TX

    Google Scholar 

  • Casciaro B, Moros M, Rivera-Fernández S, Bellelli A, Jesús M, Mangoni ML (2017) Gold-nanoparticles coated with the antimicrobial peptide esculentin-1a (1-21) NH2 as a reliable strategy for antipseudomonal drugs. Acta Biomater 47:170–181

    Article  CAS  PubMed  Google Scholar 

  • Chandra Hembram K, Prabha S, Chandra R, Ahmed B, Nimesh S (2016) Advances in preparation and characterization of chitosan nanoparticles for therapeutics. Artif Cells Nanomed Biotechnol 44(1):305–314

    Article  CAS  PubMed  Google Scholar 

  • Chaudhari AA, Deb Nath S, Kate K, Dennis V, Singh SR, Owen DR, Palazzo C, Arnold RD, Miller ME, Pillai SR (2016) A novel covalent approach to bio-conjugate silver coated single walled carbon nanotubes with antimicrobial peptide. J Nanobiotechnol 14(1):58

    Article  Google Scholar 

  • Choi H-J, Pammi S, Park B-J, Eom J-H, An H, Kim HY, Kim M, Seol D, Kim Y, Yoon S-GJ (2017) Resistance against water and acid water (pH= 4.0) via Al-doped ZnO thin films for environmentally friendly glass panels. J Alloys Comp 719:271–280

    Article  CAS  Google Scholar 

  • Choi Y, Park TJ, Lee DC, Lee SY (2018) Recombinant Escherichia coli as a biofactory for various single-and multi-element nanomaterials. Proc Natl Acad Sci 115(23):5944–5949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das RK, Pachapur VL, Lonappan L, Naghdi M, Pulicharla R, Maiti S, Cledon M, Dalila LMA, Sarma SJ, Brar SK (2017) Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol Environ Eng 2(1):18

    Article  Google Scholar 

  • Durán N, Marcato PD, Durán M, Yadav A, Gade A, Rai M (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol 90(5):1609–1624

    Article  PubMed  Google Scholar 

  • Ealias AM, Saravanakumar M (2017) A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng 2017:032019

    Google Scholar 

  • El-Eskandarany MS (2013) Mechanical alloying: for fabrication of advanced engineering materials. University Press of Mississippi, Jackson, MS

    Google Scholar 

  • Epifani M, Giannini C, Tapfer L, Vasanelli L (2000) Sol–gel synthesis and characterization of Ag and Au nanoparticles in SiO2, TiO2, and ZrO2 thin films. J Am Ceram Soc 83(10):2385–2393

    Article  CAS  Google Scholar 

  • Feynman RP (1960) There's plenty of room at the bottom. California Institute of Technology, Engineering and Science magazine, Pasadena, CA

    Google Scholar 

  • Gaidhani S, Singh R, Singh D, Patel U, Shevade K, Yeshvekar R, Chopade BA (2013) Biofilm disruption activity of silver nanoparticles synthesized by Acinetobacter calcoaceticus PUCM 1005. Mater Lett 108:324–327

    Article  CAS  Google Scholar 

  • Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115(11):4744–4822

    Article  CAS  PubMed  Google Scholar 

  • Ghorbani HR (2014) A review of methods for synthesis of Al nanoparticles. Orient J Chem 30(4):1941–1949

    Article  CAS  Google Scholar 

  • Gonçalves GAB, Marques P (2019) Nanostructured materials for treating aquatic pollution. Springer, Cham

    Book  Google Scholar 

  • Gopinath V, Priyadarshini S, Loke MF, Arunkumar J, Marsili E, MubarakAli D, Velusamy P, Vadivelu J (2017) Biogenic synthesis, characterization of antibacterial silver nanoparticles and its cell cytotoxicity. Arab J Chem 10(8):1107–1117

    Article  CAS  Google Scholar 

  • Gour A, Jain NK (2019) Advances in green synthesis of nanoparticles. Artif Cells Nanomed Biotechnol 47(1):844–851

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Eral HB, Hatton TA, Doyle PS (2016) Nanoemulsions: formation, properties and applications. Soft Matter 12(11):2826–2841

    Article  CAS  PubMed  Google Scholar 

  • Hwang IS, Hwang JH, Choi H, Kim K-J, Lee DG (2012) Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J Med Microbiol 61(12):1719–1726

    Article  CAS  PubMed  Google Scholar 

  • Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. Int Sch Res Notices 2014:359316

    PubMed  PubMed Central  Google Scholar 

  • Ishida Y, Corpuz RD, Yonezawa T (2017) Matrix sputtering method: a novel physical approach for photoluminescent noble metal nanoclusters. Acc Chem Res 50(12):2986–2995

    Article  CAS  PubMed  Google Scholar 

  • Jegadeeswaran P, Shivaraj R, Venckatesh R (2012) Green synthesis of silver nanoparticles from extract of Padina tetrastromatica leaf. Dig J Nanomater Biostruct 7(3):991–998

    Google Scholar 

  • Kalita S, Kandimalla R, Sharma KK, Kataki AC, Deka M, Kotoky J (2016) Amoxicillin functionalized gold nanoparticles reverts MRSA resistance. Mater Sci Eng C 61:720–727

    Article  CAS  Google Scholar 

  • Kim M, Osone S, Kim T, Higashi H, Seto TJ (2017) Synthesis of nanoparticles by laser ablation: a review. KONA Powder Part J 2017:9

    Google Scholar 

  • Kim T, Braun GB, Z-g S, Hussain S, Ruoslahti E, Sailor M (2016) Composite porous silicon–silver nanoparticles as theranostic antibacterial agents. ACS Appl Mater Interfaces 8(44):30449–30457

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Ray SS (2018) Synthesis and functionalization of nanomaterials. In: Processing of polymer-based nanocomposites. Springer, Cham, pp 15–55

    Chapter  Google Scholar 

  • Lee BY, Li Z, Clemens DL, Dillon BJ, Hwang AA, Zink JI, Horwitz MA (2016) Redox-triggered release of moxifloxacin from mesoporous silica nanoparticles functionalized with disulfide snap-tops enhances efficacy against pneumonic tularemia in mice. Small 12(27):3690–3702

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Jun B-H (2019) Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci 20(4):865

    Article  CAS  PubMed Central  Google Scholar 

  • Li J, Li Q, Ma X, Tian B, Li T, Yu J, Dai S, Weng Y, Hua Y (2016a) Biosynthesis of gold nanoparticles by the extreme bacterium Deinococcus radiodurans and an evaluation of their antibacterial properties. Int J Nanomed 11:5931

    Article  CAS  Google Scholar 

  • Li YJ, Harroun SG, Su YC, Huang CF, Unnikrishnan B, Lin HJ, Lin CH, Huang CC (2016b) Synthesis of self-assembled spermidine-carbon quantum dots effective against multidrug-resistant bacteria. Adv Healthc Mater 5(19):2545–2554

    Article  CAS  PubMed  Google Scholar 

  • Lugscheider E, Bärwulf S, Barimani C, Riester M, Hilgers HJ (1998) Magnetron-sputtered hard material coatings on thermoplastic polymers for clean room applications. Surf Coat Technol 108:398–402

    Article  Google Scholar 

  • Madeła M, Neczaj E, Grosser A (2016) Fate of engineered nanoparticles in wastewater treatment plant. Inżynieria i Ochrona Środowiska 19(4):577–587

    Google Scholar 

  • Mahajan SD, Aalinkeel R, Law W-C, Reynolds JL, Nair BB, Sykes DE, Yong K-T, Roy I, Prasad PN, Schwartz SA (2012) Anti-HIV-1 nanotherapeutics: promises and challenges for the future. Int J Nanomed 7:5301

    Article  CAS  Google Scholar 

  • Maharani V, Sundaramanickam A, Balasubramanian T (2016) In vitro anticancer activity of silver nanoparticle synthesized by Escherichia coli VM1 isolated from marine sediments of Ennore southeast coast of India. Enzyme Microb Technol 95:146–154

    Article  CAS  PubMed  Google Scholar 

  • Mocan L, Ilie I, Tabaran FA, Iancu C, Mosteanu O, Pop T, Zdrehus C, Bartos D, Mocan T, Matea C (2016) Selective laser ablation of methicillin-resistant staphylococcus aureus with IgG functionalized multi-walled carbon nanotubes. J Biomed Nanotechnol 12(4):781–788

    Article  CAS  PubMed  Google Scholar 

  • Mohan C, Carvajal-Millan E, Ravishankar C (2018) Research methodology in food sciences: integrated theory and practice. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517

    Article  CAS  Google Scholar 

  • Mu H, Liu Q, Niu H, Sun Y, Duan J (2016) Gold nanoparticles make chitosan–streptomycin conjugates effective towards gram-negative bacterial biofilm. RSC Adv 6(11):8714–8721

    Article  CAS  Google Scholar 

  • Mukasyan AS, Rogachev AS, Aruna ST (2015) Combustion synthesis in nanostructured reactive systems. Adv Powder Technol 26(3):954–976

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar P, Alam M (2001) Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed, Angewandte Chemie international edition, vol 40(19), pp 3585–3588

    Google Scholar 

  • Murty B, Shankar P, Raj B, Rath B, Murday J (2013) Textbook of nanoscience and nanotechnology. Springer, Cham

    Book  Google Scholar 

  • Musarrat J, Dwivedi S, Singh BR, Saquib Q, Al-Khedhairy AA (2011) Microbially synthesized nanoparticles: scope and applications. In: Microbes and microbial technology. Springer, pp 101–126

    Chapter  Google Scholar 

  • Nagajyothi PC, Lee KD (2011) Synthesis of plant-mediated silver nanoparticles using dioscorea batatas rhizome extract and evaluation of their antimicrobial activities. J Nanomater 2011:573429

    Article  Google Scholar 

  • Nasrollahzadeh M, Sajadi MS, Atarod M, Sajjadi M, Isaabadi Z (2019) An introduction to green nanotechnology. Academic Press, Cambridge, MA

    Google Scholar 

  • Nayak PS, Arakha M, Kumar A, Asthana S, Mallick BC, Jha S (2016) An approach towards continuous production of silver nanoparticles using Bacillus thuringiensis. RSC Adv 6(10):8232–8242

    Article  CAS  Google Scholar 

  • Nayak PS, Pradhan S, Arakha M, Kumar D, Saleem M, Mallick B, Jha S (2018) Silver nanoparticles fabricated using medicinal plant extracts show enhanced antimicrobial and selective cytotoxic propensities. IET Nanobiotechnol 13(2):193–201

    Article  Google Scholar 

  • Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40(22):4128–4158

    Article  CAS  Google Scholar 

  • Niemirowicz K, Piktel E, Wilczewska AZ, Markiewicz KH, Durnaś B, Wątek M, Puszkarz I, Wróblewska M, Niklińska W, Savage PB (2016) Core–shell magnetic nanoparticles display synergistic antibacterial effects against Pseudomonas aeruginosa and Staphylococcus aureus when combined with cathelicidin LL-37 or selected ceragenins. Int J Nanomed 11:5443

    Article  CAS  Google Scholar 

  • Orive G, Anitua E, Pedraz JL, Emerich DF (2009) Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci 10(9):682–692

    Article  CAS  PubMed  Google Scholar 

  • Panáček A, Smékalová M, Večeřová R, Bogdanová K, Röderová M, Kolář M, Kilianová M, Hradilová Š, Froning JP, Havrdová M (2016) Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae. Colloids Surf B Biointerfaces 142:392–399

    Article  PubMed  Google Scholar 

  • Panda S, Yadav KK, Nayak PS, Arakha M, Jha S (2016) Screening of metal-resistant coal mine bacteria for biofabrication of elemental silver nanoparticle. Bull Mater Sci 39(2):397–404

    Article  CAS  Google Scholar 

  • Pourali P, Badiee SH, Manafi S, Noorani T, Rezaei A, Yahyaei B (2017) Biosynthesis of gold nanoparticles by two bacterial and fungal strains, Bacillus cereus and Fusarium oxysporum, and assessment and comparison of their nanotoxicity in vitro by direct and indirect assays. Electron J Biotechnol 29:86–93

    Article  CAS  Google Scholar 

  • Prince A, Sandhu P, Ror P, Dash E, Sharma S, Arakha M, Jha S, Akhter Y, Saleem M (2016) Lipid-II independent antimicrobial mechanism of nisin depends on its crowding and degree of oligomerization. Sci Rep 6(1):1–15

    Article  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Current trends in phytosynthesis of metal nanoparticles. Crit Rev Biotechnol 29(1):78–78

    CAS  Google Scholar 

  • Ramesh S (2013) Sol-gel synthesis and characterization of nanoparticles. J Nanosci 2013:929321

    Article  Google Scholar 

  • Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36(7):887–913

    Article  CAS  Google Scholar 

  • Ray SS, Kuruma M (2020) Halogen-free flame-retardant polymers: next-generation fillers for polymer nanocomposite applications, vol 294. Springer, Berlin

    Google Scholar 

  • Romero D, Aguilar C, Losick R, Kolter R (2010) Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci 107(5):2230–2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salavati-Niasari M, Davar F, Mir N (2008) Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron 27(17):3514–3518

    Article  CAS  Google Scholar 

  • Sambhy V, Peterson BR, Sen A (2008) Antibacterial and hemolytic activities of pyridinium polymers as a function of the spatial relationship between the positive charge and the pendant alkyl tail. Angew Chem Int Ed 47(7):1250–1254

    Article  CAS  Google Scholar 

  • Sau TK, Rogach AL (2010) Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater 22(16):1781–1804

    Article  CAS  PubMed  Google Scholar 

  • Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(5):544–568

    Article  CAS  PubMed  Google Scholar 

  • Semaltianos N (2010) Nanoparticles by laser ablation. Crit Rev Solid State Mater Sci 35(2):105–124

    Article  CAS  Google Scholar 

  • Sharma M, Nayak PS, Asthana S, Mahapatra D, Arakha M, Jha S (2018) Biofabrication of silver nanoparticles using bacteria from mangrove swamp. IET Nanobiotechnol 12(5):626–632

    Article  PubMed  Google Scholar 

  • Seo WS, Lee JH, Sun X, Suzuki Y, Mann D, Liu Z, Terashima M, Yang PC, McConnell MV, Nishimura DG (2006) FeCo/graphitic-shell nanocrystals as advanced magnetic-resonanceimaging and near-infrared agents. Nat Mater 5(12):971–976

    Article  CAS  PubMed  Google Scholar 

  • Siegel J, Lyutakov O, Rybka V, Kolská Z, Švorčík V (2011) Properties of gold nanostructures sputtered on glass. Nanoscale Res Lett 6(1):1–9

    Google Scholar 

  • Simonazzi A, Cid AG, Villegas M, Romero AI, Palma SD, Bermúdez JM (2018) Nanotechnology applications in drug controlled release. In: Drug targeting and stimuli sensitive drug delivery systems. Elsevier, Amsterdam, pp 81–116

    Chapter  Google Scholar 

  • Singh H, Du J, Yi T-H (2017) Kinneretia THG-SQI4 mediated biosynthesis of silver nanoparticles and its antimicrobial efficacy. Artif Cells Nanomed Biotechnol 45(3):602–608

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Kim YJ, Wang C, Mathiyalagan R, Yang DC (2016) Weissella oryzae DC6-facilitated green synthesis of silver nanoparticles and their antimicrobial potential. Artif Cells Nanomed Biotechnol 44(6):1569–1575

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Dutta T, Kim K-H, Rawat M, Samddar P, Kumar P (2018) ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16(1):1–24

    Article  Google Scholar 

  • Smekalova M, Aragon V, Panacek A, Prucek R, Zboril R, Kvitek L (2016) Enhanced antibacterial effect of antibiotics in combination with silver nanoparticles against animal pathogens. Vet J 209:174–179

    Article  CAS  PubMed  Google Scholar 

  • Song D, Qu X, Liu Y, Li L, Yin D, Li J, Xu K, Xie R, Zhai Y, Zhang H (2017) A rapid detection method of Brucella with quantum dots and magnetic beads conjugated with different polyclonal antibodies. Nanoscale Res Lett 12(1):179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonker AS, Pathak J, Kannaujiya VK, Sinha RP (2017) Characterization and in vitro antitumor, antibacterial and antifungal activities of green synthesized silver nanoparticles using cell extract of Nostoc sp. strain HKAR-2. Canadian J Biotechnol 1(1):26

    Article  Google Scholar 

  • Tai CY, Tai C-T, Chang M-H, Liu H-SJ (2007) Synthesis of magnesium hydroxide and oxide nanoparticles using a spinning disk reactor. Ind Eng Chem Res 46(17):5536–5541

    Article  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6(2):257–262

    Article  CAS  Google Scholar 

  • Thiagarajan S, Sanmugam A, Vikraman D (2017) Facile methodology of sol-gel synthesis for metal oxide nanostructures. In: Recent applications in sol-gel synthesis. Intechopen, pp 1–17

    Google Scholar 

  • Tiwari A, Prince A, Arakha M, Jha S, Saleem M (2018) Passive membrane penetration by ZnO nanoparticles is driven by the interplay of electrostatic and phase boundary conditions. Nanoscale 10(7):3369–3384

    Article  CAS  PubMed  Google Scholar 

  • Tiwari DK, Behari J, Sen P (2008) Application of nanoparticles in waste water treatment 1. World Appl Sci J 3(3):417–433

    Google Scholar 

  • Tiwari M, Jain P, Hariharapura RC, Narayanan K, Bhat U, Udupa N, Rao JV (2016) Biosynthesis of copper nanoparticles using copper-resistant Bacillus cereus, a soil isolate. Process Biochem 51(10):1348–1356

    Article  CAS  Google Scholar 

  • Wan G, Ruan L, Yin Y, Yang T, Ge M, Cheng X (2016) Effects of silver nanoparticles in combination with antibiotics on the resistant bacteria Acinetobacter baumannii. Int J Nanomed 11:3789

    Article  CAS  Google Scholar 

  • Wang C, Kim YJ, Singh P, Mathiyalagan R, Jin Y, Yang DCJ (2016) Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artif Cells Nanomed Biotechnol 44(4):1127–1132

    CAS  PubMed  Google Scholar 

  • Wang J, Wu G, Liu X, Sun G, Li D, Wei H (2017) A decomposable silica-based antibacterial coating for percutaneous titanium implant. Int J Nanomed 12:371

    Article  CAS  Google Scholar 

  • Wang L, Chen S, Ding Y, Zhu Q, Zhang N, Yu SJ (2018) Biofabrication of morphology improved cadmium sulfide nanoparticles using Shewanella oneidensis bacterial cells and ionic liquid: for toxicity against brain cancer cell lines. J Photochem Photobiol B Biol 178:424–427

    Article  CAS  Google Scholar 

  • Weir E, Lawlor A, Whelan A, Regan F (2008) The use of nanoparticles in anti-microbial materials and their characterization. Analyst 133(7):835–845

    Article  CAS  PubMed  Google Scholar 

  • Wypij M, Czarnecka J, Świecimska M, Dahm H, Rai M, Golinska P (2018) Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain. World J Microbiol Biotechnol 34(2):23

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav KK, Arakha M, Das B, Mallick B, Jha S (2018) Preferential binding to zinc oxide nanoparticle interface inhibits lysozyme fibrillation and cytotoxicity. Int J Biol Macromol 116:955–965

    Article  CAS  PubMed  Google Scholar 

  • Yahaya Khan M, Abdul Karim ZA, Hagos FY, Aziz ARA, Tan IM (2014) Current trends in water-in-diesel emulsion as a fuel. Sci World J 2014:2356–6140

    Article  Google Scholar 

  • Yang W, Shen C, Ji Q, An H, Wang J, Liu Q, Zhang Z (2009) Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnol Environ Eng 20(8):085102

    Article  Google Scholar 

  • Yin H, Tang Z (2016) Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage. Chem Soc Rev 45(18):4873–4891

    Article  CAS  PubMed  Google Scholar 

  • Zaidi S, Misba L, Khan AU (2017) Nano-therapeutics: a revolution in infection control in post antibiotic era. Nanomed Nanotechnol Biol Med 13(7):2281–2301

    Article  CAS  Google Scholar 

  • Zaleska-Medynska A, Marchelek M, Diak M, Grabowska E (2016) Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties. Adv Colloid Interface Sci 229:80–107

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoranjan Arakha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, B.S., Das, A., Mishra, A., Arakha, M. (2022). Classification, Synthesis and Application of Nanoparticles Against Infectious Diseases. In: Arakha, M., Pradhan, A.K., Jha, S. (eds) Bio-Nano Interface. Springer, Singapore. https://doi.org/10.1007/978-981-16-2516-9_3

Download citation

Publish with us

Policies and ethics