Skip to main content

Conservation Agriculture: Next-Generation, Climate Resilient Crop Management Practices for Food Security and Environmental Health

  • Chapter
  • First Online:
Conservation Agriculture: A Sustainable Approach for Soil Health and Food Security

Abstract

The global population is projected to increase to between 8.9 billion (b) and 10.6 b by 2050, from a population of 7.7 b in 2019. To meet the increasing food demand of this growing population, an additional 59–110% more food will need to be produced by 2050. Therefore, improved agricultural management practices must be used by farmers to improve productivity. The next-generation practices including high-yielding crop cultivars require higher inputs, while lack of knowledge about how to correctly use these crop inputs has resulted in their imbalanced use which has contributed to ecological imbalances and deteriorating land productivity. Additionally, traditional rice cultivation in Eastern and South Asia results in the formation of a layer of low soil permeability in the plant root zone which increases soil compaction and reduces hydraulic conductivity, macroporosity, and the proportion of water-stable aggregates in the soil, all of which adversely affect the productivity of the crop following rice. Declining soil fertility and environmental pollution as consequences of traditional crop cultivation are already well reported across Asia. In contrast, conservation agriculture (CA) practices have the potential to maintain or improve the productivity and profitability of rice-based cropping systems, by managing the natural resource base (i.e. soil, water, energy) in an ecologically and environmentally sustainable manner. CA is based on the following three key principles: (1) minimal soil disturbance, (2) maintenance of permanent residues or crop cover, and (3) diversification of crops within rotational sequences and/or plant associations. This chapter highlights the concepts and prospects of CA as an emerging and climate-resilient agricultural technology for food and environmental security in Asia in the modern era of changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahuja LR, Cassel DK, Bruce RR, Barnes BB (1989) Evaluation of spatial distribution of hydraulic conductivity using effective porosity data. Soil Sci 148:404–411

    Article  Google Scholar 

  • Ahuja LR, Fiedler F, Dunn GH, Benjamin JG, Garrison A (1998) Changes in soil water retention curves due to tillage and natural reconsolidation. Soil Sci Soc Am J 62(5):1228–1233

    Article  CAS  Google Scholar 

  • Akteruzzaman M (2018) Adoption status and factors influencing adoption of conservation agriculture technology in Bangladesh. Bangladesh J Agric Econ 38:73–83. https://doi.org/10.22004/ag.econ.278763

    Article  Google Scholar 

  • Alam M, Islam M, Salahin N, Hasanuzzaman M (2014) Effect of tillage practices on soil properties and crop productivity in wheat-mungbean-rice cropping system under subtropical climatic conditions. Sci World J 15:437283. https://doi.org/10.1155/2014/437283

    Article  Google Scholar 

  • Alam MK, Salahin N, Islam S, Begum RA, Hasanuzzaman M, Islam MS, Rahman MM (2016) Patterns of change in soil organic matter, physical properties and crop productivity under tillage practices and cropping systems in Bangladesh. J Agric Sci 155:216–238

    Article  CAS  Google Scholar 

  • Alam MJ, Humphreys E, Sarkar MAR, Yadav S (2017) Intensification and diversification increase land and water productivity and profitability of rice-based cropping systems on the High Ganges River Floodplain of Bangladesh. F Crop Res 209:10–26. https://doi.org/10.1016/j.fcr.2017.04.008

    Article  Google Scholar 

  • Alam MK, Bell RW, Haque ME, Kader MA (2018) Minimal soil disturbance and increased residue retention increase soil carbon in rice-based cropping systems on the Eastern Gangetic Plain. Soil Tillage Res 183:28–41

    Article  Google Scholar 

  • Alam M, Bell RW, Hasanuzzaman M, Salahin N, Rashid MH, Akter N, Akhter S, Islam MS, Islam S, Naznin S, Anik MF (2020) Rice (Oryza sativa L.) establishment techniques and their implications for soil properties, global warming potential mitigation and crop yields. Agronomy 10(6):888. https://doi.org/10.3390/agronomy10060888

    Article  CAS  Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision (No. 12–03). ESA, Rome

    Google Scholar 

  • Alvear M, Rosas A, Rouanet JL, Borie F (2005) Effects of three soil tillage systems on some biological activities in an Ultisol from southern Chile. Soil Tillage Res 82:195–202

    Article  Google Scholar 

  • Alyokhin A, Nault B, Brown B (2019) Soil conservation practices for insect pest management in highly disturbed agroecosystems—a review. Entomol Experiment Appl 168:7–27. https://doi.org/10.1111/eea.12863

    Article  Google Scholar 

  • Bahri H, Annabi M, Cheikh M’Hamed H, Frija A (2019) Assessing the long-term impact of conservation agriculture on wheat-based systems in Tunisia using APSIM simulations under a climate change context. Sci Total Environ 692:1223–1233. https://doi.org/10.1016/j.scitotenv.2019.07.307

    Article  CAS  PubMed  Google Scholar 

  • Balota EL, Colozzi-Filho A, Andrade DS, Dick RP (2003) Microbial biomass in soils under different tillage and crop rotation systems. Biol Fertil Soils 38(1):15–20

    Article  Google Scholar 

  • Barma NCD, Malaker PK, Sarker ZI, Khaleque MA, Hossain MI, Sarker MAZ, Bodruzzaman M, Hakim MA, Hossain A (2014) Adoption of power tiller operated seeder in rice wheat cropping system. WRC, BARI Annual Report, Nashipur, Dinajpur, pp 248–253

    Google Scholar 

  • Bedano JC, Domínguez A (2016) Large-scale agricultural management and soil meso- and macrofauna conservation in the argentine pampas. Sustain For 8:653. https://doi.org/10.3390/su8070653

    Article  Google Scholar 

  • Belay SA, Schmitter P, Worqlul AW, Steenhuis TS, Reyes MR, Tilahun SA (2019) Conservation agriculture saves irrigation water in the dry monsoon phase in the Ethiopian highlands. Water (Switzerland) 11:1–16. https://doi.org/10.3390/w11102103

    Article  CAS  Google Scholar 

  • Bell RW, Haque ME, Islam MA, Alam MK, Jahiruddin M (2017) Long term impact of conservation agriculture in rice based cropping system. 7th World congress in conservation agriculture. 1–4 August, 2017. Rosary, Argentina

    Google Scholar 

  • Bell R, Haque M, Jahiruddin M et al (2018) Conservation agriculture for rice-based intensive cropping by smallholders in the eastern gangetic plain. Agriculture 9:5. https://doi.org/10.3390/agriculture9010005

    Article  Google Scholar 

  • Bertolino AV, Fernandes NF, Miranda JP, Souza AP, Lopes MR, Palmieri F (2010) Effects of plough pan development on surface hydrology and on soil physical properties in Southeastern Brazilian plateau. J Hydrol 393(1–2):94–104

    Article  Google Scholar 

  • Bescansa P, Imaz MJ, Virto I, Enrique A, Hoogmoed WB (2006) Soil water retention as affected by tillage and residue management in semiarid Spain. Soil Tillage Res 87(1):19–27

    Article  Google Scholar 

  • Bhan S, Behera UK (2014) Conservation agriculture in India–Problems, prospects and policy issues. Int Soil Water Conservation Res 2(4):1–2

    Article  Google Scholar 

  • Bhattacharyya R, Prakash V, Kundu S, Gupta HS (2006) Effect of tillage and crop rotations on pore size distribution and soil hydraulic conductivity in sandy clay loam soil of the Indian Himalayas. Soil Tillage Res 86(2):129–140

    Article  Google Scholar 

  • Bhattacharyya R, Prakash V, Kundu S, Srivastva AK, Gupta HS (2009) Soil aggregation and organic matter in a sandy clay loam soil of the Indian Himalayas under different tillage and crop regimes. Agric Ecosyst Environ 132(1–2):126–134

    Article  Google Scholar 

  • Borie F, Rubio R, Rouanet JL, Morales A, Borie G, Rojas C (2006) Effects of tillage systems on soil characteristics, glomalin and mycorrhizal propagules in a Chilean Ultisol. Soil Tillage Res 88(1-2):253–261

    Article  Google Scholar 

  • Brahmachari K, Sarkar S, Santra DK, Maitra S (2019) Millet for food and nutritional security in drought prone and red laterite region of Eastern India. Int J Plant Soil Sci 26(6):1–7

    Google Scholar 

  • Busari MA, Kukal SS, Kaur A, Bhatt R, Dulazi AA (2015) Conservation tillage impacts on soil, crop and the environment. Int Soil Water Conserv Res 3(2):119–129

    Article  Google Scholar 

  • Callebaut F, Gabriels D, Minjauw W, De Boodt M (1985) Determination of soil surface strength with a needle-type penetrometer. Soil Tillage Res 5(3):227–245

    Article  Google Scholar 

  • Calzadilla A, Rehdanz K, Betts R et al (2013) Climate change impacts on global agriculture. Clim Chang 120:357–374. https://doi.org/10.1007/s10584-013-0822-4

    Article  Google Scholar 

  • Castellini M, Ventrella D (2012) Impact of conventional and minimum tillage on soil hydraulic conductivity in typical cropping system in Southern Italy. Soil Tillage Res 124:47–56

    Article  Google Scholar 

  • Corbeels M, Thierfelder C, Rusinamhodzi L (2015) Conservation agriculture in sub-Saharan Africa. In: Farooq M, Siddique KHM (eds) Conservation agriculture. Springer International Publishing, Berlin, pp 443–476

    Chapter  Google Scholar 

  • Corbeels M, Chirat G, Messad S, Thierfelder C (2016) Performance and sensitivity of the DSSAT crop growth model in simulating maize yield under conservation agriculture. Eur J Agron 76:41–53

    Article  Google Scholar 

  • Corsi S, Muminjanov H (2019) Conservation agriculture: training guide for extension agents and farmers in Eastern Europe and Central Asia. FAO, Rome

    Google Scholar 

  • Curaqueo G, Barea JM, Acevedo E, Rubio R, Cornejo P, Borie F (2011) Effects of different tillage system on arbuscular mycorrhizal fungal propagules and physical properties in a Mediterranean agroecosystem in central Chile. Soil Tillage Res 113(1):11–18

    Article  Google Scholar 

  • D’Souza A, Mishra AK (2018) Adoption and abandonment of partial conservation technologies in developing economies: the case of South Asia. Land Use Policy 70:212–223. https://doi.org/10.1016/j.landusepol.2017.10.015

    Article  Google Scholar 

  • Dalal RC (1989) Long-term effects of no-tillage, crop residue and nitrogen application on properties of a Vertisol. Soil Sci Soc Am J 53:1511–1515. https://doi.org/10.2136/sssaj1989.03615995005300050035x

    Article  CAS  Google Scholar 

  • Dalal RC, Henderson PA, Glasby JM (1991) Organic matter and microbial biomass in a Vertisol after 20 yr of zero tillage. Soil Biol Biochem 23:435–441. https://doi.org/10.1016/0038-0717(91)90006-6

    Article  CAS  Google Scholar 

  • Dalal RC, Allen DE, Wang WJ, Reeves S, Gibson I (2011) Organic carbon and total nitrogen stocks in a Vertisol following 40 years of no-tillage, crop residue retention and nitrogen fertilisation. Soil Tillage Res 112:133–139. https://doi.org/10.1016/j.still.2010.12.006

    Article  Google Scholar 

  • Derpsch R (1998) Historical review of no-tillage cultivation of crops. In: Conservation tillage for sustainable agriculture. Proceedings from an International Workshop, Harare, pp 22–27

    Google Scholar 

  • Dey A, Dwivedi BS, Bhattacharyya R, Datta SP, Meena MC, Jat RK, Gupta RK, Jat ML, Singh VK, Das D, Singh RG (2020) Effect of conservation agriculture on soil organic and inorganic carbon sequestration and lability: A study from a rice–wheat cropping system on a calcareous soil of the eastern Indo‐Gangetic Plains. Soil Use Manag 36(3):429–438

    Article  Google Scholar 

  • Du Z, Ren T, Hu C, Zhang Q (2015) Transition from intensive tillage to no-till enhances carbon sequestration in microaggregates of surface soil in the North China Plain. Soil Till Res 146:26–31

    Google Scholar 

  • Duiker SW, Beegle DB (2006) Soil fertility distributions in long-term no-till, chisel/disk and moldboard plow/disk systems. Soil Tillage Res 88:30–41. https://doi.org/10.1016/j.still.2005.04.004

    Article  Google Scholar 

  • Edralin DA, Sigua GC, Reyes MR, Mulvaney MJ, Andrews SS (2017) Conservation agriculture improves yield and reduces weeding activity in sandy soils of Cambodia. Agron Sustain Dev 37:52. https://doi.org/10.1007/s13593-017-0461-7

    Article  Google Scholar 

  • FAO (2009a) Global agriculture towards 2050. How to Feed the World. FAO, Rome, Italy

    Google Scholar 

  • FAO (2009b) How to feed the World in 2050, high-level expert forum: how to feed world in 2050, Rome 12–13 October, 2009. FAO, Rome

    Google Scholar 

  • FAO (2011) Save and grow: a policy maker’s guide to the sustainable intensification of smallholder crop production. FAO, Rome

    Google Scholar 

  • FAO (2016) The economics of conservation agriculture. Biol Conserv 2:47–58. https://doi.org/10.1016/j.agsy.2014.03.004

    Article  Google Scholar 

  • FAO (2019) Conservation agriculture. In: Sustainable food and agriculture. Elsevier, Amsterdam, pp 213–217

    Google Scholar 

  • Farooq M, Siddique KH (eds) (2014) Conservation agriculture. Springer. 665 p, Berlin. https://doi.org/10.1007/978-3-319-11620-4

    Book  Google Scholar 

  • Farooq M, Siddique KHM (2015) Conservation agriculture. Springer International Publishing, Cham

    Book  Google Scholar 

  • Fernández-Ugalde AJ (2002) Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Tillage Res 66(2):197–205

    Article  Google Scholar 

  • Fernández-Ugalde O, Virto I, Bescansa P, Imaz MJ, Enrique A, Karlen DL (2009) No-tillage improvement of soil physical quality in calcareous, degradation-prone, semiarid soils. Soil Tillage Res 106(1):29–35

    Article  Google Scholar 

  • Fonte SJ, Nesper M, Hegglin D, Velasquez JE, Ramirez B, Rao IM, Bernasconi SM, Bunemann EK, Frossard E, Oberson A (2014) Pasture degradation impacts soil phosphorus storage via changes to aggregate-associated soil organic matter in highly weathered tropical soils. Soil Biol Biochem 68:150–157

    Article  CAS  Google Scholar 

  • Frąc M, Hannula SE, Bełka M, Jędryczka M (2018) Fungal biodiversity and their role in soil health. Front Microbiol 9:707. https://doi.org/10.3389/fmicb.2018.00707

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao L, Wang B, Li S, Wu H, Wu X, Liang G, Gong D, Zhang X, Cai D, Degré A (2019) Soil wet aggregate distribution and pore size distribution under different tillage systems after 16 years in the Loess Plateau of China. Catena 173:38–47

    Article  CAS  Google Scholar 

  • Gathala MK, Timsina J, Islam MS, Rahman MM, Hossain MI, Harun-Ar-Rashid M, Ghosh AK, Krupnik TJ, Tiwari TP, McDonald A (2015) Conservation agriculture based tillage and crop establishment options can maintain farmers’ yields and increase profits in South Asia’s rice–maize systems: evidence from Bangladesh. Field Crop Res 172:85–98

    Article  Google Scholar 

  • Gathala MK, Jat ML, Saharawat YS, Sharma SK, Singh Y, Ladha JK (2017) Physical and chemical properties of a sandy loam soil under irrigated rice-wheat sequence in the Indo-Gangetic Plains of South Asia. J Ecosyst Ecogra 7:1–10

    Google Scholar 

  • Gathala MK, Laing AM, Tiwari TP, Timsina J, Islam S, Bhattacharya PM, Dhar T, Ghosh A, Sinha AK, Chowdhury AK, Hossain S (2020) Energy-efficient, sustainable crop production practices benefit smallholder farmers and the environment across three countries in the Eastern Gangetic Plains, South Asia. J Cleaner Prod 246:118982. https://doi.org/10.1016/j.jclepro.2019.118982

  • Gaydon DS, Probert ME, Buresh RJ, Meinke H, Suriadi A, Dobermann A, Bouman B, Timsina J (2012) Rice in cropping systems—Modelling transitions between flooded and non-flooded soil environments. Eur J Agron 39:9–24. https://doi.org/10.1016/j.eja.2012.01.003

    Article  Google Scholar 

  • Ghosh PK, Venkatesh MS, Hazra KK, Kumar N (2012) Long-term effect of pulses and nutrient management on soil organic carbon dynamics and sustainability on an inceptisol of indo-gangetic plains of India. Exp Agric 48(4):473. https://doi.org/10.1017/S0014479712000130

    Article  Google Scholar 

  • Głąb T, Kulig B (2008) Effect of mulch and tillage system on soil porosity under wheat (Triticum aestivum). Soil Tillage Res 99(2):169–178

    Article  Google Scholar 

  • Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 80:812–818. https://doi.org/10.1126/science.1185383

    Article  CAS  Google Scholar 

  • Govaerts B, Fuentes M, Mezzalama M, Nicol JM, Deckers J, Etchevers JD, Figueroa-Sandoval B, Sayre KD (2007) Infiltration, soil moisture, root rot and nematode populations after 12 years of different tillage, residue and crop rotation managements. Soil Tillage Res 94(1):209–219

    Article  Google Scholar 

  • Govaerts B, Mezzalama M, Sayre KD, Crossa J, Lichter K, Troch V, Vanherck K, De Corte P, Deckers J (2008) Long-term consequences of tillage, residue management, and crop rotation on selected soil micro-flora groups in the subtropical highlands. Appl Soil Ecol 38(3):197–210

    Article  Google Scholar 

  • Govaerts B, Sayre KD, Goudeseune B, De Corte P, Lichter K, Dendooven L, Deckers J (2009) Conservation agriculture as a sustainable option for the central Mexican highlands. Soil Tillage Res 103(2):222–230

    Article  Google Scholar 

  • Government of Bangladesh (2019) Bangladesh Economic Review 2019. Government of Bangladesh, Dhaka

    Google Scholar 

  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding K, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010. https://doi.org/10.1126/science.1182570

    Article  CAS  PubMed  Google Scholar 

  • Guo L-J, Lin S, Liu T-Q, Cao C-G, Li C-F (2016) Effects of conservation tillage on topsoil microbial metabolic characteristics and organic carbon within aggregates under a rice (Oryza sativa L.)—wheat (Triticum aestivum L.) cropping system in Central China. PLoS One 11(1):e0146145. https://doi.org/10.1371/journal.pone.0146145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta R, Seth A (2007) A review of resource conserving technologies for sustainable management of the rice-wheat cropping systems of the Indo-Gangetic plains (IGP). Crop Prot 26:436–447. https://doi.org/10.1016/j.cropro.2006.04.030

    Article  Google Scholar 

  • Habig J, Swanepoel C (2015) Effects of conservation agriculture and fertilization on soil microbial diversity and activity. Environment 2:358–384. https://doi.org/10.3390/environments2030358

    Article  Google Scholar 

  • He J, Kuhn NJ, Zhang XM, Zhang XR, Li HW (2009) Effects of 10 years of conservation tillage on soil properties and productivity in the farming–pastoral ecotone of Inner Mongolia, China. Soil Use Manag 25(2):201–209

    Article  Google Scholar 

  • Hiel MP, Barbieux S, Pierreux J, Olivier C, Lobet G, Roisin C, Garré S, Colinet G, Bodson B, Dumont B (2018) Impact of crop residue management on crop production and soil chemistry after seven years of crop rotation in temperate climate, loamy soils. PeerJ 6:e4836. https://doi.org/10.7717/peerj.4836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holzworth DP, Huth NI, deVoil PG, Zurcher EJ, Herrmann NI, McLean G, Chenu K, van Oosterom EJ, Snow V, Murphy C, Moore AD (2014) APSIM–evolution towards a new generation of agricultural systems simulation. Environ Model Softw 62:327–50

    Google Scholar 

  • Hoque MA, Miah MS (2015) Evaluation of different tillage methods to assess BARI inclined plate planter. Agric Eng Int CIGR J 17(3):128–137

    Google Scholar 

  • Hossain MI, Esdaile RJ, Bell R, Haque E, Johansen C (2009) Development of a low cost two wheel tractor operated no-till seeder for better establishment of upland crop. Eco-friendly Agril J 2(11):915–919

    Google Scholar 

  • Hossain MI, Sarker JU, Haque MA (2015) Status of conservation agriculture based tillage technology for crop production in Bangladesh. Bangladesh J Agril Res 40(2):235–248

    Article  Google Scholar 

  • Hou D, Bolan NS, Tsang DCW, Kirkham MB, O’Connor D (2020) Sustainable soil use and management: a interdisciplinary and systematic approach. Sci Total Environ 729:138961. https://doi.org/10.1016/j.scitotenv.2020.138961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huera-Lucero T, Labrador-Moreno J, Blanco-Salas J, Ruiz-Téllez T (2020) A framework to incorporate biological soil quality indicators into assessing the sustainability of territories in the Ecuadorian Amazon. Sustain For 12:3007. https://doi.org/10.3390/su12073007

    Article  Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: The physical science basis. Contribution of Working Group 1 to the 5th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom; New York, NY, USA

    Google Scholar 

  • IPCC (2020) Global climate data and information. In: World Bank. https://climateknowledgeportal.worldbank.org/country/india/climate-data-projections. Accessed 21 Jan 2020

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change 2007. Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Chang [Core Writing Team, Pachauri RK, Reisinger AJ, eds]. IPCC, Geneva, Switzerland, p 104

    Google Scholar 

  • Jat ML, Saharawat YS, Gupta R (2011) Conservation agriculture in cereal systems of South Asia: nutrient management perspectives. Karnataka J Agricult Sci 24(1):100–105

    Google Scholar 

  • Jat HS, Datta A, Sharma PC, Kumar V, Yadav AK, Choudhary M, Choudhary V, Gathala MK, Sharma DK, Jat ML, Yaduvanshi NP (2018) Assessing soil properties and nutrient availability under conservation agriculture practices in a reclaimed sodic soil in cereal-based systems of North-West India. Arch Agron Soil Sci 64(4):531–545

    Article  CAS  Google Scholar 

  • jun Cao Q, Li G, tuan Yang F, li Jiang X, Diallo L, xi Chen F (2017) Plough pan impacts maize grain yield, carbon assimilation, and nitrogen uptake in the corn belt of Northeast China. Emirat J Food Agricult 5:502–508

    Google Scholar 

  • Kabir J, Cramb R, Gaydon DS, Roth CH (2017) Bio-economic evaluation of cropping systems for saline coastal Bangladesh: II. Economic viability in historical and future environments. Agric Syst 155:103–115. https://doi.org/10.1016/j.agsy.2017.05.002

    Article  Google Scholar 

  • Kassam A, Hongwen L, Niino Y, Friedrich T, Jin H, Xianliang W (2014) Current status, prospect and policy and institutional support for conservation agriculture in the Asia-Pacific region. Int J Agricult Biol Eng 7(5):1–3

    Google Scholar 

  • Kassam A, Friedrich T, Derpsch R (2019) Global spread of conservation agriculture. Int J Environ Stud 76:29–51. https://doi.org/10.1080/00207233.2018.1494927

    Article  CAS  Google Scholar 

  • Keil A, D’souza A, McDonald A (2015) Zero-tillage as a pathway for sustainable wheat intensification in the Eastern Indo-Gangetic Plains: does it work in farmers’ fields? Food Secur 7:983–1001. https://doi.org/10.1007/s12571-015-0492-3

    Article  Google Scholar 

  • Kibblewhite MG, Ritz K, Swift MJ (2008) Soil health in agricultural systems. Philos Trans R Soc Lond Ser B Biol Sci 363(1492):685–701. https://doi.org/10.1098/rstb.2007.2178

    Article  CAS  Google Scholar 

  • Kushwaha CP, Tripathi SK, Singh KP (2001) Soil organic matter and water-stable aggregates under different tillage and residue conditions in a tropical dryland agroecosystem. Appl Soil Ecol 16(3):229–241

    Article  Google Scholar 

  • Lehman RM, Cambardella CA, Stott DE, Acosta-Martinez V, Manter DK, Buyer JS et al (2015) Understanding and enhancing soil biological health: the solution for reversing soil degradation. Environment 2:358–384. https://doi.org/10.3390/environments2030358

    Article  Google Scholar 

  • Leskovar D, Othman Y (2018) Organic and conventional farming differentially influenced soil respiration, physiology, growth, and head quality of artichoke cultivars. J Soil Sci Plant Nutr 18:865–880

    CAS  Google Scholar 

  • Leskovar D, Othman Y, Dong X (2016) Strip tillage improves soil biological activity, fruit yield and sugar content of triploid watermelon. Soil Tillage Res 163:266–273

    Article  Google Scholar 

  • Li Y, Li Z, Cui S, Jagadamma S, Zhang Q (2019) Residue retention and minimum tillage improve physical environment of the soil in croplands: a global meta-analysis. Soil Tillage Res 194:104292

    Article  Google Scholar 

  • Li Y, Zhang Q, Cai Y, Yang Q, Chang SX (2020) Minimum tillage and residue retention increase soil microbial population size and diversity: implications for conservation tillage. Sci Total Environ 716:137164. https://doi.org/10.1016/j.scitotenv.2020.137164

    Article  CAS  PubMed  Google Scholar 

  • Lipiec J, Kuś J, Słowińska-Jurkiewicz A, Nosalewicz A (2006) Soil porosity and water infiltration as influenced by tillage methods. Soil Tillage Res 89(2):210–220

    Article  Google Scholar 

  • Liu J, Liu Z, Zhu AX et al (2019) Global sensitivity analysis of the APSIM-Oryza rice growth model under different environmental conditions. Sci Total Environ 651:953–968. https://doi.org/10.1016/j.scitotenv.2018.09.254

    Article  CAS  PubMed  Google Scholar 

  • Manivannan S, Thilagam VK, Khola OPS (2017) Soil and water conservation in India: Strategies and research challenges. J Soil Water Conserv 16:312. https://doi.org/10.5958/2455-7145.2017.00046.7

    Article  Google Scholar 

  • Margenot AJ, Paul BK, Sommer RR, Pulleman MM, Parikh SJ, Jackson LE, Fonte SJ (2017) Can conservation agriculture improve phosphorus (P) availability in weathered soils? Effects of tillage and residue management on soil P status after 9 years in a Kenyan Oxisol. Soil Tillage Res 166:157–166

    Article  Google Scholar 

  • Meena RS, Lal R (2018) Legumes for soil health and sustainable management. Springer, Singapore, Singapore

    Book  Google Scholar 

  • Meena MS, Singh KM, Singh SS (2010) Conservation agriculture: adoption strategies. Agric Ext Rev 22:20–24

    Google Scholar 

  • Mottaleb KA, Rahut DB, Ali A, Gérard B, Erenstein O (2017) Enhancing smallholder access to agricultural machinery services: lessons from Bangladesh. J Dev Stud 53:1502–1517. https://doi.org/10.1080/00220388.2016.1257116

    Article  PubMed  Google Scholar 

  • Mottaleb KA, Krupnik TJ, Keil A, Erenstein O (2019) Understanding clients, providers and the institutional dimensions of irrigation services in developing countries: a study of water markets in Bangladesh. Agric Water Manag 222:242–253. https://doi.org/10.1016/j.agwat.2019.05.038

    Article  PubMed  PubMed Central  Google Scholar 

  • Mrabet R, Moussadek R, Fadlaoui A, van Ranst E (2012) Conservation agriculture in dry areas of Morocco. Field Crop Res 132:84–94. https://doi.org/10.1016/j.fcr.2011.11.017

    Article  Google Scholar 

  • Nandan R, Singh V, Singh SS, Kumar V, Hazra KK, Nath CP, Poonia S, Malik RK, Bhattacharyya R, McDonald A (2019) Impact of conservation tillage in rice–based cropping systems on soil aggregation, carbon pools and nutrients. Geoderma 340:104–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil, phosphorus in action. Springer, New York, pp 215–243

    Book  Google Scholar 

  • Nath CP, Das TK, Rana KS, Bhattacharyya R, Pathak H, Paul S, Meena MC, Singh SB (2017) Greenhouse gases emission, soil organic carbon and wheat yield as affected by tillage systems and nitrogen management practices. Arch Agron Soil Sci 63(12):1644–1660

    Article  CAS  Google Scholar 

  • Nath CP, Hazra KK, Kumar N, Praharaj CS, Singh SS, Singh U, Singh NP (2019) Including grain legume in rice–wheat cropping system improves soil organic carbon pools over time. Ecol Eng 129:144–153

    Article  Google Scholar 

  • Naveen-Gupta S-Y, Humphreys E et al (2016) Effects of tillage and mulch on the growth, yield and irrigation water productivity of a dry seeded rice-wheat cropping system in north-west India. F Crop Res 196:219–236. https://doi.org/10.1016/j.fcr.2016.07.005

    Article  Google Scholar 

  • Nawaz (2012) Studying the resource use efficiency and productivity of wheat in conventional and conservation rice-based cropping systems. M. Sc. (Hons.) Thesis. Department of Agronomy, University of Agriculture, Faisalabad, Pakistan

    Google Scholar 

  • Nelson GC, Van Der Mensbrugghe D, Ahammad H, Blanc E, Calvin K, Hasegawa T, Havlik P, Heyhoe E, Kyle P, Lotze-campen H, Von Lampe M, Mason D, Van Meijl H, Christoph M, Takahashi K, Valin H, Willenbockel D (2014) Agriculture and climate change in global scenarios : why don’t the models agree. Agric Econ 45:1–17. https://doi.org/10.1111/agec.12091

    Article  Google Scholar 

  • Nesper M, Bunemann EK, Fonte SJ, Rao IM, Velasquez JE, Ramirez B, Hegglin D, Frossard E, Oberson A (2015) Pasture degradation decreases organic P content of tropical soils due to soil structural decline. Geoderma 257–258:123–133

    Article  CAS  Google Scholar 

  • Nhamo N, Lungu ON (2017) Opportunities for smallholder farmers to benefit from conservation agricultural practices. In: Smart technologies for sustainable smallholder agriculture 2017 Jan 1. Academic Press, New York, pp 145–163

    Chapter  Google Scholar 

  • NOAA (National Centers for Environmental Information) (2020) State of the Climate: Global Climate Report for Annual 2019, published online January 2020, retrieved on January 16, 2020 from https://www.ncdc.noaa.gov/sotc/global/201913

  • O’Leary GJ, Connor DJ (1997) Stubble retention and tillage in a semi-arid environment: 2. Soil mineral nitrogen accumulation during fallow. Field Crop Res 52:221–229. https://doi.org/10.1016/S0378-4290(97)00035-X

    Article  Google Scholar 

  • Page KL, Dang YP, Dalal RC, Reeves S, Thomas G, Wang W et al (2019) Changes in soil water storage with no-tillage and crop residue retention on a Vertisol: Impact on productivity and profitability over a 50 year period. Soil Tillage Res 194:104319. https://doi.org/10.1016/j.still.2019.104319

    Article  Google Scholar 

  • Palm C, Blanco-Canqui H, DeClerck F, Gatere L, Grace P (2014) Conservation agriculture and ecosystem services: an overview. Agric Ecosyst Environ 187:87–105

    Article  Google Scholar 

  • Pingali PL (2001) Environmental consequences of agricultural commercialization in Asia. Environ Dev Econ 1:483–502

    Article  Google Scholar 

  • Pittelkow CM, Liang X, Linquist BA, Van Groenigen KJ, Lee J, Lundy ME, Van Gestel N, Six J, Venterea RT, Van Kessel C (2015) Productivity limits and potentials of the principles of conservation agriculture. Nature 517(7534):365–368

    Article  CAS  PubMed  Google Scholar 

  • Podder M, Akter M, Saifullah AS, Roy S (2012) Impacts of plough pan on physical and chemical properties of soil. J Environ Sci Nat Resour 5(1):289–294

    Google Scholar 

  • Prestele R, Hirsch AL, Davin EL, Seneviratne SI, Verburg PH (2018) A spatially explicit representation of conservation agriculture for application in global change studies. Glob Chang Biol 24:4038–4053. https://doi.org/10.1111/gcb.14307

    Article  PubMed  PubMed Central  Google Scholar 

  • Pretorius RJ, Hein GL, Blankenship EE, Purrington FF, Wilson RG, Bradshaw JD (2018) Comparing the effects of two tillage operations on beneficial epigeal arthropod communities and their associated ecosystem services in sugar beets. J Econ Entomol 111(6):2617–2631. https://doi.org/10.1093/jee/toy285

    Article  PubMed  PubMed Central  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield Trends are insufficient to double global crop production by 2050. PLoS One 8:1–8. https://doi.org/10.1371/journal.pone.0066428

    Article  CAS  Google Scholar 

  • Reeves DW (1997) The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res 43(1–2):131–167

    Article  Google Scholar 

  • Rehman H, Nawaz A, Wakeel A, Saharawat Y, Farooq M (2015) Conservation agriculture in South Asia. In: Farooq M, Siddique K (eds) Conservation agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-11620-4_11

    Chapter  Google Scholar 

  • Sa JCD, Cerri CC, Lal R, Dick WA, Piccolo MD, Feigl BE (2009) Soil organic carbon and fertility interactions affected by a tillage chrono sequence in a Brazilian Oxisol. Soil Tillage Res 104:56–64. https://doi.org/10.1016/j.still.2008.11.007

    Article  Google Scholar 

  • Saha S, Adhikary M, Gangopadhyay A, Sarkar S, Brahmachari K (2016) Impact of chemical pesticides on environment—a farm level case study. J Inter Des 20:452–458

    Google Scholar 

  • Sainju UM, Caesar-TonThat T, Jabro JD (2009) Carbon and nitrogen fractions in dryland soil aggregates affected by long‐term tillage and cropping sequence. Soil Sci Soc Am J 73(5):1488–1495

    Article  CAS  Google Scholar 

  • Salahin N, Alam K, Mondol AT, Islam MS, Rashid MH, Hoque MA (2017) Effect of tillage and residue retention on soil properties and crop yields in Wheat-Mungbean-Rice Crop rotation under subtropical humid climate. Open J Soil Sci 7(1):73466. https://doi.org/10.4236/ojss.2017.71001

    Article  CAS  Google Scholar 

  • Sánchez-Lugo A, Berrisford P, Morice C, Argüez A (2018) Temperature [in State of the Climate in 2018]. Bull Am Meteorol Soc 99(8):S11–S12

    Google Scholar 

  • Sapkota TB, Mazzoncini M, Bàrberi P, Antichi D, Silvestri N (2012) Fifteen years of no till increase soil organic matter, microbial biomass and arthropod diversity in cover crop-based arable cropping systems. Agron Sustain Dev 32:853–863. https://doi.org/10.1007/s13593-011-0079-0

    Article  Google Scholar 

  • Sapkota TB, Jat ML, Aryal JP et al (2015) Climate change adaptation, greenhouse gas mitigation and economic profitability of conservation agriculture: some examples from cereal systems of Indo-Gangetic Plains. J Integr Agric 14:1524–1533. https://doi.org/10.1016/S2095-3119(15)61093-0

    Article  Google Scholar 

  • Sarkar A, Aronson KJ, Patil S, Hugar LB (2012) Emerging health risks associated with modern agriculture practices: a comprehensive study in India. Environ Res 115:37–50

    Article  CAS  PubMed  Google Scholar 

  • Scopel E, Triomphe B, Affholder F, Da Silva FA, Corbeels M, Xavier JH, Lahmar R, Recous S, Bernoux M, Blanchart E, de Carvalho Mendes I (2013) Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review. Agron Sustain Dev 33(1):113–130

    Article  Google Scholar 

  • Singh A, Phogat VK, Dahiya R, Batra SD (2014) Impact of long-term zero till wheat on soil physical properties and wheat productivity under rice–wheat cropping system. Soil Tillage Res 140:98–105

    Article  Google Scholar 

  • Singh NP, Praharaj CS, Sandhu JS (2016) Utilizing untapped potential of rice fallow of East and North-east India through pulse production. Indian J Genet Plant Breed 76:388–398. https://doi.org/10.5958/0975-6906.2016.00058.4

    Article  Google Scholar 

  • Singh G, Bhattacharyya R, Das TK, Sharma AR, Ghosh A, Das S, Jha P (2018) Crop rotation and residue management effects on soil enzyme activities, glomalin and aggregate stability under zero tillage in the Indo-Gangetic Plains. Soil Tillage Res 184:291–300

    Article  Google Scholar 

  • Sinha AK, Ghosh A, Dhar T, Bhattacharya PM, Mitra B, Rakesh SP, Paneru P, Shrestha SR, Manandhar S, Beura K, Dutta S, Pradhan AK, Rao KK, Hossain A, Siddiquie N, Molla MSH, Chaki AK, Gathala MK, Islam MS, Dalal RC, Gaydon DS, Laing AM, Menzies NW (2019) Trends in key soil parameters under conservation agriculture- based sustainable intensification farming practices in the Eastern Ganga Plain. Soil Res 57:883–893. https://doi.org/10.1071/SR19162

    Article  Google Scholar 

  • Sithole NJ, Magwaza LS (2019) Long-term changes of soil chemical characteristics and maize yield in no-till conservation agriculture in a semi-arid environment of South Africa. Soil Tillage Res 194:104317. https://doi.org/10.1016/j.still.2019.104317

    Article  Google Scholar 

  • Six J, Elliott ET, Paustian K (1999) Aggregate and soil organic matter dynamics under conventional and no‐tillage systems. Soil Sci Soc Am J 63(5):1350–1358

    Article  CAS  Google Scholar 

  • Smith DR, Owens PR, Leytem AB, Warnemuende EA (2007) Nutrient losses from manure and fertilizer applications as impacted by time to first runoff event. Environ Pollut 147(1):131–137

    Article  CAS  PubMed  Google Scholar 

  • Sofo A, Mininni AN, Ricciuti P (2020) Soil macrofauna: a key factor for increasing soil fertility and promoting sustainable soil use in fruit orchard agrosystems. Agronomie 10:456. https://doi.org/10.3390/agronomy10040456

    Article  Google Scholar 

  • Somasundaram J, Reeves S, Wang W, Heenan M, Dalal R (2017) Impact of 47 years of no- tillage and stubble retention on soil aggregation and carbon distribution in a Vertisol. Land Degrad Dev 28:1589–1602. https://doi.org/10.1002/ldr.2689

    Article  Google Scholar 

  • Spedding TA, Hamel C, Mehuys GR, Madramootoo CA (2004) Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biol Biochem 36:499–512

    Article  CAS  Google Scholar 

  • Su X, Nilsson C, Pilotto F, Liu S, Shi S, Zeng B (2017) Soil erosion and deposition in the new shorelines of the Three Gorges Reservoir. Sci Total Environ 599:1485–1492

    Google Scholar 

  • Sun B, Shuxia Jia S, Zhang S, McLaughlin NB, Liang A, Chen X, Liu S, Zhang X (2016) No tillage combined with crop rotation improves soil microbial community composition and metabolic activity. Environ Sci Pollut Res 23:6472–6482. https://doi.org/10.1007/s11356-015-5812-9

    Article  CAS  Google Scholar 

  • Sun R, Li W, Dong W, Tian Y, Hu C, Liu B (2018) Tillage changes vertical distribution of soil bacterial and fungal communities. Front Microbiol 9:699. https://doi.org/10.3389/fmicb.2018.00699

    Article  PubMed  PubMed Central  Google Scholar 

  • The Royal Society (2009) Reaping the benefits: Science and the sustainable intensification of global agriculture (No. 11/09), RS Policy document. The Royal Society, London

    Google Scholar 

  • Thomas GA, Dalal RC, Standley J (2007) No-till effects on organic matter, pH, cation exchange capacity and nutrient distribution in a Luvisol in the semi-arid subtropics. Soil Tillage Res 94(2):295–304

    Article  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108:20260–20264. https://doi.org/10.1073/pnas.1116437108

    Article  PubMed  PubMed Central  Google Scholar 

  • Timsina J (2018) Can organic sources of nutrients increase crop yields to meet global food demand? Agronomy 8:214. https://doi.org/10.3390/agronomy8100214

    Article  CAS  Google Scholar 

  • Umaerus VR, Scholte K, Turkensteen LJ (1989) Crop rotation and the occurrence of fungal diseases in potatoes. In: Vos J, Loon CD van, Bollen GJ (eds) Effects of crop rotation on potato production in the temperate zones. Springer, Netherlands, pp 171–189. https://doi.org/10.1007/978-94-009-2474-1

  • United Nations (2019) World population prospects 2019, World Population Prospects 2019, Total population (both sexes combined) by region, subregion and country, annually for 1950–2100 (thousands) Estimates, 1950–2020. New York

    Google Scholar 

  • USDA (2020) Projected Gross Domestic Product (GDP) Per Capita for Baseline Countries/Regions (in 2010 dollars) [WWW Document]. Int. Macroecon. Data Set. https://www.ers.usda.gov/data-products/international-macroeconomic-data-set.aspx. Accessed 26 June 2020

  • Valin H, Sands RD, van der Mensbrugghe D, Nelson GC, Ahammad H, Blanc E, Bodirsky B, Fujimori S, Hasegawa T, Havlik P, Heyhoe E, Kyle P, Mason-D’Croz D, Paltsev S, Rolinski S, Tabeau A, van Meijl H, von Lampe M, Willenbockel D (2014) The future of food demand: understanding differences in global economic models. Agric Econ 45:51–67. https://doi.org/10.1111/agec.12089

    Article  Google Scholar 

  • Verhulst N, Govaerts B, Verachtert E, Castellanos-Navarrete A, Mezzalama M, Wall P, Deckers J, Sayre KD (2010) Conservation agriculture, improving soil quality for sustainable production systems. Adv Soil Sci Food Secur Soil Qual 799267585:137–208

    Google Scholar 

  • Wang X, Yang Y, Zhao J, Nie J, Zang H, Zeng Z, Olesen JE (2020) Yield benefits from replacing chemical fertilizers with manure under water deficient conditions of the winter wheat–summer maize system in the North China Plain. Eur J Agron 119:126118

    Google Scholar 

  • Ward PS, Bell AR, Droppelmann K, Benton TG (2018) Early adoption of conservation agriculture practices: Understanding partial compliance in programs with multiple adoption decisions. Land Use Policy 70:27–37

    Article  Google Scholar 

  • Weiss J (2009) The economics of climate change in Southeast Asia: a regional review. © Asian Development Bank. http://hdl.handle.net/11540/179

  • Wencai D, Fangfei C, Qiang F, Chengpeng C, Xue M, Xianye Y (2019) Effect of soybean roots and a plough pan on the movement of soil water along a profile during rain. Appl Water Sci 9(5):138. https://doi.org/10.1007/s13201-019-1025-6

    Article  Google Scholar 

  • Wilhelm WW, Johnson JMF, Douglas KL, Lightle DT (2007) Corn stover to sustain soil organic carbon further constrains biomass supply. Agron J 99:1665–1667

    Article  CAS  Google Scholar 

  • Wilson C, Tisdell C (2001) Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecol Econ 39(3):449–462

    Article  Google Scholar 

  • Wohlenberg EV, Reichert JM, Reinert DJ, Blume E (2004) Aggregation dynamics of a sandy soil under five cropping systems in rotation and in succession. Rev Brasil Ciência Solo 28(5):891–900

    Article  Google Scholar 

  • World Bank (2020) World Development Indicators [WWW Document]. Data Bank, World Dev. Indic. https://databank.worldbank.org/data/reports.aspx?source=world-development-indicators#. Accessed 7 Feb 2019

  • Zhang S (2005) Soil hydraulic properties and water balance under various soil management regimes on the Loess Plateau, China. 1652–6880; 2005:126. http://urn.kb.se/resolve?urn=urn:nbn:se:slu:epsilon-845

  • Zhang SB, Song CC (2004) Effects of different land-use onsoil physical-chemical properties in the Sanjiang Plain. Chinese J Soil Sci 3:25–30. (in Chinese)

    Google Scholar 

  • Zhang X, Li H, He J, Wang Q, Golabi MH (2009) Influence of conservation tillage practices on soil properties and crop yields for maize and wheat cultivation in Beijing, China. Soil Res 47(4):362–371

    Article  Google Scholar 

  • Zhao X, Liu SL, Pu C, Zhang XQ, Xue JF, Ren YX et al (2017) Crop yields under no-till farming in China: a meta-analysis. Eur J Agron 84:67–75. https://doi.org/10.1016/j.eja.2016.11.009

    Article  Google Scholar 

  • Zhou M, Liu C, Wang J, Meng Q, Yuan Y, Ma X, Liu X, Zhu Y, Ding G, Zhang J, Zeng X (2020) Soil aggregates stability and storage of soil organic carbon respond to cropping systems on Black Soils of Northeast China. Sci Rep 10(1):1–3

    Google Scholar 

Download references

Conflict of Interest

All authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, A. et al. (2021). Conservation Agriculture: Next-Generation, Climate Resilient Crop Management Practices for Food Security and Environmental Health. In: Jayaraman, S., Dalal, R.C., Patra, A.K., Chaudhari, S.K. (eds) Conservation Agriculture: A Sustainable Approach for Soil Health and Food Security . Springer, Singapore. https://doi.org/10.1007/978-981-16-0827-8_28

Download citation

Publish with us

Policies and ethics