Skip to main content

Nanoparticles and Stem Cells

  • Chapter
  • First Online:
Stem Cells

Abstract

Nanoparticles are particles of varying in diameter spanning in the range of 1–100 nanometres (nm) with physical properties that have extensive and diverse application in the human day-to-day life. Their biocompatible nature, ability to be engineered, has enabled their different biological applications. They find applications in (1) delivery of stem cells, (2) monitoring of the stem cells by imaging thereby providing enormous advantages in stem cell-mediated application in regenerative medicine. But despite its advantageous the toxicity issues associated as still restricting their usage. We discuss in this chapter the promises and risks associated with nanoparticles in application in stem cell-mediated therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

ANXA3:

Annexin A3

AuNPs:

Gold nanoparticles

BC:

Breast cancer

BCSCs:

Breast cancer stem cells

BMP:

Bone morphogenetic protein

CB:

Charnoly body

CDQs:

Carbon quantum dots

CNT:

Carbon nanotubes

CoSCs:

Colorectal cancer stem cells

CSC:

Cancer stem cell

CT:

Computed tomography

DBCO:

Dibenzyl cyclooctyne

DOX:

Doxorubicin

EGCG:

Epigallocatechin-3-gallate

EPR:

Enhanced permeability and retention

FA:

Folic acid

Fbg:

Fibrinogen

Fbn:

Fibrin

FDA:

Food and Drug Administration

FITC:

Fluorescein isothiocyanate

GBM:

Glioblastoma

GLI1:

Glioma-associated oncogene 1

GSCs:

Glioma stem cells

HA:

Hyaluronic acid

HMSN:

Hollow mesoporous silica nanoparticles

HPMA:

N-(2-hydroxypropyl)-methacrylamide

IL-6:

Interleukin-6

IONPs:

Iron oxide nanoparticle

iPSCs:

Induced pluripotent stem cells

IS:

Ischemic stroke

ITT:

Immature testicular tissue

IVD:

Intervertebral disc degeneration

MAPK:

Mitogen-activated protein kinase

MDR:

Multidrug resistance

microRNA:

miRNA

MIRET:

Minimally invasive and regenerative therapeutics

MMSNs:

Magnetic mesoporous silica nanoparticles

MNPs:

Magnetic nanoparticles

MNPs@SiO2(RITC):

Silica-coated magnetic nanoparticles

MRI:

Magnetic resonance imaging

MS:

Multiple sclerosis

MSC:

Mesenchymal stem cell

MSN-HAs:

Hyaluronic acid conjugated mesoporous silica nanoparticles

MT:

Metallothioneins

MWNTs:

Multi-walled carbon nanotubes

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NIR:

Near infrared

Nos:

Noscapine

NPs:

Nanoparticles

NSC:

Neural stem cell

OvCSCs:

Ovarian cancer stem cells

PC:

Prostrate cancer

PCEC:

Prostate cancer epithelial cell

PCSCs:

Pancreatic cancer stem cells

PD:

Parkinson’s disease

PDMAAm-coated γ-Fe2O3::

Poly(N,N-dimethylacrylamide)-coated maghemite

PEI:

Polyethylene imine

PI3k:

Phosphoinositide 3-kinase

PLGA NPs:

Poly(lactic-co-glycolic acid) nanoparticles

PLGA-co-PEG:

Poly[(D,L-lactide-co-glycolide)-co-PEG]

PLL:

Poly-L-lysine

PSCA:

Prostate stem cell antigen

PSMA:

Specific membrane antigen

PSP@MB:

Poly(ethylene glycol)-SS-polyethylenimine-loaded microbubbles

PTCH1:

Human homologue of patched 1

PTEN:

Phosphatase and tensin homologue

PTT:

Photothermal therapy

PTX:

Paclitaxel

QDs:

Quantum dots

RBC:

Red Blood cells

rGO-AgNPs:

Reduced oxide-silver nanoparticles

ROS:

Reactive oxygen species

SCI:

Spinal cord injury

SHH:

Sonic hedgehog

Si[PTX-NC]:

Silica-coated paclitaxel (PTX) nanocrystals

siRNA:

Small interfering RNA

SPIO@SiO2-NH2::

Amine-modified silica-coated polyhedral SPIO nanoparticles

SPIONS:

Superparamagnetic iron oxide nanoparticles

SSCs:

Spermatogonial stem cells

SWNTs:

Single-walled carbon nanotubes

TNBC:

Triple negative breast cancer

TSA:

Trichostatin A

uPA:

Urokinase plasminogen activator

uPAR:

Urokinase plasminogen activator receptor

WBC:

White blood cells

References

  1. Ghosh S (2018) Nanomaterials safety: toxicity and health hazards. DeGryter, Boston

    Book  Google Scholar 

  2. Ghosh S, Ansar W (2014) Multidynamic liposomal nanomedicine: technology, biology, applications, and disease targeting. In: Nanoparticles’ promises and risks—characterization, manipulation, and potential hazards to humanity and the environment. Springer, Berlin

    Google Scholar 

  3. Ghosh S, Saha S, Sur A (2015) Polymeric nanoparticles: application in cancer management. In: Encyclopedia of biomedical polymers and polymeric biomaterials. Taylor & Francis, London

    Google Scholar 

  4. Ghosh S (2018) Green synthesis of nanoparticle and fungal infection. In: Kumar A, Iravani SS (eds) Green synthesis, characterization and applications of nanoparticles. Springer, Berlin

    Google Scholar 

  5. Salata O (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3. https://doi.org/10.1186/1477-3155-2-3

    Article  Google Scholar 

  6. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12(7):908–931

    Article  CAS  Google Scholar 

  7. Wang EC, Wang AZ (2014) Nanoparticles and their applications in cell and molecular biology. Integr Biol (Camb) 6(1):9–26. https://doi.org/10.1039/c3ib40165k

    Article  CAS  Google Scholar 

  8. McNamara K, Syed A, Tofail M (2017) Nanoparticles in biomedical applications. Adv Phys 2(1):54–88

    CAS  Google Scholar 

  9. Dong L, Craig MM, Khang D, Chen C (2012) Applications of nanomaterials in biology and medicine. J Nanotechnol 2012:816184. https://doi.org/10.1155/2012/816184

    Article  Google Scholar 

  10. Hofmann MC (2014) Stem cells and nanomaterials. Adv Exp Med Biol 811:255–275. https://doi.org/10.1007/978-94-017-8739-0_13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ashammakhi N, Ahadian S, Darabi MA, El Tahchi M, Lee J, Suthiwanich K, Sheikhi A, Dokmeci MR, Oklu R, Khademhosseini A (2019) Minimally invasive and regenerative therapeutics. Adv Mater 31(1):e1804041

    Article  PubMed  CAS  Google Scholar 

  12. Jang SF, Liu WH, Song WS, Chiang KL, Ma HI, Kao CL, Chen MT (2014) Nanomedicine-based neuroprotective strategies in patient specific-iPSC and personalized medicine. Int J Mol Sci 15(3):3904–3925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rajangam T (2013) An SS fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. Int J Nanomedicine 8:3641–3662

    PubMed  PubMed Central  Google Scholar 

  14. Patel S, Lee KB (2015) Probing stem cell behavior using nanoparticle-based approaches. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(6):759–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sharma S (2014) Nanotheranostics in evidence based personalized medicine. Curr Drug Targets 15(10):915–930

    Article  CAS  PubMed  Google Scholar 

  16. Asthana A, Lee JE, Rao CM (2014) Modulation of stem cell differentiation by the influence of nanobiomaterials/carriers. Curr Stem Cell Res Ther 9(6):458–468

    Article  PubMed  Google Scholar 

  17. Reiter RE, Gu Z, Watabe T, Thomas G, Szigeti K, Davis E, Wahl M, Nisitani S, Yamashiro J, Le Beau MM, Loda M, Witte ON (1998) Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc Natl Acad Sci U S A 95(4):1735–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ghosh A, Heston WD (2004) Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem 91(3):528–539

    Article  CAS  PubMed  Google Scholar 

  19. Thaxton CS, Elghanian R, Thomas AD, Stoeva SI, Lee JS, Smith ND, Schaeffer AJ, Klocker H, Horninger W, Bartsch G, Mirkin CA (2009) Nanoparticle-based bio-barcode assay redefines “undetectable” PSA and biochemical recurrence after radical prostatectomy. Proc Natl Acad Sci U S A 106(44):18437–18442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yuhi T, Nagatani N, Endo T, Kerman K, Takata M, Konaka H, Namiki M, Takamura Y, Tamiya E (2006) Gold nanoparticle based immunochromatography using a resin modified micropipette tip for rapid and simple detection of human chorionic gonadotropin hormone and prostate-specific antigen. Sci Technol Adv Mater 7(3):276–281

    Article  CAS  Google Scholar 

  21. Chikkaveeraiah BV, Bhirde A, Malhotra R, Patel V, Gutkind JS, Rusling JF (2009) Single-wall carbon nanotube forest arrays for immunoelectrochemical measurement of four protein biomarkers for prostate cancer. Anal Chem 81:9129–9134

    Article  PubMed  CAS  Google Scholar 

  22. Kim YJ, Rahman MM, Lee J-J (2013) Ultrasensitive and label-free detection of annexin A3 based on quartz crystal microbalance. Sens Actuators B 177:172–177

    Article  CAS  Google Scholar 

  23. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105:10513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tran HV, Piro B, Reisberg S, Tran LD, Duc HT, Pham MC (2013) Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: application to prostate cancer biomarker miR-141. Biosens Bioelectron 49:164–169

    Article  CAS  PubMed  Google Scholar 

  25. Alhasan AH, Kim DY, Daniel WL, Watson E, Meeks JJ, Thaxton CS et al (2012) Scanometric microRNA array profiling of prostate cancer markers using spherical nucleic acid-gold nanoparticle conjugates. Anal Chem 84:4153–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Del Vento F, Vermeulen M, de Michele F, Giudice MG, Poels J, des Rieux A, Wyns C (2018) Tissue engineering to improve immature testicular tissue and cell transplantation outcomes: one step closer to fertility restoration for prepubertal boys exposed to gonadotoxic treatments. Int J Mol Sci 19(1):e286

    Article  PubMed  CAS  Google Scholar 

  27. Abdalla MO, Karna P, Sajja HK et al (2011) Enhanced noscapine delivery using uPAR-targeted optical-MR imaging trackable nanoparticles for prostate cancer therapy. J Control Release 149(3):314–322. https://doi.org/10.1016/j.jconrel.2010.10.030

    Article  CAS  PubMed  Google Scholar 

  28. Siddiqui IA, Adhami VM, Bharali DJ, Hafeez BB, Asim M, Khwaja SI et al (2009) Introducing nanochemoprevention as a novel approach for cancer control: proof of principle with green tea polyphenol epigallocatechin-3-gallate. Cancer Res 69:1712–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miki J, Furusato B, Li H, Gu Y, Takahashi H, Egawa S et al (2007) Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res 67:3153–3161

    Article  CAS  PubMed  Google Scholar 

  30. Zhao S, Fu J, Liu X, Wang T, Zhang J, Zhao Y (2012) Activation of Akt/GSK-3beta/beta-catenin signaling pathway is involved in survival of neurons after traumatic brain injury in rats. Neurol Res 34:400–407

    Article  CAS  PubMed  Google Scholar 

  31. Zhou Y, Kopecek J (2013) Biological rationale for the design of polymeric anti-cancer nanomedicines. J Drug Target 21:1–26

    Article  PubMed  CAS  Google Scholar 

  32. Qin W, Zheng Y, Qian BZ, Zhao M (2017) Prostate cancer stem cells and nanotechnology: a focus on Wnt signaling. Front Pharmacol 8:153

    Article  PubMed  PubMed Central  Google Scholar 

  33. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108. https://doi.org/10.3322/caac.21262. Epub 2015 Feb 4. PMID: 25651787

  34. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Geng R, Song F, Yang X, Sun P, Hu J, Zhu C, Zhu B, Fan W (2014) Association between cytotoxic T lymphocyte antigen-4 +49A/G, −1722T/C, and -1661A/G polymorphisms and cancer risk: a meta-analysis. Tumour Biol 35:3627–3639

    Article  CAS  PubMed  Google Scholar 

  36. Vinogradov S, Wei X (2012) Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine (Lond) 7(4):597–615

    Article  CAS  Google Scholar 

  37. Mizrak D, Brittan M, Alison M (2008) CD133: molecule of the moment. J Pathol 214:3–9. https://doi.org/10.1002/path.2283

    Article  CAS  PubMed  Google Scholar 

  38. Vira D, Basak SK, Veena MS, Wang MB, Batra RK, Srivatsan ES (2012) Cancer stem cells, microRNAs, and therapeutic strategies including natural products. Cancer Metastasis Rev 31(3–4):733–751. https://doi.org/10.1007/s10555-012-9382-8

    Article  CAS  PubMed  Google Scholar 

  39. Meyer MJ, Fleming JM, Lin AF, Hussnain SA, Ginsburg E, Vonderhaar BK (2010) CD44posCD49fhiCD133/2hi defines xenograft-initiating cells in estrogen receptornegative breast cancer. Cancer Res 70:4624–4633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou W, Wang G, Guo S (1836) Regulation of angiogenesis via notch signaling in breast cancer and cancer stem cells. Biochim Biophys Acta 2013:304–320

    Google Scholar 

  41. Aomatsu N, Yashiro M, Kashiwagi S et al (2012) CD133 is a useful surrogate marker for predicting chemosensitivity to neoadjuvant chemotherapy in breast cancer. PLoS One 7(9):e45865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Muntimadugu E, Kumar R, Saladi S, Rafeeqi TA, Khan W (2016) CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel. Colloids Surf B Biointerfaces 143:532–546

    Article  CAS  PubMed  Google Scholar 

  43. Yip NC, Fombon IS, Liu P, Brown S, Kannappan V, Armesilla AL et al (2011) Disulfiram modulated ROS-MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br J Cancer 104:1564–1574. https://doi.org/10.1038/bjc.2011.126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liang DH, Choi DS, Ensor JE, Kaipparettu BA, Bass BL, Chang JC (2016) The autophagy inhibitor chloroquine targets cancer stem cells in triple negative breast cancer by inducing mitochondrial damage and impairing DNA break repair. Cancer Lett 376:249–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gülçür E, Thaqi M, Khaja F, Kuzmis A, Onyüksel H (2013) Curcumin in VIP-targeted sterically stabilized phospholipid nanomicelles: a novel therapeutic approach for breast cancer and breast cancer stem cells. Drug Deliv Transl Res 3:10. https://doi.org/10.1007/s13346-013-0167-6

    Article  CAS  PubMed Central  Google Scholar 

  46. Zuo ZQ, Chen KG, Yu XY, Zhao G, Shen S, Cao ZT et al (2016) Promoting tumor penetration of nanoparticles for cancer stem cell therapy by TGF-β signaling pathway inhibition. Biomaterials 82:48–59. https://doi.org/10.1016/j.biomaterials.2015.12.014

    Article  CAS  PubMed  Google Scholar 

  47. Hu K, Law JH, Fotovati A, Dunn SE (2012) Small interfering RNA library screen identified polo-like kinase-1 (PLK1) as a potential therapeutic target for breast cancer that uniquely eliminates tumor-initiating cells. Breast Cancer Res 14:R22. https://doi.org/10.1186/bcr3107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shen S, Xia JX, Wang J (2016) Nanomedicine-mediated cancer stem cell therapy. Biomaterials 74:1–18. https://doi.org/10.1016/j.biomaterials.2015.09.037

    Article  CAS  PubMed  Google Scholar 

  49. He L, Gu J, Lim LY, Z-x Y, Mo J (2016) Nanomedicine-mediated therapies to target breast cancer stem cells. Front Pharmacol 7:313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Gener P, Gouveia LP, Sabat GR, de Sousa RDF, Fort NB, Arranja A et al (2015) Fluorescent CSC models evidence that targeted nanomedicines improve treatment sensitivity of breast and colon cancer stem cells. Nanomedicine 11:1883–1892. https://doi.org/10.1016/j.nano.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  51. Chen H, Wang Y, Wang T, Shi D, Sun Z, Xia C, Wang B (2016) Application prospective of nanoprobes with MRI and FI dual-modality imaging on breast cancer stem cells in tumor. J Nanobiotechnol 14(1):52

    Article  CAS  Google Scholar 

  52. Chen C, Zhao S, Karnad A et al (2018) The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol 11:64. https://doi.org/10.1186/s13045-018-0605-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Götte M, Yip GW (2006) Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Cancer Res 66:10233–10237. https://doi.org/10.1158/0008-5472.CAN-06-1464

    Article  PubMed  Google Scholar 

  54. Rao W, Wang H, Han J, Zhao S, Dumbleton J, Agarwal P et al (2015) Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano 9:5725–5740. https://doi.org/10.1021/nn506928p

    Article  CAS  PubMed  Google Scholar 

  55. Swaminathan SK, Roger E, Toti U, Niu L, Ohlfest JR, Panyam J (2013) CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer. J Control Release 171:280–287. https://doi.org/10.1016/j.jconrel.2013.07.014

    Article  CAS  PubMed  Google Scholar 

  56. Park W, Yang HN, Ling D, Yim H, Kim KS, Hyeon T et al (2014) Multi-modal transfection agent based on monodisperse magnetic nanoparticles for stem cell gene delivery and tracking. Biomaterials 35:7239–7247. https://doi.org/10.1016/j.biomaterials.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  57. Vuu K, Xie J, McDonald MA, Bernardo M, Hunter F, Zhang Y et al (2005) Gadolinium-rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging. Bioconjug Chem 16:995–999. https://doi.org/10.1021/bc050085z

    Article  CAS  PubMed  Google Scholar 

  58. Atkinson RL, Zhang M, Diagaradjane P, Peddibhotla S, Contreras A, Hilsenbeck SG et al (2010) Thermal enhancement with optically activated gold nanoshells sensitizes breast cancer stem cells to radiation therapy. Sci Transl Med 2:55ra79. https://doi.org/10.1126/scitranslmed.3001447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Burke AR, Singh RN, Carroll DL, Wood JC, D’Agostino RB Jr, Ajayan PM et al (2012) The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy. Biomaterials 33:2961–2970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sadhukha T, Niu L, Wiedmann TS, Panyam J (2013) Effective elimination of cancer stem cells by magnetic hyperthermia. Mol Pharm 10:1432–1441

    Article  CAS  PubMed  Google Scholar 

  61. Xu Y, Wang J, Li X, Liu Y, Dai L, Wu X et al (2014) Selective inhibition of breast cancer stem cells by gold nanorods mediated plasmonic hyperthermia. Biomaterials 35:4667–4677

    Article  CAS  PubMed  Google Scholar 

  62. Paholak HJ, Stevers NO, Chen H, Burnett JP, He M, Korkaya H et al (2016) Elimination of epithelial-like and mesenchymal-like breast cancer stem cells to inhibit metastasis following nanoparticle-mediated photothermal therapy. Biomaterials 104:145–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Atkinson RL, Zhang M, Diagaradjane P, Peddibhotla S, Contreras A, Hilsenbeck SG et al (2010) Thermal enhancement with optically activated gold nanoshells sensitizes breast cancer stem cells to radiation therapy. Sci Transl Med 2:55ra79. https://doi.org/10.1126/scitranslmed.3001447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Narain A, Asawa S, Chhabria V, Patil-Sen Y (2017) Cell membrane coated nanoparticles: next-generation therapeutics. Nanomedicine (Lond) 12(21):2677–2692

    Article  CAS  Google Scholar 

  65. Layek B, Shetty M, Nethi SK, Sehgal D, Starr TK, Prabha S (2020) Mesenchymal stem cells as guideposts for nanoparticle-mediated targeted drug delivery in ovarian cancer. Cancers (Basel) 12(4):e965

    Article  CAS  Google Scholar 

  66. Liufu C, Li Y, Tu J, Zhang H, Yu J, Wang Y, Huang P, Chen Z (2019) Echogenic PEGylated PEI-loaded microbubble as efficient gene delivery system. Int J Nanomedicine 14:8923–8941

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gurunathan S, Qasim M, Park CH, Arsalan Iqbal M, Yoo H, Hwang JH, Uhm SJ, Song H, Park C, Choi Y, Kim JH, Hong K (2019) Cytotoxicity and transcriptomic analyses of biogenic palladium nanoparticles in human ovarian cancer cells (SKOV3). Nanomaterials (Basel) 9(5):e787

    Article  CAS  Google Scholar 

  68. Tiet P, Li J, Abidi W, Mooney R, Flores L, Aramburo S, Batalla-Covello J, Gonzaga J, Tsaturyan L, Kang Y, Cornejo YR, Dellinger T, Han E, Aboody KS, Berlin JM (2019) Silica coated paclitaxel nanocrystals enable neural stem cell loading for treatment of ovarian cancer. Bioconjug Chem 30(5):1415–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Halbur C, Choudhury N, Chen M, Kim JH, Chung EJ (2019) siRNA-conjugated nanoparticles to treat ovarian cancer. SLAS Technol 24(2):137–150

    Article  CAS  PubMed  Google Scholar 

  70. Glackin CA (2018) Nanoparticle delivery of TWIST small interfering RNA and anticancer drugs: a therapeutic approach for combating cancer. Enzyme 44:83–101

    Article  CAS  Google Scholar 

  71. Wang H, Agarwal P, Zhao G, Ji G, Jewell CM, Fisher JP, Lu X, He X (2018) Overcoming ovarian cancer drug resistance with a cold responsive nanomaterial. ACS Cent Sci 4(5):567–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mi Y, Huang Y, Deng J (2018) The enhanced delivery of salinomycin to CD133+ ovarian cancer stem cells through CD133 antibody conjugation with poly(lactic-co-glycolic acid)-poly(ethylene glycol) nanoparticles. Oncol Lett 15(5):6611–6621

    PubMed  PubMed Central  Google Scholar 

  73. Shahin SA, Wang R, Simargi SI, Contreras A, Parra Echavarria L, Qu L, Wen W, Dellinger T, Unternaehrer J, Tamanoi F, Zink JI, Glackin CA (2018) Hyaluronic acid conjugated nanoparticle delivery of siRNA against TWIST reduces tumor burden and enhances sensitivity to cisplatin in ovarian cancer. Nanomedicine 14(4):1381–1394

    Article  CAS  PubMed  Google Scholar 

  74. Choi YJ, Gurunathan S, Kim JH (2018) Graphene oxide-silver nanocomposite enhances cytotoxic and apoptotic potential of salinomycin in human ovarian cancer stem cells (OvCSCs): a novel approach for cancer therapy. Int J Mol Sci 19(3):e710

    Article  PubMed  CAS  Google Scholar 

  75. Ma J, Kala S, Yung S, Chan TM, Cao Y, Jiang Y, Liu X, Giorgio S, Peng L, Wong AST (2018) Blocking Stemness and metastatic properties of ovarian cancer cells by targeting p70S6K with dendrimer Nanovector-based siRNA delivery. Mol Ther 26(1):70–83

    Article  CAS  PubMed  Google Scholar 

  76. Zhang XF, Huang FH, Zhang GL, Bai DP, Massimo DF, Huang YF, Gurunathan S (2017) Novel biomolecule lycopene-reduced graphene oxide-silver nanoparticle enhances apoptotic potential of trichostatin a in human ovarian cancer cells (SKOV3). Int J Nanomedicine 12:7551–7575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Guo X, Guo N, Zhao J, Cai Y (2017) Active targeting co-delivery system based on hollow mesoporous silica nanoparticles for antitumor therapy in ovarian cancer stem-like cells. Oncol Rep 38(3):1442–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Abou-ElNaga A, Mutawa G, El-Sherbiny IM, Abd-ElGhaffar H, Allam AA, Ajarem J, Mousa SA (2017) Novel nano-therapeutic approach actively targets human ovarian cancer stem cells after xenograft into nude mice. Int J Mol Sci 18(4):e813

    Article  PubMed  CAS  Google Scholar 

  79. Serna N, Álamo P, Ramesh P, Vinokurova D, Sánchez-García L, Unzueta U, Gallardo A, Céspedes MV, Vázquez E, Villaverde A, Mangues R, Medema JP (2020) Nanostructured toxins for the selective destruction of drug-resistant human CXCR4+ colorectal cancer stem cells. J Control Release 320:96–104

    Article  CAS  PubMed  Google Scholar 

  80. Abbasian M, Baharlouei A, Arab-Bafrani Z, Lightfoot DA (2019) Combination of gold nanoparticles with low-LET irradiation: an approach to enhance DNA DSB induction in HT29 colorectal cancer stem-like cells. J Cancer Res Clin Oncol 145(1):97–107

    Article  CAS  PubMed  Google Scholar 

  81. Wang K, Zhang T, Liu L, Wang X, Wu P, Chen Z, Ni C, Zhang J, Hu F, Huang J (2012) Novel micelle formulation of curcumin for enhancing antitumor activity and inhibiting colorectal cancer stem cells. Int J Nanomedicine 7:4487–4497

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Giesen B, Nickel AC, Garzón Manjón A, Vargas Toscano A, Scheu C, Kahlert UD, Janiak C (2020) Influence of synthesis methods on the internalization of fluorescent old nanoparticles into glioblastoma stem-like cells. J Inorg Biochem 203:110952

    Article  CAS  PubMed  Google Scholar 

  83. Xingyi J, Guonan C, Xin Z, Naijie L (2019) AbCD133 modified αCT1 loaded target magnetic mesoporous silica nano-drugcarriers can sensitizes glioma cancer stem cells to TMZ and have therapeutic potential on TMZ resistant glioblastoma. J Biomed Nanotechnol 15(7):1468–1481

    Article  PubMed  CAS  Google Scholar 

  84. Lépinoux-Chambaud C, Eyer J (2019) The NFL-TBS 40–63 peptide targets and kills glioblastoma stem cells derived from human patients and also targets nanocapsules into these cells. Int J Pharm 566:218–228

    Article  PubMed  CAS  Google Scholar 

  85. Wang S, Ren W, Wang J, Jiang Z, Saeed M, Zhang L, Li A, Wu A (2018) Black TiO2-based nanoprobes for T1-weighted MRI-guided photothermal therapy in CD133 high expressed pancreatic cancer stem-like cells. Biomater Sci 6(8):2209–2218

    Article  CAS  PubMed  Google Scholar 

  86. Kesharwani P, Banerjee S, Padhye S, Sarkar FH, Iyer AK (2015) Hyaluronic acid engineered Nanomicelles loaded with 3,4-Difluorobenzylidene curcumin for targeted killing of CD44+ stem-like pancreatic cancer cells. Biomacromolecules 16(9):3042–3053

    Article  CAS  PubMed  Google Scholar 

  87. Carradori D, Eyer J, Saulnier P, Préat V, des Rieux A (2017) The therapeutic contribution of nanomedicine to treat neurodegenerative diseases via neural stem cell differentiation. Biomaterials 123:77–91

    Article  CAS  PubMed  Google Scholar 

  88. Elliott Donaghue I, Tam R, Sefton MV, Shoichet MS (2014) Cell and biomolecule delivery for tissue repair and regeneration in the central nervous system. J Control Release 190:219–227

    Article  CAS  PubMed  Google Scholar 

  89. Santoso MR, Yang PC (2016) Magnetic nanoparticles for targeting and imaging of stem cells in myocardial infarction. Stem Cells Int 2016:4198790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Ramos-Gómez M, Martínez-Serrano A (2016) Tracking of iron-labeled human neural stem cells by magnetic resonance imaging in cell replacement therapy for Parkinson’s disease. Neural Regen Res 11(1):49–52

    Article  PubMed  PubMed Central  Google Scholar 

  91. Zhu K, Li J, Wang Y, Lai H, Wang C (2016) Nanoparticles-assisted stem cell therapy for ischemic heart disease. Stem Cells Int 2016:1384658

    Article  PubMed  Google Scholar 

  92. Santoso MR, Yang PC (2016) Magnetic nanoparticles for targeting and imaging of stem cells in myocardial infarction. Stem Cells Int 2016:4198790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Vermeulen M, Poels J, de Michele F, Des Rieux A, Wyns C (2017) Restoring fertility with cryopreserved prepubertal testicular tissue: perspectives with hydrogel encapsulation, nanotechnology, and bioengineered scaffolds. Ann Biomed Eng 45(7):1770–1781

    Article  PubMed  Google Scholar 

  94. Hossain MA, Chowdhury T, Bagul A (2015) Imaging modalities for the in vivo surveillance of mesenchymal stromal cells. J Tissue Eng Regen Med 9(11):1217–1224

    Article  PubMed  Google Scholar 

  95. Yahyapour R, Farhood B, Graily G, Rezaeyan A, Rezapoor S, Abdollahi H, Cheki M, Amini P, Fallah H, Najafi M, Motevaseli E (2018) Stem cell tracing through MR molecular imaging. Tissue Eng Regen Med 15(3):249–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Handley C, Goldschlager T, Oehme D, Ghosh P, Jenkin G (2015) Mesenchymal stem cell tracking in the intervertebral disc. World J Stem Cells 7(1):65–74

    Article  PubMed  PubMed Central  Google Scholar 

  97. Daldrup-Link HE, Nejadnik H (2014) MR imaging of stem cell transplants in arthritic joints. J Stem Cell Res Ther 4(2):165

    PubMed  PubMed Central  Google Scholar 

  98. Farshbaf M, Davaran S, Rahimi F, Annabi N, Salehi R, Akbarzadeh A (2018) Carbon quantum dots: recent progresses on synthesis, surface modification and applications. Artif Cells Nanomed Biotechnol 46(7):1331–1348

    Article  CAS  PubMed  Google Scholar 

  99. Silva LH, Cruz FF, Morales MM, Weiss DJ, Rocco PR (2017) Magnetic targeting as a strategy to enhance therapeutic effects of mesenchymal stromal cells. Stem Cell Res Ther 8(1):58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Cores J, Caranasos TG, Cheng K (2015) Magnetically targeted stem cell delivery for regenerative medicine. J Funct Biomater 6(3):526–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xia Y, Sun J, Zhao L, Zhang F, Liang XJ, Guo Y, Weir MD, Reynolds MA, Gu N, Xu HHK (2018) Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. Biomaterials 183:151–170

    Article  CAS  PubMed  Google Scholar 

  102. Panahi Y, Farshbaf M, Mohammadhosseini M, Mirahadi M, Khalilov R, Saghfi S, Akbarzadeh A (2017) Recent advances on liposomal nanoparticles: synthesis, characterization and biomedical applications. Artif Cells Nanomed Biotechnol 45(4):788–799

    Article  PubMed  Google Scholar 

  103. Acharya G, Hasan N, Yoo JW, Lee CH (2017) Hormone therapy and delivery strategies against cardiovascular diseases. Curr Pharm Biotechnol 18(4):285–302

    Article  CAS  PubMed  Google Scholar 

  104. Li Y, Ye D, Li M, Ma M, Gu N (2018) Adaptive materials based on iron oxide nanoparticles for bone regeneration. ChemPhysChem 19(16):1965–1979

    Article  CAS  PubMed  Google Scholar 

  105. Kumar S, Chatterjee K (2016) Comprehensive review on the use of graphene-based substrates for regenerative medicine and biomedical devices. ACS Appl Mater Interfaces 8(40):26431–26457

    Article  CAS  PubMed  Google Scholar 

  106. Kerativitayanan P, Carrow JK, Gaharwar AK (2015) Nanomaterials for engineering stem cell responses. Adv Healthc Mater 4(11):1600–1627

    Article  CAS  PubMed  Google Scholar 

  107. Ferreira L, Karp JM, Nobre L, Langer R (2008) New opportunities: the use of nanotechnologies to manipulate and track stem cells. Cell Stem Cell 3(2):136–146

    Article  CAS  PubMed  Google Scholar 

  108. Darkazalli A, Levenson CW (2012) Tracking stem cell migration and survival in brain injury: current approaches and future prospects. Histol Histopathol 27(10):1255–1261

    CAS  PubMed  Google Scholar 

  109. Liu X, Yang Z, Sun J, Ma T, Hua F, Shen Z (2019) A brief review of cytotoxicity of nanoparticles on mesenchymal stem cells in regenerative medicine. Int J Nanomedicine 14:3875–3892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rosenberg JT, Yuan X, Grant S, Ma T (2016) Tracking mesenchymal stem cells using magnetic resonance imaging. Brain Circ 2(3):108–113

    Article  PubMed  PubMed Central  Google Scholar 

  111. Meola A, Rao J, Chaudhary N, Song G, Zheng X, Chang SD (2019) Magnetic particle imaging in neurosurgery. World Neurosurg 125:261–270

    Article  PubMed  Google Scholar 

  112. Nejadnik H, Tseng J, Daldrup-Link H (2019) Magnetic resonance imaging of stem cell-macrophage interactions with ferumoxytol and ferumoxytol-derived nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 11(4):e1552

    Article  PubMed  PubMed Central  Google Scholar 

  113. Kerans FFA, Lungaro L, Azfer A, Salter DM (2018) The potential of intrinsically magnetic mesenchymal stem cells for tissue engineering. Int J Mol Sci 14:19(10)

    Google Scholar 

  114. Chen G, Zhang Y, Li C, Huang D, Wang Q, Wang Q (2018) Recent advances in tracking the transplanted stem cells using near-infrared fluorescent Nanoprobes: turning from the first to the second near-infrared window. Adv Healthc Mater 7(20):e1800497

    Article  PubMed  CAS  Google Scholar 

  115. Yukawa H, Baba Y (2018) In vivo imaging technology of transplanted stem cells using quantum dots for regenerative medicine. Anal Sci 34(5):525–532

    Article  CAS  PubMed  Google Scholar 

  116. Deng SL, Li YQ, Zhao G (2018) Imaging gliomas with nanoparticle-labeled stem cells. Chin Med J (Engl) 131(6):721–730

    Article  Google Scholar 

  117. Naseri N, Ajorlou E, Asghari F, Pilehvar-Soltanahmadi Y (2018) An update on nanoparticle-based contrast agents in medical imaging. Artif Cells Nanomed Biotechnol 46(6):1111–1121

    Article  CAS  PubMed  Google Scholar 

  118. Meir R, Popovtzer R (2018) Cell tracking using gold nanoparticles and computed tomography imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10:2

    Article  Google Scholar 

  119. Zhang G, Khan AA, Wu H, Chen L, Gu Y, Gu N (2018) The application of nanomaterials in stem cell therapy for some neurological diseases. Curr Drug Targets 19(3):279–298

    Article  PubMed  CAS  Google Scholar 

  120. Kim TH, Lee D, Choi JW (2017) Live cell biosensing platforms using graphene-based hybrid nanomaterials. Biosens Bioelectron 94:485–499

    Article  CAS  PubMed  Google Scholar 

  121. Jasmin de Souza GT, Louzada RA, Rosado de Castro PH, Mendez-Otero R, Campos de Carvalho AC (2017) Tracking stem cells with superparamagnetic iron oxide nanoparticles: perspectives and considerations. Int J Nanomedicine 12:779–793

    Article  PubMed  Google Scholar 

  122. Janowski M, Walczak P, Kropiwnicki T, Jurkiewicz E, Domanska-Janik K, Bulte JW, Lukomska B, Roszkowski M (2014) Long-term MRI cell tracking after intraventricular delivery in a patient with global cerebral ischemia and prospects for magnetic navigation of stem cells within the CSF. PLoS One 9(2):e97631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Neuwelt A, Sidhu N, Hu CA, Mlady G, Eberhardt SC, Sillerud LO (2015) Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. AJR Am J Roentgenol 204(3):W302–W313

    Article  PubMed  PubMed Central  Google Scholar 

  124. Zhang H (2008) Iron oxide nanoparticles-poly-L-lysine complex. Molecular Imaging and Contrast Agent Database (MICAD) [Internet], [updated 2008 Mar 26]. National Center for Biotechnology Information, Bethesda

    Google Scholar 

  125. Carradori D, Eyer J, Saulnier P, Préat V, des Rieux A (2017) The therapeutic contribution of nanomedicine to treat neurodegenerative diseases via neural stem cell differentiation. Biomaterials 123:77–91

    Article  CAS  PubMed  Google Scholar 

  126. Aghayan HR, Soleimani M, Goodarzi P, Norouzi-Javidan A, Emami-Razavi SH, Larijani B, Arjmand B (2014) Magnetic resonance imaging of transplanted stem cell fate in stroke. J Res Med Sci 19(5):465–471

    PubMed  PubMed Central  Google Scholar 

  127. Wiraja C, Yeo D, Lio D, Labanieh L, Lu M, Zhao W, Xu C (2014) Aptamer technology for tracking cells' status & function. Mol Cell Ther 2:33

    Article  PubMed  PubMed Central  Google Scholar 

  128. Gong H, Peng R, Liu Z (2013) Carbon nanotubes for biomedical imaging: the recent advances. Adv Drug Deliv Rev 65(15):1951–1963

    Article  CAS  PubMed  Google Scholar 

  129. Mitsiadis TA, Woloszyk A, Jiménez-Rojo L (2012) Nanodentistry: combining nanostructured materials and stem cells for dental tissue regeneration. Nanomedicine (Lond) 7(11):1743–1753

    Article  CAS  Google Scholar 

  130. Soenen SJ, Velde GV, Ketkar-Atre A, Himmelreich U, De Cuyper M (2011) Magnetoliposomes as magnetic resonance imaging contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(2):197–211

    Article  CAS  PubMed  Google Scholar 

  131. Shan L (2008) Amine-modified silica-coated polyhedral superparamagnetic iron oxide nanoparticle–labeled rabbit bone marrow–derived mesenchymal stem cells. National Center for Biotechnology Information, Bethesda. Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. [updated 2010 Jan 28]

    Google Scholar 

  132. Shan L (2008) Multimodal, rhodamine B isothiocyanate-incorporated, silica-coated magnetic nanoparticle–labeled human cord blood–derived mesenchymal stem cells for cell tracking. National Center for Biotechnology Information, Bethesda. Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. [updated 2010 Jan 28]

    Google Scholar 

  133. Shan L (2008) FluidMAG iron nanoparticle-labeled mesenchymal stem cells for tracking cell homing to tumors. National Center for Biotechnology Information, Bethesda. Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. [updated 2010 Jan 28]

    Google Scholar 

  134. Shan L (2008) Poly(N,N-dimethylacrylamide)-coated maghemite nanoparticles for labeling and tracking mesenchymal stem cells. National Center for Biotechnology Information, Bethesda. Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. [updated 2010 Feb 16]

    Google Scholar 

  135. Abdal Dayem A, Hossain MK, Lee SB, Kim K, Saha SK, Yang GM, Choi HY, Cho SG (2017) The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci 18(1):e120

    Article  PubMed  CAS  Google Scholar 

  136. Osman NM, Sexton DW, Saleem IY (2019) Toxicological assessment of nanoparticle interactions with the pulmonary system. Nanotoxicology 10:1–38

    Google Scholar 

  137. Liu X, Yang Z, Sun J, Ma T, Hua F, Shen Z (2019) A brief review of cytotoxicity of nanoparticles on mesenchymal stem cells in regenerative medicine. Int J Nanomedicine 14:3875–3892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Madannejad R, Shoaie N, Jahanpeyma F, Darvishi MH, Azimzadeh M, Javadi H (2019) Toxicity of carbon-based nanomaterials: reviewing recent reports in medical and biological systems. Chem Biol Interact 307:206–222

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chowdhury, S., Ghosh, S. (2021). Nanoparticles and Stem Cells. In: Stem Cells . Springer, Singapore. https://doi.org/10.1007/978-981-16-1638-9_9

Download citation

Publish with us

Policies and ethics