Skip to main content

Stability and Thermal Conductivity of Ethylene Glycol and Water Nanofluid Containing Graphite Nanoparticles

  • Conference paper
  • First Online:
Innovations in Sustainable Energy and Technology

Abstract

Heat transfer enhancement in a heat exchanger using conventional fluids such as water, ethylene glycol and engine oils is limited due to lower thermal conductivity of fluids. Addition of nanoparticles to these fluids can provide better heat transfer due to improved thermophysical properties. In this study, thermal conductivity and stability of ethylene glycol (EG) and water (35:65 in terms of volume)-based graphite nanofluids were investigated experimentally. Nanofluids containing graphite nanoparticles in weight concentrations in the range of 0.5–2 wt% were prepared using ultrasonication method. Thermal conductivity of nanofluids was measured at each weight concentration in the temperature range of 30–50 °C using transient hot wire method. Subsequently, the stability of EG and water-based graphite nanofluids was evaluated by visual observation and thermal conductivity measurement over a period of 30 days at 30 °C. The results showed that thermal conductivity enhances by adding graphite nanoparticles to the ethylene glycol and water. It was found from the study that thermal conductivity of prepared nanofluid increases with increase in temperature. Addition of 2 wt% of graphite nanoparticles in EG: water showed an enhancement of 22% and 26.67% in thermal conductivity at 30 and 50 °C, respectively. Stability study overtime reveals that there is no considerable difference in thermal conductivity for 30 days indicating a stable nanofluid dispersion. A correlation was developed to predict the thermal conductivity of EG: water-based graphite nanofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu, W., Xie, H.: A review onnanofluids: preparation, stabilitymechanisms, and applications. J. Nanomater. 87, 1–17 (2012)

    Google Scholar 

  2. Yang, L., Du, K.: A comprehensive review on heat transfer characteristics of TiO2 nanofluids. Int. J. Heat Mass Transf. 108, 11–31 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.086

    Article  Google Scholar 

  3. Ukkund, S.J., Ashraf, M., Udupa, A.B., Gangadharan, M., Pattiyeri, A., Marigowda, Y.K., Patil, R., Puthiyllam, P.: Synthesis and characterization of silver nanoparticles from Fuzarium oxysporum and investigation of their antibacterial activity. Mater. Today Proc. 9, 506–514 (2019). https://doi.org/10.1016/j.matpr.2018.10.369

    Article  Google Scholar 

  4. Ukkund, S.J., Raghavendra, M.J., Marigowda, Y.K.: Biosynthesis and characterization of silver nanoparticles from Penicillium notatum and their application to improve efficiency of antibiotics. IOP Conf. Ser.: Mater. Sci. Eng. 577, 1–11 (2019). https://doi.org/10.1088/1757-899X/577/1/012002

    Article  Google Scholar 

  5. Pastoriza-Gallego, M., Lugo, L., Legido, J., Piñeiro, M.M.: Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids. Nanoscale Res. Lett. 6, 221 (2011). https://doi.org/10.1186/1556-276X-6-221

    Article  Google Scholar 

  6. Diao, Y.H., Li, C.Z., Zhao, Y.H., Liu, Y., Wang, S.: Experimental investigation on the pool boiling characteristics and critical heat flux of Cu-R141b nanorefrigerant under atmospheric pressure. Int. J. Heat Mass Transf. 89, 110–115 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.043

    Article  Google Scholar 

  7. Pasha, J., Ramis, M.K., Yashawantha, K.M.: The effect of sonication time on alumina nanofluids with paradoxical behavior. Nano Trends J. Nanotechnol. Its Appl. 16, 31–40 (2015)

    Google Scholar 

  8. Yashawantha, K.M., Afzal, A., Ramis, M.K., Shareefraza, J.U., Ramis, M.K., Ukkund, S.J.: Experimental investigation on physical and thermal properties of graphite nanofluids. In: AIP Conference Proceedings, p. 020057 (2018). https://doi.org/10.1063/1.5079016

  9. Kumar, V., Tiwari, A.K., Ghosh, S.K.: Effect of variable spacing on performance of plate heat exchanger using nanofluids. Energy 114, 1107–1119 (2016). https://doi.org/10.1016/j.energy.2016.08.091

    Article  Google Scholar 

  10. Kareemullah, M., Chethan, K.M., Fouzan, M.K., Darshan, B. V, Kaladgi, A.R., Prashanth, M.B.H., Muneer, R., Yashawantha, K.M.: Heat transfer analysis of shell and tube heat exchanger cooled using nanofluids. Recent Pat. Mech. Eng. 12:350–356. http://dx.doi.org/https://doi.org/10.2174/2212797612666190924183251

  11. Srinivas, T., Vinod, A.V.: Chemical engineering and processing: process intensification heat transfer intensification in a shell and helical coil heat exchanger using water-based nano fluids. Chem. Eng. Process. 102, 1–8 (2016). https://doi.org/10.1016/j.cep.2016.01.005

    Article  Google Scholar 

  12. Zhu, H., Zhang, C., Tang, Y., Wang, J., Ren, B., Yin, Y.: Preparation and thermal conductivity of suspensions of graphite nanoparticles. Carbon 45, 226–228 (2007). https://doi.org/10.1016/j.carbon.2006.07.005

    Article  Google Scholar 

  13. Wang, B., Wang, X., Lou, W., Hao, J.: Thermal conductivity and rheological properties of graphite/oil nanofluids. Colloids Surf. A 414, 125–131 (2012). https://doi.org/10.1016/j.colsurfa.2012.08.008

    Article  Google Scholar 

  14. Kole, M., Dey, T.K.: Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids. J. Appl. Phys. 113, 084307 (2013). https://doi.org/10.1063/1.4793581

    Article  Google Scholar 

  15. Mehrali, M., Sadeghinezhad, E., Latibari, S., Kazi, S., Mehrali, M., Zubir, M.N.B.M., Metselaar, H.S.: Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res. Lett. 9, 15 (2014). https://doi.org/10.1186/1556-276X-9-15

    Article  Google Scholar 

  16. Yashawantha, K.M., Asif, A., Ravindra Babu, G., Ramis, M.K.: Rheological behavior and thermal conductivity of graphite–ethylene glycol nanofluid. J. Test. Eval. 49 (2021). https://doi.org/10.1520/JTE20190255

  17. Usri, N.A., Azmi, W.H., Mamat, R., Hamid, K.A., Najafi, G.: Thermal conductivity enhancement of Al2O3 nanofluid in ethylene glycol and water mixture. Energy Procedia 79, 397–402 (2015). https://doi.org/10.1016/j.egypro.2015.11.509

    Article  Google Scholar 

  18. Chiam, H.W., Azmi, W.H., Usri, N.A., Mamat, R., Adam, N.M.: Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture. Exp. Thermal Fluid Sci. 81, 420–429 (2017). https://doi.org/10.1016/j.expthermflusci.2016.09.013

    Article  Google Scholar 

  19. Ma, L., Wang, J., Marconnet, A.M., Barbati, A.C., McKinley, G.H., Liu, W., Chen, G.: Viscosity and thermal conductivity of stable graphite suspensions near percolation. Nano Lett. 15, 127–133 (2015). https://doi.org/10.1021/nl503181w

    Article  Google Scholar 

  20. Sundar, L.S., Ramana, E.V., Singh, M.K., Sousa, A.C.M.: Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nano fluids for heat transfer applications: an experimental study. Int. Commun. Heat Mass Transfer 56, 86–95 (2014). https://doi.org/10.1016/j.icheatmasstransfer.2014.06.009

    Article  Google Scholar 

  21. Sundar, L.S., Farooky, M.H., Sarada, S.N., Singh, M.K., Farooky, H., Sarada, S.N., Singh, M.K.: Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids. Int. Commun. Heat Mass Transfer 41, 41–46 (2013). https://doi.org/10.1016/j.icheatmasstransfer.2012.11.004

    Article  Google Scholar 

  22. Hamid, K.A., Azmi, W.H., Mamat, R., Usri, N.A.: Thermal conductivity enhancement of TiO2 nanofluid in water and ethylene glycol (EG) mixture. Indian J. Pure Appl. Phys. 54, 651–655 (2016)

    Google Scholar 

  23. https://www.srlchem.com/, https://www.srlchem.com/.

  24. ASHRAE: Handbook—Fundamentals (SI Edition). American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (2017)

    Google Scholar 

  25. Yashawantha, K.M., Vinod, A.V.: ANN modelling and experimental investigation on effective thermal conductivity of ethylene glycol : water nanofluids. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09756-y

    Article  Google Scholar 

  26. Hemmat Esfe, M., Karimipour, A., Yan, W.-M., Akbari, M., Safaei, M.R., Dahari, M.: Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles. Int. J. Heat Mass Transf. 88, 728–734 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.010

    Article  Google Scholar 

  27. Ladjevardi, S.M., Asnaghi, A., Izadkhast, P.S., Kashani, A.H.: Applicability of graphite nanofluids in direct solar energy absorption. Sol. Energy 94, 327–334 (2013). https://doi.org/10.1016/j.solener.2013.05.012

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this study was provided by a grant (ARDB/01/2031857/M/I) from the Aeronautical Research and Development Board (AR&DB)—Defence research and development organization, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Venu Vinod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yashawantha, K.M., Gurjar, G., Venu Vinod, A. (2021). Stability and Thermal Conductivity of Ethylene Glycol and Water Nanofluid Containing Graphite Nanoparticles. In: Muthukumar, P., Sarkar, D.K., De, D., De, C.K. (eds) Innovations in Sustainable Energy and Technology. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-1119-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1119-3_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1118-6

  • Online ISBN: 978-981-16-1119-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics