Skip to main content

Conservation Agriculture Improves Soil Health: Major Research Findings from Bangladesh

  • Chapter
  • First Online:
Conservation Agriculture: A Sustainable Approach for Soil Health and Food Security

Abstract

Agriculture in Bangladesh is subsistence-oriented, with traditional management practices still widespread. More recently, new management options have been introduced which have led to substantial improvements in national food and nutrition security as well as a decline in rural poverty. Globally, Bangladesh is the second largest consumer per capita of rice (about 200 kg year−1). Between 77% and 80% of the country’s arable land is used for rice-based crop production. Depending on local edaphic and hydrologic conditions, rice may be grown over three key cropping periods: aman (grown in the wet season and rainfed from monsoon rains); boro (grown in winter and fully irrigated); and aus (grown in spring largely using pre-monsoon rainfall). To meet the increasing food and nutrition demands of Bangladesh’s increasing population, farmers apply high doses of agrochemicals (e.g. fertilizers, pesticides, and herbicides) without realizing the deleterious effect overapplication has in terms of depleting soil organic matter, increasing both macro- and micro-nutrient insufficiencies, increasing water-logging and/or poor drainage, and increases in soil salinity and acidity. In addition, intensive rice cultivation under irrigation is the greatest source of greenhouse gas emissions from cropland. In 2014, global greenhouse gas emissions from rice cultivation were 192 megatons. To mitigate the adverse effects on soil health of traditional intensive crop management, and also to reduce greenhouse gas emissions from food grain production, conservation agriculture has been proposed as a key tool to sustainably maintain or increase agricultural productivity and profitability while preserving or enhancing natural resources and the environment. Conservation agriculture is based on three principle strategies: minimal disturbance of soil; maintaining soil cover through the retention of crop residues and/or cover crops; and the use of crop rotations. This chapter explores how, in Bangladesh, conservation agriculture improves soil physical, biochemical and biological health, leading to improved cropping system productivity while minimizing environmental damage. We also examine key challenges and potential solutions to promote the wider expansion of conservation agriculture practices in the intensive rice-based cropping systems of South Asia, in particular in Bangladesh.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Salam E, Alatar A, El-Sheikh MA (2018) Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi J Biol Sci 25(8):1772–1780

    Article  PubMed  Google Scholar 

  • Abu-Hamdeh NH (2004) The effect of tillage treatments on soil water holding capacity and on soil physical properties. In: Conserving soil and water for society: sharing solutions. ISCO 13th international soil conservation organization conference, Brisbane, Australia, paper 2004 Jul (No. 669, pp. 1–6)

    Google Scholar 

  • Ahmed S, Chauhan BS (2014) Performance of different herbicides in dry-seeded rice in Bangladesh. Sci World J. https://doi.org/10.1155/2014/729418

  • Ahmed S, Salim M, Chauhan BS (2014) Effect of weed management and seed rate on crop growth under direct dry seeded rice systems in Bangladesh. PLoS ONE 9(7):e101919. https://doi.org/10.1371/journal.pone.0101919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahuja LR, Cassel DK, Bruce RR, Barnes BB (1989) Evaluation of spatial distribution of hydraulic conductivity using effective porosity data. Soil Sci 148(6):404–411

    Article  Google Scholar 

  • Aislabie J, Deslippe JR (2013) Soil microbes and their contribution to soil services. In: Dymond JR (ed) Ecosystem services in New Zealand—conditions and trends. Manaaki Whenua Press, Lincoln, pp 143–161

    Google Scholar 

  • Akteruzzaman M, Jahan H, Haque MD (2012) Practices of conservation agricultural technologies in diverse cropping systems in Bangladesh. Bangladesh J Agric Econs 35(1–2):143–144

    Google Scholar 

  • Alam M, Bell RW, Hasanuzzaman M, Salahin N, Rashid MH, Akter N, Akhter S, Islam MS, Islam S, Naznin S, Anik MF (2020) Rice (Oryza sativa L.) establishment techniques and their implications for soil properties, global warming potential mitigation and crop yields. Agronomy 10(6):888. https://doi.org/10.3390/agronomy10060888

    Article  CAS  Google Scholar 

  • Alam MJ, Humphreys E, Sarkar MAR, Yadav S (2017) Intensification and diversification increase land and water productivity and profitability of rice-based cropping systems on the High Ganges River Floodplain of Bangladesh. F Crop Res 209:10–26. https://doi.org/10.1016/j.fcr.2017.04.008

    Article  Google Scholar 

  • Alam MK, Islam M, Salahin N, Hasanuzzaman M (2014) Effect of tillage practices on soil properties and crop productivity in wheat-mungbean-rice cropping system under subtropical climatic conditions. Scientific World J 437283:15. https://doi.org/10.1155/2014/437283

    Article  Google Scholar 

  • Alam MK, Bell RW, Haque ME, Kader MA (2018) Minimal soil disturbance and increased residue retention increase soil carbon in rice-based cropping systems on the Eastern Gangetic Plain. Soil Tillage Res 2018(183):28–41

    Google Scholar 

  • Alam MK, Salahin N, Islam S, Begum RA, Hasanuzzaman M, Islam MS, Rahman MM (2016) Patterns of change in soil organic matter, physical properties and crop productivity under tillage practices and cropping systems in Bangladesh. J Agric Sci 2016(155):216–238

    Google Scholar 

  • Al-Hmoud G, Al-Momany A (2015) Effect of four mycorrhizal products on fusarium root rot on different vegetable crops. J Plant Pathol Microb 6:2

    Google Scholar 

  • Allen DE, Singh BP, Dalal RC (2011) Soil health indicators under climate change: a review of current knowledge. In: Singh BP, Cowie AL, Chan KY (eds) Soil health and climate change. Springer Verlag, Berlin, Heidelberg, pp 25–45

    Chapter  Google Scholar 

  • Alliaume F, Rossing WA, Tittonell P, Jorge G, Dogliotti S (2014) Reduced tillage and cover crops improve water capture and reduce erosion of fine textured soils in raised bed tomato systems. Agric Ecosyst Environ 183:127–137

    Article  Google Scholar 

  • Almagro M, Garcia-Franco N, Martínez-Mena M (2017) The potential of reducing tillage frequency and incorporating plant residues as a strategy for climate change mitigation in semiarid Mediterranean agroecosystems. Agric Ecosyst Environ 246:210–220

    Article  Google Scholar 

  • Alvear M, Rosas A, Rouanet JL, Borie F (2005) Effects of three soil tillage systems on some biological activities in an Ultisol from southern Chile. Soil Tillage Res 82:195–202

    Article  Google Scholar 

  • Angers DA, Recous S, Aita C (1997) Fate of carbon and nitrogen in water-stable aggregates during decomposition of 13C15N-labelled wheat straw in situ. Eur J Soil Sci 48(2):295–300. https://doi.org/10.1111/j.1365-2389.1997.tb00549.x

    Article  Google Scholar 

  • Aryal JP, Sapkota TB, Jat ML, Bishnoi DK (2015) On-farm economic and environmental impact of zero-tillage wheat: a case of north-west india. Exp Agric 51:1–16. https://doi.org/10.1017/S001447971400012X

    Article  Google Scholar 

  • Ashagrie Y, Zech W, Guggenberger G, Mamo T (2007) Soil aggregation, and total and particulate organic matter following conversion of native forests to continuous cultivation in Ethiopia. Soil Tillage Res 94(1):101–108

    Article  Google Scholar 

  • Askun T (2018) Introductory chapter: fusarium: pathogenicity, infections, diseases, mycotoxins management. https://doi.org/10.5772/intechopen.76507

  • Averill C, Bhatnagar JM, Dietze MC, Pearse WD, Kivlin SN (2019) Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc Natl Acad Sci 116(46):23163–23168. https://doi.org/10.1073/pnas.1906655116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayuke FO, Kihara J, Ayaga G, Micheni AN (2019) Conservation agriculture enhances soil fauna richness and abundance in low input systems: examples from Kenya. Front Environ Sci 7:97. https://doi.org/10.3389/fenvs.2019.00097

    Article  Google Scholar 

  • Azooz RH, Arshad MA, Franzluebbers AJ (1996) Pore size distribution and hydraulic conductivity affected by tillage in northwestern Canada. Soil Sci Soc Am J 60(4):1197–1201

    Article  CAS  Google Scholar 

  • Bailey KL, Gossen BD, Lafond GR, Watson PR, Derksen DA (2001) Effect of tillage and crop rotation on root and foliar diseases of wheat and pea in Saskatchewan from 1991 to 1998: univariate and multivariate analyses. Can J Plant Sci 81:789–803

    Article  Google Scholar 

  • Bakkar D, Hamilton M, Hetherington GJ, Spann R (2010) Salinity dynamics and potential for improvement of waterlogged and saline land in a Mediterranean climate using permanent raised beds. Soil Tillage Res 110(1):8–24

    Article  Google Scholar 

  • Balota EL, Filho AC, Andrade DS, Dick RP (2003) Microbial biomass in soils under different tillage and crop rotation systems. Biol Fertil Soils 38(1):15–20. https://doi.org/10.1007/s00374-003-0590-9

    Article  Google Scholar 

  • Banglapedia (National Enclopedia of Bangladesh) (2015) Soil erosion. http://en.banglapedia.org/index.php?title=Soil_Erosion

  • Barma NCD, Malaker PK, Sarker ZI, Khaleque MA, Hossain MI, Sarker MAZ, Bodruzzaman M, Hakim MA, Hossain A (2014) Adoption of power tiller operated seeder in rice wheat cropping system. WRC, BARI Annual report, Nashipur, Dinajpur, p 248–253

    Google Scholar 

  • Barto EK, Alt F, Oelmann Y, Wilcke W, Rillig MC (2010) Contributions of biotic and abiotic factors to soil aggregation across a land use gradient. Soil Biol Biochem 42(12):2316–2324

    Article  CAS  Google Scholar 

  • Bautista S, Bellot J, Ramon-Vallejo V (1996) Mulching treatment for post fire soil conservation in semi-arid eco-systems. Arid Soil Res Rehabil 10:235–242

    Article  Google Scholar 

  • BBS (2016) 2015-yearbook of agricultural statistics. Bangladesh Bureau of Statistics, Ministry of Planning, Government of Bangladesh, Dhaka

    Google Scholar 

  • Bedano JC, Domínguez A (2016) Large-scale agricultural management and soil meso- and macrofauna conservation in the argentine pampas. Sustainability 8:653. https://doi.org/10.3390/su8070653

    Article  Google Scholar 

  • Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci 10:1068. https://doi.org/10.3389/fpls.2019.01068

    Article  PubMed  PubMed Central  Google Scholar 

  • Behailu B, Abebayehu A, Tadesse M, Bayu D (2016) The effect of land management practices on soil physical and chemical properties in Gojeb Sub-River Basin of Dedo District, Southwest Ethiopia. J Soil Sci Environ Manage 7(10):154–165

    Article  Google Scholar 

  • Behera BK, Varshney BP, Goel AK (2009) Effect of puddling on puddled soil characteristics and performance of selfpropelled transplanter in rice crop. Agric Eng Int CIGRE J 10:20. https://cigrjournal.org/index.php/Ejounral/article/view/1073

    Google Scholar 

  • Benbi DK, Senapati N (2010) Soil aggregation and carbon and nitrogen stabilization in relation to residue and manure application in rice–wheat systems in Northwest India. Nutr Cycl Agroecosyst 87(2):233–247

    Article  Google Scholar 

  • Bertrand M, Barot S, Blouin M, Whalen J, de Oliveria T, Roger-Estrade J (2015) Earthworm services for cropping systems: a review. Agron Sustain Dev 35: 553–567. https://doi.org/10.1007/s13593-014-0269-7

  • Bescansa P, Imaz MJ, Virto I, Enrique A, Hoogmoed WB (2006) Soil water retention as affected by tillage and residue management in semiarid Spain. Soil Tillage Res 87(1):19–27

    Article  Google Scholar 

  • Bettache A, Azzouz Z, Boucherba N, Bouiche C, Hamma S, Maibeche R et al (2018) Lignocellulosic biomass and cellulolytic enzymes of Actinobacteria. SAJ Biotechnol 5(1):1–9

    Google Scholar 

  • Bhatt R, Arora S (2019) Tillage and mulching options for conserving soil and water and improving livelihoods in foothills of lower Shiwaliks. J Soil Water Conserv 18(3):230–234

    Article  Google Scholar 

  • Bhatt R, Khera KL (2006) Effect of tillage and mode of straw mulch application on soil erosion in the submontaneous tract of Punjab, India. Soil Tillage Res 88(1-2):107–115

    Article  Google Scholar 

  • Bhattacharyya R, Prakash V, Kundu S, Gupta HS (2006) Effect of tillage and crop rotations on pore size distribution and soil hydraulic conductivity in sandy clay loam soil of the Indian Himalayas. Soil Tillage Res 86(2):129–140

    Article  Google Scholar 

  • Birhane T, Shimbahri M, Girmay T, Fetien A (2016) Effect of integrated soil bunds on key soil properties and soil carbon stock in semi-arid areas of northern Ethiopia. South African J Plant Soil 33(4):297–302

    Article  Google Scholar 

  • Blancard D (2012) Principal characteristics of pathogenic agents and methods of control. In: A colour handbook of tomato diseases. Academic Press, New York. 978-0-12-387737-6, pp 413–650. https://doi.org/10.1016/C2010-0-66813-1

    Chapter  Google Scholar 

  • Blanco-Canqui H, Ruis SJ (2018) No-tillage and soil physical environment. Geoderma 326:164–200. https://doi.org/10.1016/j.geoderma.2018.03.011

    Article  Google Scholar 

  • Borie F, Rubio R, Rouanet JL, Morales A, Borie G, Rojas C (2006) Effects of tillage systems on soil characteristics, glomalin and mycorrhizal propagules in a Chilean Ultisol. Soil Tillage Res 88(1-2):253–261

    Article  Google Scholar 

  • Borrelli P, Robinson DA, Fleischer LR, Lugato E, Ballabio C, Alewell C, Meusburger K, Modugno S, Schütt B, Ferro V, Bagarello V (2017) An assessment of the global impact of 21st century land use change on soil erosion. Nat Commun 8(1):1–3

    Article  CAS  Google Scholar 

  • Bossuyt H, Six J, Hendrix PF (2005) Protection of soil carbon by microaggregates within earthworm casts. Soil Biol Biochem 37(2):251–258

    Article  CAS  Google Scholar 

  • Busari MA, Kukal SS, Kaur A, Bhatt R, Dulazi AA (2015) Conservation tillage impacts on soil, crop and the environment. Int Soil Water Conserv Res 3(2):119–129

    Article  Google Scholar 

  • Capelle C, Schrader S, Brunotte J (2012) Tillage-induced changes in the functional diversity of soil biota—a review with a focus on German data. Euro J Soil Biol 50:165–181

    Article  Google Scholar 

  • Carefoot JM, Lindwall C, Nyborg M (1990) Tillage-induced soil changes and related grain yield in a semi-arid region. Can J Soil Sci 70(2):203–214

    Article  Google Scholar 

  • Castellanos-Navarrete A, Rodriguez-Aragones C, De Goede RG, Kooistra MJ, Sayre KD, Brussaard L, Pulleman MM (2012) Earthworm activity and soil structural changes under conservation agriculture in Central Mexico. Soil Tillage Res 123:61–70. https://doi.org/10.1016/j.still.2012.03.011

    Article  Google Scholar 

  • Castellini M, Ventrella D (2012) Impact of conventional and minimum tillage on soil hydraulic conductivity in typical cropping system in southern Italy. Soil Tillage Res 124:47–56

    Article  Google Scholar 

  • Castiglioni MG, Sasal MC, Wilson M, Oszust JD (2018) Seasonal variation of soil aggregate stability, porosity and infiltration during a crop sequence under no tillage. Revista Terra Latinoamericana 36(3):199–209

    Article  Google Scholar 

  • Chang C, Lindwall CW (1989) Effect of long-term minimum tillage practices on some physical properties of a Chernozemic clay loam. Can J Soil Sci 69(3):443–449

    Article  Google Scholar 

  • Chaudhari PR, Ahire DV, Ahire VD, Chkravarty M, Maity S (2013) Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. Int J Sci Res Publ 3(2):1–8

    CAS  Google Scholar 

  • Chaudhary VB, Bowker MA, O'Dell TE, Grace JB, Redman AE, Rillig MC, Johnson NC (2009) Untangling the biological contributions to soil stability in semiarid shrublands. Ecol Appl 19(1):110–122

    Article  PubMed  Google Scholar 

  • Chauhan BS, Mahajan G, Sardana V, Timsina J, Jat ML (2012) Productivity and sustainability of the rice–wheat cropping system in the Indo-Gangetic Plains of the Indian subcontinent. In: Advances in agronomy. Elsevier, New York, pp 315–369. https://doi.org/10.1016/B978-0-12-394278-4.00006-4

    Chapter  Google Scholar 

  • Chen H, Li X, Hu F, Shi W (2013) Soil nitrous oxide emissions following crop residue addition: a meta-analysis. Glob Chang Biol 19(10):2956–2964

    Article  PubMed  Google Scholar 

  • Cheng W (2020) Soil carbon and nitrogen dynamics by land use and management changes in East and Southeast Asian countries (soil C and N by LUMC). Soil Sci Plant Nut 66:34–36

    Article  Google Scholar 

  • Cherubin MR, da Silva ODM, Feigl BJ, Pimentel LG, Lisboa IP, Gmach MR, Varanda LL et al (2018) Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: a review. Scientia Agricola 75(3):255–272. https://doi.org/10.1590/1678-992x-2016-0459

    Article  CAS  Google Scholar 

  • Chetouhi C, Bonhomme L, Lasserre-Zuber P, Cambon F, Pelletier S, Renou JP et al (2016) Transcriptome dynamics of a susceptible wheat upon Fusarium head blight reveals that molecular responses to Fusarium graminearum infection fit over the grain development processes. Funct Integ Genom 16:183–201. https://doi.org/10.1007/s10142-016-0476-1

    Article  CAS  Google Scholar 

  • Chevallier T, Blanchart E, Albrecht A, Feller C (2004) The physical protection of soil organic carbon in aggregates: a mechanism of carbon storage in a vertisol under pasture and market gardening (Martinique, West Indies). Agric Ecosyst Environ 103(2):375–387

    Article  Google Scholar 

  • Chivenge P, Angeles O, Hadi B, Acuin C, Connor M, Stuart A, Puskur R, Johnson-Beebout S (2020) Ecosystem services in paddy rice systems, Chapter 10. In: The role of ecosystem services in sustainable food systems. Academic Press, Elsevier Inc., New York, pp 181–201

    Chapter  Google Scholar 

  • Chivenge PP, Murwira HK, Giller KE, Mapfumo P, Six J (2007) Long term impact of reduced tillage and residue management on soil carbon stabilization: implications for conservation agriculture on contrasting soils. Soil Tillage Res 94:328–337

    Article  Google Scholar 

  • Choudhary M, Jat HS, Datta A, Yadav AK, Sapkota TB, Mondal S, Meena RP, Sharma PC, Jat ML (2018) Sustainable intensification influences soil quality, biota, and productivity in cereal-based agroecosystems. Appl Soil Ecol 126:189–198. https://doi.org/10.1016/j.apsoil.2018.02.027

    Article  Google Scholar 

  • Choudhary M, Rana KS, Meena MC, Bana RS, Jakhar P, Ghasal PC, Verma RK (2018b) Changes in physico-chemical and biological properties of soil under conservation agriculture based pearl millet – mustard cropping system in rainfed semi-arid region. Arc Agron Soil Sci. https://doi.org/10.1080/03650340.2018.1538556

  • Choudhary M, Sharma PC, Jat HS, McDonald A, Jat ML, Choudhary S, Garg N (2018a) Soil biological properties and fungal diversity under conservation agriculture in indo-Gangetic Plains of India. J Soil Sci Plant Nutr 18(4):1142–1156

    CAS  Google Scholar 

  • Choudhary MR, Munir A, Mahmood S (2008) Field soil salinity distribution under furrow-bed and furrow-ridge during wheat production in irrigated environment. Pak J Water Res 12(2):33–40

    Google Scholar 

  • Christopher SF, Lal R, Mishra U (2009) Regional study of no-till effects on carbon sequestration in the Midwestern United States. Soil Sci Soc Am J 73:207–216. https://doi.org/10.2136/sssaj2007.0336

    Article  CAS  Google Scholar 

  • Chu J, Zhang T, Chang W, Zhang D, Zulfiqar S, Fu A, Hao Y (2016) Impacts of cropping systems on aggregates associated organic carbon and nitrogen in a semiarid highland agroecosystem. PLoS One 11(10):e0165018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coker G, Richard M, Bayne K, Smaill S, Garrett L, Matson A et al (2019) Stakeholder valuation of soil ecosystem services from New Zealand’s planted forests. PLoS ONE 14(8):e0221291. https://doi.org/10.1371/journal.pone.0221291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman JJ (2016) The Fusarium solani species complex: ubiquitous pathogens of agricultural importance. Mol Plant Pathol 17(2):146–158. https://doi.org/10.1111/mpp.12289

    Article  PubMed  Google Scholar 

  • Conceição PC, Dieckow J, Bayer C (2013) Combined role of no-tillage and cropping systems in soil carbon stocks and stabilization. Soil Tillage Res 129:40–47. https://doi.org/10.1016/j.still.2013.01.006

    Article  Google Scholar 

  • Cook RJ (2006) Toward cropping systems that enhance productivity and sustainability. P Natl Acad Sci USA 103:18389–18394

    Article  CAS  Google Scholar 

  • Cooper KM, Grandisons GS (1986) Interaction of vesicular-arbuscular mycorrhizal fungi and root knot nematode on cultivars of tomato and white clover susceptible to Meloidogyne hapla. Annu Rev Plant Biol 108:555–565

    Google Scholar 

  • Curaqueo G, Barea JM, Acevedo E, Rubio R, Cornejo P, Borie F (2011) Effects of different tillage system on arbuscular mycorrhizal fungal propagules and physical properties in a Mediterranean agroecosystem in Central Chile. Soil Tillage Res 113(1):11–18

    Article  Google Scholar 

  • da Silva RF, Bertollo GM, Zaida Inês Antoniolli ZI, Corassa GM, Kuss CC (2016) Population fluctuation in soil meso- and macrofauna by the successive application of pig slurry. Rev Ciênc Agron 47:221–228

    Article  Google Scholar 

  • Dalal RC (1989) Long-term effects of no-tillage, crop residue and nitrogen application on properties of a vertisol. Soil Sci Soc Am J 53:1511–1515. https://doi.org/10.2136/sssaj1989.03615995005300050035x

    Article  CAS  Google Scholar 

  • Dalal RC, Henderson PA, Glasby JM (1991) Organic matter and microbial biomass in a vertisol after 20 yr of zero tillage. Soil Biol Biochem 23:435–441. https://doi.org/10.1016/0038-0717(91)90006-6

    Article  CAS  Google Scholar 

  • D’Andréa AF, Silva ML, Curi N, Ferreira MM (2002) Aggregation attribute indicators of soil quality in management systems of a cerrado region in the south of Goiás state. Brazil Revista Brasileira de Ciência do Solo 26(4):1047–1054

    Google Scholar 

  • Dang YP, Seymour NP, Walker SR, Bell MJ, Freebairn DM (2015) Strategic tillage in no-till farming systems in Australia's northern grains-growing regions: I. drivers and implementation. Soil Tillage Res 152:104–114. https://doi.org/10.1016/j.still.2015.03.009

    Article  Google Scholar 

  • Das A, Layek J, Idapuganti RG, Basavaraj S, Lal R, Rangappa K, Yadav GS, Babu S, Ngachan S (2020) Conservation tillage and residue management improves soil properties under a upland rice–rapeseed system in the subtropical eastern Himalayas. Land Deg Dev. https://doi.org/10.1002/ldr.3568

  • Decaëns T, Jiménez JJ, Gioia C, Measey GJ, Lavelle P (2006) The values of soil animals for conservation biology. Eur J Soil Biol 60:807–819

    Google Scholar 

  • Degu M, Melese A, Tena W (2019) Effects of soil conservation practice and crop rotation on selected soil physicochemical properties: the case of Dembecha District, Northwestern Ethiopia. Appl Environ Soil Sci. 6910879, 14 p. https://doi.org/10.1155/2019/6910879

  • DeLaune PB, Sij JW (2012) Impact of tillage on runoff in long term no-till wheat systems. Soil Tillage Res 124:32–35

    Article  Google Scholar 

  • DeLaune PB, Sij JW, Krutz LJ (2013) Impact of soil aeration on runoff characteristics in dual-purpose no-till wheat systems. J Soil Water Conserv 68(4):315–324

    Article  Google Scholar 

  • Dexter AR (1988) Advances in characterization of soil structure. Soil Tillage Res 11(3-4):199–238. https://doi.org/10.1016/0167-1987(88)90002-5

    Article  Google Scholar 

  • Devkota M, Martius C, Gupta RK, Devkota KP, McDonald AJ (2015) Managing soil salinity with permanent bed planting in irrigated production systems in Central Asia. Agric Ecosyst Environ 202:90–97

    Article  CAS  Google Scholar 

  • Dixit AK, Agrawal RK, Das SK, Sahay CS, Choudhary M, Rai AK, Kumar S, Kantwa SR, Palsaniya DR (2019) Soil properties, crop productivity and energetics under different tillage practices in fodder sorghum+ cowpea–wheat cropping system. Arch Agron Soil Sci 65(4):492–506. https://doi.org/10.1080/03650340.2018.1507024

    Article  CAS  Google Scholar 

  • Dolan MS, Clapp CE, Allmaras RR, Baker JM, Molina JAE (2006) Soil organic carbon and nitrogen in Minnesota, soil as related to tillage, residue and nitrogen management. Soil Tillage Res 89:221–231. https://doi.org/10.1016/j.still.2005.07.015

    Article  Google Scholar 

  • dos Santos NZ, Dieckow J, Bayer C, Molin R, Favaretto N, Pauletti V et al (2011) Forages, cover crops and related shoot and root additions in no-till rotations to C sequestration in a subtropical Ferralsol. Soil Tillage Res 111:208–218. https://doi.org/10.1016/j.still.2010.10.006

    Article  Google Scholar 

  • Du Preez CC, Steyn JT, Kotze E (2001) Long-term effects of wheat residue management on some fertility indicators of a semi-arid Plinth sol. Soil Tillage Res 63:25–33

    Article  Google Scholar 

  • Edralin DA, Sigua GC, Reyes MR, Mulvaney MJ, Andrews SS (2017) Conservation agriculture improves yield and reduces weeding activity in sandy soils of Cambodia. Agron Sustain Dev 37:52. https://doi.org/10.1007/s13593-017-0461-7

    Article  Google Scholar 

  • Ehlers W (1975) Observations on earthworm channels and infiltration on tilled and untilled loess soil. Soil Sci 119(3):242–249

    Article  Google Scholar 

  • Evans TA, Dawes TZ, Ward PR, Lo N (2011) Ants and termites increase crop yield in a dry climate. Nature commu 2:262. https://doi.org/10.1038/ncomms1257

    Article  CAS  Google Scholar 

  • FAO (2001) Conservation agriculture case studies in Latin America and Africa. Introduction. FAO soils bulletin no. 78. FAO, Rome

    Google Scholar 

  • FAO (2015) Soils and biodiversity: soils host a quarter of our planet’s biodiversity. http://www.fao.org/fileadmin/user_upload/soils-2015/images/EN/WSDPosters Promotional Material/En_IYS_food_Print.pdf. Accessed 29 Jul 2020

  • FAO and ITPS (2015) Status of the World’s soil resources (SWSR)—Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy. pp. 30. http://www.fao.org/3/a-bc591e.pdf. Accessed 25 Jul 2020

  • FAO (2017) Conservation agriculture. FAO, Rome. https://doi.org/10.1201/b21225-4

    Book  Google Scholar 

  • FAO (2020) Data: Production [WWW Document]. Online database Crop Prod. Harvest. area. http://www.fao.org/faostat/en/#data/QC. Accessed 26 Apr 2020

  • FAOSTAT (2020) Food balance sheets (database) [WWW document]. Food Agric Organ United Nations. http://www.fao.org/faostat/en/#data/FBS. Accessed 15 Mar 2019)

  • Fernández-Ugalde O, Virto I, Bescansa P, Imaz MJ, Enrique A, Karlen DL (2009) No-tillage improvement of soil physical quality in calcareous, degradation-prone, semiarid soils. Soil Tillage Res 106(1):29–35

    Article  Google Scholar 

  • Follett RF, Peterson GA (1988) Surface soil nutrient distribution as affected by wheat-fallow tillage systems. Soil Sci Soc Am J 52(1):141–147

    Article  CAS  Google Scholar 

  • Franzluebbers AJ, Hons FM (1996) Soil-profile distribution of primary and secondary plant-available nutrients under conventional and no tillage. Soil Tillage Res 39:229–239. https://doi.org/10.1016/S0167-1987(96)01056-2

    Article  Google Scholar 

  • Galbally I, Meyer M, Bently S, Weeks I, Leuning R, Kelly K, Phillips F, Barker-Reid F, Gates W, Baigent R, Eckard R, Grace P (2005) A study of environmental and management drivers of non-CO2 greenhouse gas emissions in Australian agro-ecosystems. In: Van Amstel EA (ed) Non-CO2 greenhouse gases: science, control, policy and implementation: proceedings of the 4th international symposium on non-CO2 greenhouse gases. Mill Press, pp 47–55

    Google Scholar 

  • Gangwar OP, Bhardwaj SC, Singh GP, Prasad P, Kumar S (2018) Barley disease and their management: an Indian perspective. Wheat Barley Res 10(3):138–150. https://doi.org/10.25174/2249-4065/2018/83844

    Article  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial. Gisele P. Domiciano; Fabrício A. Rodrigues; Antônia M.N. Guerra; Francisco X.R. Vale (2013) Infection process of Bipolaris sorokiniana on wheat leaves is affected by silicon. Trop Plant Pathol 38(3):258–263

    Google Scholar 

  • Gathala MK, Kumar V, Sharma PC, Saharawat YS, Jat HS, Singh M, Kumar A, Jat ML, Humphreys E, Sharma DK, Sharma S (2013) Optimizing intensive cereal-based cropping systems addressing current and future drivers of agricultural change in the northwestern Indo-Gangetic Plains of India. Agric Ecosyst Environ 177:85–97. https://doi.org/10.1016/j.agee.2013.06.002

    Article  Google Scholar 

  • Gathala MK, Kumar V, Sharma PC, Saharawat YS, Jat HS, Singh M, Kumar A, Jat ML, Humphreys E, Sharma DK, Sharma S (2014) Reprint of “Optimizing intensive cereal-based cropping systems addressing current and future drivers of agricultural change in the Northwestern Indo-Gangetic Plains of India”. Agric Ecosyst Environ 187:33–46

    Article  Google Scholar 

  • Gathala MK, Timsina J, Islam MS, Krupnik TJ, Bose TR, Islam N, Rahman MM, Hossain MI, Harun-Ar-Rashid M, Ghosh AK, Hasan MM (2016) Productivity, profitability, and energetics: a multi-criteria assessment of farmers’ tillage and crop establishment options for maize in intensively cultivated environments of South Asia. Field Crop Res 186:32–46

    Article  Google Scholar 

  • Gebremikael M, Steel H, Buchan D, Bert W, De Neve S (2016) Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions. Sci Rep 6:32862. https://doi.org/10.1038/srep32862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • GoB (2015) Bangladesh Bureau of Statistics (BBS). National statistics. Government of Bangladesh. http://www.bbs.gov.bd/

  • GoB and FAO (2013) Master plan for agricultural development of the southern region of Bangladesh. Ministry of Agriculture, Government of the People’s Republic of Bangladesh (GoB) and Food and Agriculture Organization of the United Nations (FAO), Dhaka. http://www.fao.org/3/a-au752e.pdf/

    Google Scholar 

  • Govaerts B, Fuentes M, Mezzalama M, Nicol JM, Deckers J, Etchevers JD, Figueroa-Sandoval B, Sayre KD (2007) Infiltration, soil moisture, root rot and nematode population after 12 years of different tillage, residue and crop rotation management. Soil Tillage Res 94:209–219

    Article  Google Scholar 

  • Govaerts B, Mezzalama M, Unno Y, Sayre KD, Luna-Guido M, Vanherck K, Dendooven L, Deckers J (2008) Influence of tillage, residue management, and crop rotation on soil microbial biomass and catabolic diversity. Appl Soil Ecol 37(1-2):18–30

    Article  Google Scholar 

  • Gozubuyuk Z, Sahin U, Ozturk I, Celik A, Adiguzel MC (2014) Tillage effects on certain physical and hydraulic properties of a loamy soil under a crop rotation in a semi-arid region with a cool climate. Catena 118:195–205. https://doi.org/10.1016/j.catena.2014.01.006

    Article  Google Scholar 

  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding K, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010. https://doi.org/10.1126/science.1182570

    Article  CAS  PubMed  Google Scholar 

  • Gupta VV, Germida JJ (1988) Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation. Soil Biol Biochem 20(6):777–786

    Article  CAS  Google Scholar 

  • Habig J, Swanepoel C (2015) Effects of conservation agriculture and fertilization on soil microbial diversity and activity. Environment 2:358–384. https://doi.org/10.3390/environments2030358

    Article  Google Scholar 

  • Hasan MK, Alam AA (2006) Land degradation situation in Bangladesh and role of agroforestry. J Agric Rural Develop 4(1):19–25

    Article  Google Scholar 

  • Hasnat GNT, Kabir MA, Hossain MA (2018) Major environmental issues and problems of South Asia, particularly Bangladesh. In: Hussain C (ed) Handbook of environmental materials management. Springer, Cham. https://doi.org/10.1007/978-3-319-58538-3_7-1

    Chapter  Google Scholar 

  • He J, Kuhn NJ, Zhang XM, Zhang XR, Li HW (2009) Effects of 10 years of conservation tillage on soil properties and productivity in the farming–pastoral ecotone of Inner Mongolia, China. Soil Use Manag 25(2):201–209

    Article  Google Scholar 

  • Heidari G, Mohammadi K, Sohrabi Y (2016) Responses of soil microbial biomass and enzyme activities to tillage and fertilization systems in soybean (Glycine max L.) production. Front Plant Sci 7:1730. https://doi.org/10.3389/fpls.2016.01730

    Article  PubMed  PubMed Central  Google Scholar 

  • Hellequin E, Monard C, Quaiser A, Henriot M, Klarzynski O, Binet F (2018) Specific recruitment of soil bacteria and fungi decomposers following a biostimulant application increased crop residues mineralization. PLoS One 13(12):e0209089. https://doi.org/10.1371/journal.pone.0209089

    Article  PubMed  PubMed Central  Google Scholar 

  • Hickman MV (2002) Long-term tillage and crop rotation effects on soil chemical and mineral properties. J Plant Nutr 25:1457–1470. https://doi.org/10.1002/jsfa.8881

    Article  CAS  Google Scholar 

  • Hinojosa AC, Strauss SL (2020) Impact of cover crops on the soil microbiome of tree crops. Microorganisms 8(3):328. https://doi.org/10.3390/microorganisms8030328

    Article  CAS  Google Scholar 

  • Hobbs PR, Sayre K, Gupta R (2008) The role of conservation agriculture in sustainable agriculture. Philosoph Trans Royal Soc B Biol Sci 363(1491):543–555

    Article  Google Scholar 

  • Hobbs PR, Morris M (2011) Meeting South Asia’s future food requirements from rice-wheat cropping systems: priority issues facing researchers in the post-green revolution era. Natural Resource Group, Texcoco

    Google Scholar 

  • Hobbs PR (2007) Conservation agriculture: what is it and why is it important for future sustainable food production? J Agric Sci 145:127. https://doi.org/10.1017/S0021859607006892

    Article  Google Scholar 

  • Holeplass H, Singh BR, Lal R (2004) Carbon sequestration in soil aggregates under different crop rotations and nitrogen fertilization in an inceptisol in southeastern Norway. Nutr Cycl Agroecosyst 70(2):167–177

    Article  CAS  Google Scholar 

  • Hossain MA (2019) Need of organic amendments in intensive agriculture in Bangladesh. Acta Sci Agric 3(5):106–109

    Google Scholar 

  • Hossain MI, Sarker JU, Haque MA (2015) Status of conservation agriculture based tillage technology for crop production in Bangladesh. Bangladesh J Agril Res 40(2):235–248

    Article  Google Scholar 

  • Hu F, Gan Y, Cui H, Zhao C, Feng F, Yin W, Chai Q (2016) Intercropping maize and wheat with conservation agriculture principles improves water harvesting and reduces carbon emissions in dry areas. Eur J Agron 74:9–17

    Article  Google Scholar 

  • Huggins DR, Allmaras RR, Clapp CE, Lamb JA, Randall GW (2007) Corn-soybean sequence and tillage effects on soil carbon dynamics and storage. Soil Sci Soc Am J 71:145–154. https://doi.org/10.2136/sssaj2005.0231

    Article  CAS  Google Scholar 

  • Islam S, Gathala MK, Tiwari TP, Timsina J, Laing AM, Maharjan S, Chowdhury AK, Bhattacharya PM, Dhar T, Mitra B, Kumar S (2019) Conservation agriculture based sustainable intensification: increasing yields and water productivity for smallholders of the eastern Gangetic Plains. Field Crop Res 238:1–7

    Article  Google Scholar 

  • Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017) The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions. Front Plant Sci 8:1617. https://doi.org/10.3389/fpls.2017.01617

    Article  PubMed  PubMed Central  Google Scholar 

  • Janušauskaite D, Kadžienė G, Ona Auškalnienė O (2013) The effect of tillage system on soil microbiota in relation to soil structure. Pol J Environ Stud 22(5):1387–1391

    Google Scholar 

  • Jat HS, Datta A, Sharma PC, Kumar V, Yadav AK, Choudhary M, Choudhary V, Gathala MK, Sharma DK, Jat ML, Yaduvanshi NPS, Singh G, McDonald A (2018) Assessing soil properties and nutrient availability under conservation agriculture practices in a reclaimed sodic soil in cereal-based systems of north-West India. Arch Agron Soil Sci 64(4):531–545. https://doi.org/10.1080/03650340.2017.1359415

    Article  CAS  Google Scholar 

  • Jat ML, Ramasundaram P, Gathala MK, Sidhu HS, Singh S, Singh RG, Saharawat YS, Kumar V, Chandna P, Ladha JK (2009) Laser-assisted precision land levelling: a potential technology for resource conservation in irrigated intensive production systems of indo-Gangetic plains. In: Ladha JK Yadvinder-Singh, Erenstein O, Hardy B (eds) Integrated crop and resource management in the rice-wheat system of South Asia. International Rice Research Institute, Los Baños, pp. 223-238

    Google Scholar 

  • Jat HS, Datta A, Choudhary M, Sharma PC, Yadav AK, Choudhary V et al (2019) Climate smart agriculture practices improve soil organic carbon pools, biological properties and crop productivity in cereal-based systems of north-West India. Catena 181:104059. https://doi.org/10.1016/j.catena.2019.05.005

    Article  CAS  Google Scholar 

  • Ji B, Hu H, Zhao Y, Mu X, Liu K, Li C (2014) Effects of deep tillage and straw returning on soil microorganism and enzyme activities. Sci World J 451493. https://doi.org/10.1155/2014/451493

  • Jiang X, Wright AL, Wang J, Li Z (2011) Long-term tillage effects on the distribution patterns of microbial biomass and activities within soil aggregates. Catena 87(2):276–280

    Article  CAS  Google Scholar 

  • Kallenbach CM, Frey SD, Grandy AS (2016) Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun 7:13630. https://doi.org/10.1038/ncomms13630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamal M, Abedin MJ (2019) Riverbank erosion and migration: a study on displaced people from governance and cultural perspective. Soc Change XIII(4):23–34

    Google Scholar 

  • Karki TB, Shrestha J (2015) Should we go for conservation agriculture in Nepal? Int J Global Sci Res 2(4):271–276

    Google Scholar 

  • Karlen DL, Ditzer CA, Andrews SS (2003) Soil quality: why and how? Geoderma 114:145–156. https://doi.org/10.1016/S0016-7061(03)00039-9

    Article  CAS  Google Scholar 

  • Kassam A, Friedrich T, Derpsch R, Kienzle J (2015) Overview of the worldwide spread of conservation agriculture. Field Actions Science Reports, Vol. 8, Online since 26 September 2015, connection on 30 September 2016. http://factsreports.revues.org/3966

  • Khan MR, Mukhopadhyay AN, Pandey RN, Thakur MP, Singh D, Siddiqui MA et al (2019) Bio-intensive approaches: application and effectiveness in plant diseases management. Indian Phytopathological Society, New Delhi, pp 1–630

    Google Scholar 

  • Krauss M, Berner A, Perrochet F, Frei R, Niggli U, Mäder P (2020) Enhanced soil quality with reduced tillage and solid manures in organic farming—a synthesis of 15 years. Sci Rep 10:4403. https://doi.org/10.1038/s41598-020-61320-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishna VV, Veettil PC (2014) Productivity and efficiency impacts of conservation tillage in northwest indo-Gangetic Plains. Agric Syst 127:126–138. https://doi.org/10.1016/j.agsy.2014.02.004

    Article  Google Scholar 

  • Kumar NBT, Babalad HB (2018) Influence of conservation agriculture practices on biological soil quality. Int J Curr Microbiol App Sci 7(03):312–322. https://doi.org/10.20546/ijcmas.2018.703.037

    Article  CAS  Google Scholar 

  • Kumari M, Chakraborty D, Gathala MK, Pathak H, Dwivedi BS, Tomar RK, Garg RN, Singh R, Ladha JK (2011) Soil aggregation and associated organic carbon fractions as affected by tillage in a rice–wheat rotation in North India. Soil Sci Soc Am J 75(2):560–567

    Article  CAS  Google Scholar 

  • Kushwaha CP, Tripathi SK, Singh KP (2001) Soil organic matter and water-stable aggregates under different tillage and residue conditions in a tropical dryland agroecosystem. Appl Soil Ecol 16(3):229–241

    Article  Google Scholar 

  • Kwak YS, Weller DM (2013) Take-all of wheat and natural disease suppression: a review. Plant Pathol J 29(2):125–135. https://doi.org/10.5423/PPJ.SI.07.2012.0112

    Article  PubMed  PubMed Central  Google Scholar 

  • Lal R (2007) Constraints to adopting no-till farming in developing countries. Soil Tillage Res 94:1–3

    Article  Google Scholar 

  • Lal R (2015) A system approach to conservation agriculture. JSWC 70:82A. https://doi.org/10.2489/jswc.70.4.82A

    Article  Google Scholar 

  • Lan X, Zhang J, Zong Z, Ma Q, Wang Y (2017) Evaluation of the biocontrol potential of Purpureocillium lilacinum QLP12 against Verticillium dahliae in eggplant. Biomed Res Int 2:1–8

    Google Scholar 

  • Lenka S, Trivedi P, Singh B, Singh BP, Pendall E, Bass A, Lenka NK (2019) Effect of crop residue addition on soil organic carbon priming as influenced by temperature and soil properties. Geoderma 347:70–79

    Article  CAS  Google Scholar 

  • Leskovar D, Othman Y (2018) Organic and conventional farming differentially influenced soil respiration, physiology, growth, and head quality of artichoke cultivars. J Soil Sci Plant Nutr 18:865–880

    CAS  Google Scholar 

  • Leskovar D, Othman Y, Dong X (2016) Strip tillage improves soil biological activity, fruit yield and sugar content of triploid watermelon. Soil Tillage Res 163:266–273

    Article  Google Scholar 

  • Leta A, Selvaraj T (2013) Evaluation of arbuscular mycorrhizal fungi and Trichoderma species for the control of onion white rot (Sclerotium cepivorum Berk). J Plant Pathol Microbiol 4:159

    Google Scholar 

  • Li H, Gao H, Wu H, Li W, Wang X, He J (2007) Effects of 15 years of conservation tillage on soil structure and productivity of wheat cultivation in northern China. Soil Res 45(5):344–350

    Article  Google Scholar 

  • Li H, Harvey J, Kendall A (2013) Field measurement of albedo for different land cover materials and effects on thermal performance. Build Environ 59:536–546

    Article  Google Scholar 

  • Li Y, Li Z, Cui S, Jagadamma S, Zhang QP (2019) Residue retention and minimum tillage improve physical environment of the soil in croplands: a global meta-analysis. Soil Tillage Res 194:104292. https://doi.org/10.1016/j.still.2019.06.009

    Article  Google Scholar 

  • Li Y, Zhang Q, Cai Y, Yang Q, Chang SX (2020) Minimum tillage and residue retention increase soil microbial population size and diversity: implications for conservation tillage. Sci Total Environ 716:137164. https://doi.org/10.1016/j.scitotenv.2020.137164

    Article  CAS  PubMed  Google Scholar 

  • Liang BC, McConkey BG, Campbell CA, Johnston AM, Moulin AP (2002) Short-term crop rotation and tillage effects on soil organic carbon on the Canadian prarires. In: Kimble JM, Lal R, Follet RF (eds) Agricultural practices and policies for carbon sequestration in soil. Lewis Publishers, Boca Raton, FL, pp 287–293. https://doi.org/10.1201/9781420032291.ch27

    Chapter  Google Scholar 

  • Limousin G, Tessier D (2007) Effects of no-tillage on chemical gradients and topsoil acidification. Soil Tillage Res 92:167–174. https://doi.org/10.1016/j.still.2006.02.003

    Article  Google Scholar 

  • Lipiec J, Kuś J, Słowińska-Jurkiewicz A, Nosalewicz A (2006) Soil porosity and water infiltration as influenced by tillage methods. Soil Tillage Res 89(2):210–220

    Article  Google Scholar 

  • Liu C, Lu M, Cui J, Li B, Fang C (2014) Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis. Global Change Biol 20:1366–1381. https://doi.org/10.1111/gcb.12517

    Article  Google Scholar 

  • López-Moreno JI, Goyette S, Beniston M (2009) Impact of climate change on snowpack in the Pyrenees: horizontal spatial variability and vertical gradients. J Hydrol 374(3-4):384–396

    Article  Google Scholar 

  • Maiti D, Barnwal MK, Rana SK, Variar M, Singh RK (2006) Enhancing native arbuscular mycorrhizal association to improve phosphorus nutrition of rainfed upland rice (Oryza sativa L.) through cropping systems. Indian Phytopathol 59(4):432

    Google Scholar 

  • Maiti D, Singh RK, Variar M (2012) Rice-based crop rotation for enhancing native arbuscular mycorrhizal (AM) activity to improve phosphorus nutrition of upland rice (Oryza sativa L.). Biol Fertil Soils 48(1):67–73

    Article  Google Scholar 

  • Mangalassery S, Mooney SJ, Sparkes DL, Fraser WT, Sjögersten S (2015) Impacts of zero tillage on soil enzyme activities, microbial characteristics and organic matter functional chemistry in temperate soils. Euro J Soil Biol 68:9–17. https://doi.org/10.1016/j.ejsobi.2015.03.001

    Article  CAS  Google Scholar 

  • Mashavakure N, Mashingaidze AB, Musundire R, Gandiwa E, Muposhi VK, Thierfelder C, Nhamo N, Bere T, Akhtar SS (2018) Short-term impacts of tillage and fertilizer treatments on soil and root borne nematodes and maize yield in a fine textured cambisol. J of nematol 50(3):329–342. https://doi.org/10.21307/jofnem-2018-033

    Article  CAS  Google Scholar 

  • Matsubara Y, Hasegawa N, Fukui H (2002) Incidence of fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments. J Jpn Soc Hortic Sci 71:370–374

    Article  Google Scholar 

  • Matsubara Y, Ohba N, Fukui H (2001) Effect of arbuscular mycorrhizal fungus infection on the incidence of fusarium root rot in asparagus seedlings. J Jpn Soc Hortic Sci 70:202–206

    Article  Google Scholar 

  • Mavrodi OV, Walter N, Elateek S, Taylor CG, Okubara PA (2012) Suppression of Rhizoctonia and Pythium root rot of wheat by new strains of pseudomonas. Biol Control 62:93–102. https://doi.org/10.1016/j.biocontrol.2012.03.013

    Article  Google Scholar 

  • McBride MB (1994) Environmental chemistry of soils. Oxford University Press, New York, NY

    Google Scholar 

  • McCarthy JR, Pfost DL, Currence HD (1993) Conservation tillage and residue management to reduce soil erosion. University of Missouri Extension. http://muextension.missouri.edu/xplor/agguides/agengin/g01650.htm.

  • Mccormack SA, Ostle N, Bardgett RD, Hopkins DW, Vanbergen AJ (2013) Biochar in bioenergy cropping systems: impacts on soil faunal communities and linked ecosystem processes. GCB Bioenergy 5:81–95. https://doi.org/10.1111/gcbb.12046

    Article  CAS  Google Scholar 

  • Mitra B, Majumdar K, Dutta SK, Mondal T, Das S, Banerjee H, Ray K, Satyanarayana T (2019) Nutrient management in wheat (Triticum aestivum) production system under conventional and zero tillage in eastern sub-Himalayan plains of India. Ind J Agric Sci 89(5):775–784

    CAS  Google Scholar 

  • Mitra B, Mookherjee S, Das S (2014) Performances of wheat under various tillage and nitrogen management in sub-Himalayan plains of West Bengal. J Wheat Res 6(2):150–153

    Google Scholar 

  • Mitra B, Patra K (2019) Performance of rice-wheat cropping system under conservation agriculture based establishment techniques in eastern Indian plains. J Cereal Res 11(3):278–274

    Article  Google Scholar 

  • Miyazawa K, Tsuji H, Yamagata M, Nakano H, Nakamoto T (2002) The effects of cropping systems and fallow managements on microarthropod populations. Plant Prod Sci 5:257–265

    Article  Google Scholar 

  • Mondal T, Mitra B, Das S (2018) Precision nutrient management in wheat (Triticum aestivum L.) using nutrient expert: growth phenology, yield, nitrogen use efficiency and profitability under eastern sub-Himalayan plains. Ind J Agron 63(2):174–180

    Google Scholar 

  • Moore KJ, Cook RJ (1984) Increased take-all of wheat with direct drilling in the Pacific Northwest. Phytopathology 74:1044–1049

    Article  Google Scholar 

  • Motschenbacher J, Brye KR, Anders MM (2011) Long-term rice-based cropping system effects on near-surface soil compaction. Agric Sci 2(2):117–124. https://doi.org/10.4236/as.2011.22017

    Article  CAS  Google Scholar 

  • Mottaleb KA, Krupnik TJ, Keil A, Erenstein O (2019) Understanding clients, providers and the institutional dimensions of irrigation services in developing countries: a study of water markets in Bangladesh. Agric Water Manag 222:242–253. https://doi.org/10.1016/j.agwat.2019.05.038

    Article  PubMed  PubMed Central  Google Scholar 

  • Mrabet R, Moussadek R, Fadlaoui A, van Ranst E (2012) Conservation agriculture in dry areas of Morocco. Field Crops Res 132:84–94. https://doi.org/10.1016/j.fcr.2011.11.017

    Article  Google Scholar 

  • Muchabi J, Lungu OI, Mweetwa AM (2014) Conservation agriculture in Zambia: effects on selected soil properties and biological nitrogen fixation in soyabeans (Glycine max (L.) Merr). Sustain Agric Res 3(3):28–36

    Google Scholar 

  • Myers SS, Zanobetti A, Kloog I, Huybers P, Leakey ADB, Bloom AJ, Carlisle E, Dietterich LH, Fitzgerald G, Hasegawa T et al (2014) Increasing CO2 threatens human nutrition. Nature 2014(510):139

    Article  CAS  Google Scholar 

  • Naab JB, Mahama GY, Yahaya I, Prasad PVV (2017) Conservation agriculture improves soil quality, crop yield, and incomes of smallholder farmers in North Western Ghana. Front Plant Sci 8:996. https://doi.org/10.3389/fpls.2017.00996

    Article  PubMed  PubMed Central  Google Scholar 

  • Nalatwadmath SK, Patil SL, Adhikari RN, Mana Mohan S (2006) Effect of crop residue management on soil erosion, moisture conservation, soil properties and sorghum yield on Vertisols under dryland conditions of semi-arid tropics in India. Indian J Dryland Agric Res Develop 21(2):99–104

    Google Scholar 

  • Nandan R, Singh V, Singh SS, Kumar V, Hazra KK, Nath CP, Poonia S, Malik RK, Bhattacharyya R, McDonald A (2019) Impact of conservation tillage in rice-based cropping systems on soil aggregation, carbon pools and nutrients. Geoderma 340:104–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naresh RK, Gupta RK, Jat ML, Dwivedi A (2016) Tillage, irrigation levels and rice straw mulches effects on wheat productivity, soil aggregates and soil. J Pure Appl Microbiol 10(3):1987–2002

    CAS  Google Scholar 

  • Naresh RK, Panwar AS, Dhaliwal SS, Gupta RK, Kumar A, Rathore RS, Kumar A, Kumar D, Lal M, Kumar S, Tyagi S (2017) Effect of organic inputs on strength and stability of soil aggregates associated organic carbon concentration under rice-wheat rotation in Indo-Gangetic Plain zone of India. Int J Curr Microbiol App Sci 6(10):1973–2008

    Article  CAS  Google Scholar 

  • Nath AJ, Rattan LA (2017) Effects of tillage practices and land use management on soil aggregates and soil organic carbon in the north Appalachian region, USA. Pedosphere 27(1):172–176

    Article  CAS  Google Scholar 

  • Niewiadomska A, Majchrzak L, Borowiak K, Wolna-Maruwka A, Waraczewska Z, Budka A, Gaj R (2020) The influence of tillage and cover cropping on soil microbial parameters and spring wheat. Physiol Agron 10:200. https://doi.org/10.3390/agronomy10020200

    Article  CAS  Google Scholar 

  • NRCS Soil bulk density/moisture/aeration, vol 2019. USDA NRCS, Washington, DC

    Google Scholar 

  • Ntalli N, Adamski Z, Doula M, Monokrousos N (2020) Nematicidal amendments and soil remediation. Plan Theory 9:429. https://doi.org/10.3390/plants9040429

    Article  CAS  Google Scholar 

  • Nziguheba G, Zingore S, Kilhara J, Merckx R, Njoroge S, Otinga A, Vandamme E, Vanlauwe B (2015) Phosphorus in smallholder farming system of sub-Saharan Africa: implications for agricultural intensifications. Nutr Cycl Agroecosyst:1–20

    Google Scholar 

  • Oberson A, Pypers P, Bunemann E, Frossard E (2011) Management impacts on biological phosphorus cycling in cropped soils. In: Bunemann E, Oberson A, Frossard E (eds) Phosphorus in action. Springer, Berlin, Heidelberg, pp 431–458

    Chapter  Google Scholar 

  • Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76(1-3):319–337

    Article  CAS  Google Scholar 

  • Oberson A, Friesen DK, Rao LM, Smithson PC, Turner BL, Frossard E (2006) Improving phosphorus fertility in tropical soils through biological interventions. In: Uphoff N (ed) Biological approaches to sustainable soil systems. CRC Press, New York, pp 536–546

    Google Scholar 

  • Ogle S, Alsaker C, Baldock J, Bernoux M, Breidt F, McConkey BG et al (2019) Climate and soil characteristics determine where no-till management can store carbon in soils and mitigate greenhouse gas emissions. Sci Rep 9:11665. https://doi.org/10.1038/s41598-019-47861-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Leary GJ, Connor DJ (1997) Stubble retention and tillage in a semi-arid environment: 2. Soil mineral nitrogen accumulation during fallow. Field Crops Res 52:221–229. https://doi.org/10.1016/S0378-4290(97)00035-X

    Article  Google Scholar 

  • Ozgonen H, Erkilic A (2007) Growth enhancement and Phytophthora blight (Phytophthoracapsici Leonian) control by arbuscular mycorrhizal fungal inoculation in pepper. Crop Prot 261:1682–1688

    Article  Google Scholar 

  • Page KL, Dang YP, Dalal RC (2020) The ability of conservation agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield. Front Sustain Food Syst 4:31. https://doi.org/10.3389/fsufs.2020.00031

    Article  Google Scholar 

  • Page KL, Dang YP, Dalal RC, Reeves S, Thomas G, Wang W et al (2019) Changes in soil water storage with no-tillage and crop residue retention on a vertisol: impact on productivity and profitability over a 50 year period. Soil Tillage Res 194:104319. https://doi.org/10.1016/j.still.2019.104319

    Article  Google Scholar 

  • Palm C, Blanco-Canqui H, Declerck F, Gatere L, Grace P (2014) Conservation agriculture and ecosystem services: an overview. Agric Ecosyst Environ 202:98–107

    Google Scholar 

  • Panth M, Hassler HC, Baysal-Gurel F (2020) Methods for management of soilborne diseases in crop production. Agriculture 10:16. https://doi.org/10.3390/agriculture10010016

    Article  CAS  Google Scholar 

  • Paterson E, Sim A, Davidson J, Daniell TJ (2016) Arbuscular mycorrhizal hyphae promote priming of native soil organic matter mineralization. Plant Soil 408:243–C254. https://doi.org/10.1007/s11104-016-2928-8

    Article  CAS  Google Scholar 

  • Pertot I, Alabouvette C, Esteve EH, Franca S (2015) Focus group in soil borne diseases: the use of microbial biocontrol agents against soilborne diseases. In: Claude A, Clarkson J, de Cara FM, de Caravalho Franca S, Debode J, Elorrieta M, Furlan L, Grand A, Hinarejos Esteve E, Kos J et al (eds) EIP-AGRI focus group on soil-borne diseases: final report. EIP-AGRI, Brussels, pp 3–5

    Google Scholar 

  • Pfingstmann A, Paredes D, Buchholz J, Querner P, Bauer T, Strauss P et al (2019) Contrasting effects of tillage and landscape structure on spiders and springtails in Vineyards. Sustainability 2019(11):2095. https://doi.org/10.3390/su11072095

    Article  Google Scholar 

  • Pittelkow CM, Linquist BA, Lundy ME, Liang X, van Groenigen KJ, Lee J, van Gestel N, Six J, Venterea RT, van Kessel C (2015) When does no-till yield more? A global meta-analysis. Field Crop Res 183:156–168

    Article  Google Scholar 

  • Posta K, Duc NH (2019) Benefits of arbuscular mycorrhizal fungi application to crop production under water scarcity, drought—detection and solutions, Gabrijel Ondrasek, IntechOpen. https://doi.org/10.5772/intechopen.86595

  • Pozo MJ, Azcón-Aguilar C, Dumas-Gaudot E, Barea JM (1999) β-1,3-Glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthoraparasitica and their possible involvement in bioprotection. Plant Sci 141:149–157

    Article  CAS  Google Scholar 

  • Prommer J, Walker T, Wanek W, Braun J, Zezula D, Hu Y, Hofhansl F, Richter A (2020) Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Global Change Boil 26(2):669–681. https://doi.org/10.1111/gcb.14777

    Article  Google Scholar 

  • Qiao H, Liu X, Li W, Huang W, Li C, Li Z (2006) Effect of deep straw mulching on soil water and salt movement and wheat growth. Chin J Soil Sci 37(5):885–889

    CAS  Google Scholar 

  • Quamruzzzaman M (2006) Integrated nutrient management for sustaining crop productivity and improvement of soil fertility in Bangladesh agriculture. In: Nations, F. and a.O. of the U. (Ed.), proceedings of a regional workshop, Beijing, China 12-16 December, vol 2005. Food and Agriculture Organization of the United Nations, Bangkok, pp 1–16

    Google Scholar 

  • Quasem MA (2011) Conversion of agricultural land to non-agricultural uses in Bangladesh: extent and determinants. Bangladesh Dev Stud 34:59–85

    Google Scholar 

  • Rahman S (2003) Environmental impacts of modern agricultural technology diffusion in Bangladesh: an analysis of farmers perceptions and their determinants. J Environ Manag 68:183–191. https://doi.org/10.1016/S0301-4797(03)00066-5

    Article  Google Scholar 

  • Ramesh T, Bolan NS, NS KMB, Wijesekar H, Kanchikerimath M et al (2019) Soil organic carbon dynamics: impact of land use changes and management practices: a review. Advances Agron 156:1–107. https://doi.org/10.1016/bs.agron.2019.02.001

    Article  Google Scholar 

  • Ramos FT, de Carvalho Dores EFG, dos Santos Weber OL, Beber DC, Campelo Jr JH, de Souza Maia JH (2018) Soil organic matter doubles cation exchange capacity of a tropical soil under no-till farming in Brazil. Excerpt from the first author’s doctoral thesis, funded by CAPES—Brazilian Federal Agency for Support and Evaluation of Graduate Education

    Google Scholar 

  • Reddy KN, Locke MA (1998) Sulfentrazone sorption, desorption, and mineralization in soils from two tillage systems. Weed Sci:494–500

    Google Scholar 

  • Reeleder RD, Miller JJ, Coelho BRB, Roy RC (2006) Impacts of tillage, cover crop, and nitrogen on populations of earthworms, microarthropods, and soil fungi in a cultivated fragile soil. Appl Soil Ecol 33:243–257

    Article  Google Scholar 

  • Reeves DW (1997) The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res 43(1-2):131–167

    Article  Google Scholar 

  • Robbins SG, Voss RD (1991) Phosphorus and potassium stratification in conservation tillage systems. J Soil Water Conserv 46(4):298–300

    Google Scholar 

  • Robinson DA, Hockley N, Cooper DM, Emmett BA, Keith AM, Lebron I, Reynolds B, Tipping E, Tye AM, Watts CW, Whalley WR, Black HIJ, Warren GP, Robinson JS (2013) Natural capital and ecosystem services, developing an appropriate soils framework as a basis for valuation. Soil Biology and Biochem 57:1023–1033

    Article  CAS  Google Scholar 

  • Rochette P (2008) No-till only increases N2O emissions in poorly-aerated soils. Soil Tillage Res 101:97–100. https://doi.org/10.1016/j.still.2008.07.011

    Article  Google Scholar 

  • Roger-Estrade J, Anger C, Bertrand M, Richard G (2010) Tillage and soil ecology: partners for sustainable agriculture. Soil Till Res 111:33–40

    Article  Google Scholar 

  • Rojas RV, Moujahed Achouri M, Maroulis J, Caon L (2016) Healthy soils: a prerequisite for sustainable food security. Environ Earth Sci 75:180. https://doi.org/10.1007/s12665-015-5099-7

    Article  Google Scholar 

  • Roldán A, Salinas-Garcia JR, Alguacil MM, Caravaca F (2007) Soil sustainability indicators following conservation tillage practices under subtropical maize and bean crops. Soil Till Res 93:273–282

    Article  Google Scholar 

  • Sa JCD, Cerri CC, Lal R, Dick WA, Piccolo MD, Feigl BE (2009) Soil organic carbon and fertility interactions affected by a tillage chrono sequence in a Brazilian Oxisol. Soil Tillage Res 104:56–64. https://doi.org/10.1016/j.still.2008.11.007

    Article  Google Scholar 

  • Saikia R, Sharma S, Thind HS, Singh Y (2020) Tillage and residue management practices affect soil biological indicators in a rice–wheat cropping system in North-Western India. Soil Use Manag 36(1):157–172. https://doi.org/10.1111/sum.12544

    Article  Google Scholar 

  • Salahin N, Alam K, Mondol AT, Islam MS, Rashid MH, Hoque MA (2017) Effect of tillage and residue retention on soil properties and crop yields in Wheat-Mungbean-Rice Crop rotation under subtropical humid climate. Open J Soil Sci 7(01):1. Article ID:73466:17. https://doi.org/10.4236/ojss.2017.71001

    Article  CAS  Google Scholar 

  • Sapkota TB, Jat RK, Singh RG, Jat ML, Stirling CM, Jat MK, Bijarniya D, Kumar M, Singh Y, Saharawat YS, Gupta RK (2017) Soil organic carbon changes after seven years of conservation agriculture in a rice-wheat system of the eastern Indo-Gangetic plains. Soil Use Manag 33:81–89

    Article  Google Scholar 

  • Sarkar S, Singh RP, Chauhan A (2018) Crop residue burning in northern India: increasing threat to greater India. J Geophys Res Atmos 123:20–34

    Article  Google Scholar 

  • Sayed A, Sarker A, Kim J-E, Rahman M, Mahmud MGA (2020) Environmental sustainability and water productivity on conservation tillage of irrigated maize in red brown terrace soil of Bangladesh. J Saudi Soc Agric Sci 19:276–284

    Google Scholar 

  • Sayre KD, Limon-Ortega A, Govaerts B (2005) Experiences with permanent bed planting systems CIMMYT/Mexico. Roth CH, Fischer RA, Meisner CA (121):12–25. Griffith, Australia, ACIAR. Evaluation and performance of permanent raised bed cropping systems in Asia, Australia and Mexico. Proceedings of a workshop held in Griffith, Australia, ACIAR Proceedings 121

    Google Scholar 

  • Schillinger WF, Cook RJ, Papendick RI (1999) Increased dryland cropping intensity with no-till barley. Agr J 91:744–752

    Article  Google Scholar 

  • Schroeder KL, Paulitz TC (2006) Root diseases of wheat and barley during the transition from conventional tillage to direct seeding. Plant Dis 90(9):124701253

    Article  Google Scholar 

  • Schwen A, Bodner G, Scholl P, Buchan GD, Loiskandl W (2011) Temporal dynamics of soil hydraulic properties and the water-conducting porosity under different tillage. Soil Tillage Res 113(2):89–98

    Article  Google Scholar 

  • Setboonsarng S, Gregorio EE (2017) Large-Scale Soil Health Restoration: The Way Forward for Reversing Climate Change while Enhancing Food and Nutrition Security, ADB Southeast Asia Working Paper Series, Asian Development Bank 6 ADB Avenue, Mandaluyong City, 1550 Metro Manila, Philippines, pp 23. https://www.adb.org/sites/default/files/publication/386056/sewp-16.pdf. Accessed 24 Jul 2020

    Google Scholar 

  • Shafi J, Tian H, Ji M (2017) Bacillus species are versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip 31:446–459

    Article  CAS  Google Scholar 

  • Sharma P, Singh G, Singh RP (2011) Conservation tillage, optimal water and organic nutrient supply enhance soil microbial activities during wheat (Triticum aestivum L.) cultivation. Braz J Microbiol 42(2):531–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Tripathi RP, Singh S (2005) Tillage effects on soil physical properties and performance of rice–wheat-cropping system under shallow water table conditions of Tarai, Northern India. Eur J Agron 23(4):327–335

    Article  Google Scholar 

  • Sharma-Poudyal D, Schlatter D, Yin C, Hulbert S, Paulitz T (2017) Long-term no-till: a major driver of fungal communities in dryland wheat cropping systems. PLoS One 12(9):e0184611. https://doi.org/10.1371/journal.pone.0184611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharon E, Chet I, Spiegel Y (2011) Trichoderma as a biological control agent. In: Davies K, Spiegel Y (eds) Biological control of plant-parasitic nematodes: progress in biological control, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9648-8_8

    Chapter  Google Scholar 

  • Shaver TM (2010) Crop residue and soil physical properties. Proceedings of the 2010 Central Plains Irrigation Conference, Kearney, Nebraska. Colorado State University. Libraries, February 24–25, 2010.

    Google Scholar 

  • Shaver TM, Peterson GA, Ahuja LR, Westfall DG (2013) Soil sorptivity enhancement with crop residue accumulation in semiarid dryland no-till agroecosystems. Geoderma 192:254–258

    Article  Google Scholar 

  • Shimeles D, Mohammed A, Abayneh E (2006) Characterization and classification of the soils of tenocha-wenchancher micro catchment, South west Shewa, MSc thesis, Alemaya University. Dire Dawa, Ethiopia, p 2006

    Google Scholar 

  • Shitumbanuma V, Banda D (2004) Soil changes associated with conservation farming practices under small scale farming conditions in Monze and Mumbwa Districts of Zambia. Unpublished report. Department of Soil Science, School of Agricultural Sciences, University of Zambia, Lusaka

    Google Scholar 

  • Shiwakoti S, Zheljazkov VD, Gollany ZT, Xing B, Kleber M (2019) Micronutrient concentrations in soil and wheat decline by long-term tillage and winter wheat-pea rotation. Agron 9:359. https://doi.org/10.3390/agronomy9070359

    Article  CAS  Google Scholar 

  • Shukla A, Dehariya K, Vyas D, Jha A (2015) Interactions between arbuscular mycorrhizae and Fusarium oxysporum f. sp. ciceris: effects on fungal development, seedling growth and wilt disease suppression in Cicer arietinum L. Archives Phytopathol Plant Prot 48:240–252

    Article  Google Scholar 

  • Shukla MK, Lal R, Unkefer P (2003) Experimental evaluation of infiltration models for different land use and soil management systems. Soil Sci 168:178–191

    Article  CAS  Google Scholar 

  • Shuman L, Hargrove WL (1988) Effect of organic matter on the distribution of manganese, copper, iron, and zinc in soil fractions. Soil Sci 146:1117–1121

    Google Scholar 

  • Silva AJ, Ribeiro MR, Carvalho FG, Silva VN, Silva LE (2007) Impact of sugarcane cultivation on soil carbon fractions, consistence limits and aggregate stability of a Yellow Latosol in Northeast Brazil. Soil Tillage Res 94(2):420–424

    Article  Google Scholar 

  • Singh A, Phogat VK, Dahiya R, Batra SD (2014) Impact of long-term zero till wheat on soil physical properties and wheat productivity under rice–wheat cropping system. Soil Tillage Res 140:98–105

    Article  Google Scholar 

  • Singh G, Bhattacharyya R, Das TK, Sharma AR, Ghosh A, Das S, Jha P (2018) Crop rotation and residue management effects on soil enzyme activities, glomalin and aggregate stability under zero tillage in the Indo-Gangetic Plains. Soil Tillage Res 184:291–300

    Article  Google Scholar 

  • Singh G, Jalota SK, Singh Y (2007) Manuring and residue management effects on physical properties of a soil under the rice–wheat system in Punjab, India. Soil Tillage Res 94(1):229–238

    Article  Google Scholar 

  • Singh JS (2015) Plant–microbe interactions: a viable tool for agricultural sustainability plant microbes symbiosis: applied facets; Arora NK, Ed.; Springer: New Delhi, India; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, p. 384

    Google Scholar 

  • Sinha AK, Ghosh A, Dhar T, Bhattacharya PM, Mitra B, Rakesh SP, Paneru P, Shrestha SR, Manandhar S, Beura K, Dutta S, Pradhan AK, Rao KK, Hossain A, Siddiquie N, Molla MSH, Chaki AK, Gathala MK, Islam MS, Dalal RC, Gaydon DS, Laing AM, Menzies NW (2019) Trends in key soil parameters under conservation agriculture- based sustainable intensification farming practices in the eastern ganga plain. Soil Res 57:883–893. https://doi.org/10.1071/SR19162

    Article  Google Scholar 

  • Sithole NJ, Magwaza LS (2019) Long-term changes of soil chemical characteristics and maize yield in no-till conservation agriculture in a semi-arid environment of South Africa. Soil Tillage Res 194:104317. https://doi.org/10.1016/j.still.2019.104317

    Article  Google Scholar 

  • Six J, Elliott ET, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103. https://doi.org/10.1016/S0038-0717(00)00179-6

    Article  CAS  Google Scholar 

  • Smiley RW, Collins HP, Rasmussen PE (1996) Diseases of wheat in long-term agronomic experiments at Pendleton, Oregon. Plant Dis 80:813–820

    Article  Google Scholar 

  • Smith DR, Owens PR, Leytem AB, Warnemuende EA (2007) Nutrient losses from manure and fertilizer applications as impacted by time to first runoff event. Environ Pollut 147(1):131–137

    Article  CAS  PubMed  Google Scholar 

  • Smith GR, Wan J (2019) Resource-ratio theory predicts mycorrhizal control of litter decomposition. New Phytol 3:1595–1606

    Article  CAS  Google Scholar 

  • Soane BD, Ball BC, Arvidsson J, Basch G, Moreno F, Roger-Estrade J (2012) No-till in northern, western and South-Western Europe: a review of problems and opportunities for crop production and the environment. Soil Tillage Res 118:66–87. https://doi.org/10.1016/j.still.2011.10.015

    Article  Google Scholar 

  • Sofo A, Mininni AN, Ricciuti P (2020) Soil macrofauna: a key factor for increasing soil fertility and promoting sustainable soil use in fruit orchard Agrosystems. Agron 10:456. https://doi.org/10.3390/agronomy10040456

    Article  Google Scholar 

  • Somasundaram J, Salikram M, Sinha NK, Mohanty M, Chaudhary RS, Dalal RC et al (2019) Conservation agriculture effects on soil properties and crop productivity in a semiarid region of India. Soil Res 57:187–199. https://doi.org/10.1071/SR18145

    Article  Google Scholar 

  • Song Y, Chen D, Lu K, Sun Z, Zeng R (2015) Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front Plant Sci 6:786

    Article  PubMed  PubMed Central  Google Scholar 

  • Soni P, Taewichit C, Salokhe VM (2013) Energy consumption and CO2 emissions in rainfed agricultural production systems of Northeast Thailand. Agric Syst 116:25–36

    Article  Google Scholar 

  • Spedding TA, Hamel C, Mehuys GR, Madramootoo CA (2004) Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biol Biochem 36:499–512

    Article  CAS  Google Scholar 

  • Steinbach HS, Alvarez R (2006) Changes in soil organic carbon contents and nitrous oxide emissions after introduction of no-till in pampean agroecosystems. J Environ Qual 35:3–13. https://doi.org/10.2134/jeq2005.0050

    Article  CAS  PubMed  Google Scholar 

  • Stirling GR, Stirling AM, Walter DE (2017) The mesostigmatid mite protogamasellus mica, an effective predator of free-living and plant-parasitic nematodes. J Nematol 49(3):327–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturrock CJ, Woodhall J, Brown M, Walker C, Mooney SJ, Ray RV (2015) Effects of damping-off caused by Rhizoctonia solani anastomosis group 2-1 on roots of wheat and oil seed rape quantified using X-ray computed tomography and real-time PCR. Frontiers Plant Sci 6:461. https://doi.org/10.3389/fpls.2015.00461

    Article  Google Scholar 

  • Sun B, Shuxia Jia S, Zhang S, McLaughlin NB, Liang A, Chen X, Liu S, Zhang X (2016) No tillage combined with crop rotation improves soil microbial community composition and metabolic activity. Environ Sci Pollut Res 23:6472–6482. https://doi.org/10.1007/s11356-015-5812-9

    Article  CAS  Google Scholar 

  • Surekha K, Satishkumar YS (2014) Productivity, nutrient balance, soil quality and sustainability of rice (Oryza sativa L.) under organic and conventional production systems. Commun Soil Sci Plant Anal 45:415–428. https://doi.org/10.1080/00103624.2013.872250

    Article  CAS  Google Scholar 

  • Swella GB, Ward PR, Siddique KH, Flower KC (2015) Combinations of tall standing and horizontal residue affect soil water dynamics in rainfed conservation agriculture systems. Soil Tillage Res 147:30–38

    Article  Google Scholar 

  • Sylvain ZA, Wall DH (2011) Linking soil biodiversity and vegetation: implications for a changing planet. Am J Bot 98(3):517–527

    Article  PubMed  Google Scholar 

  • Tahat MM, Alananbeh KM, Othman YA, Leskovar DI (2020) Soil health and sustainable agriculture. Sustainability 12:4859. https://doi.org/10.3390/su12124859

    Article  CAS  Google Scholar 

  • Tang H, Xiao X, Li C, Tang W, Pan X, Cheng K, Guo L, Wang K, Li W, Sun G (2020a) Impact of tillage practices on soil aggregation and humic substances under double-cropping paddy field. Agron J 112(1):624–632

    Article  CAS  Google Scholar 

  • Tang Y, Wu X, Li C, Wu C, Ma X, Huang G (2013) Long-term effect of year-round tillage patterns on yield and grain quality of wheat. Plant Prod Sci 2013:365–373

    Google Scholar 

  • Tang H, Li C, Xiao X, Pan X, Tang W, Cheng K, Shi L, Li W, Wen L, Wang K (2020b) Functional diversity of rhizosphere soil microbial communities in response to different tillage and crop residue retention in a double-cropping rice field. PLoS One 15(5):e0233642. https://doi.org/10.1371/journal.pone.0233642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thangavelu R, Palaniswami A, Velazhahan R (2004) Mass production of Trichoderma harzianum for managing fusarium wilt of banana. Agric Ecosyst Environ 103:259–263. https://doi.org/10.1016/J.AGEE.2003.09.026

    Article  Google Scholar 

  • The Guardian (2015) Earth has lost a third of arable land in past 40 years, scientists say. The Guardian 2:12. https://www.theguardian.com/environment/2015/dec/02/arable-land-soil-food-security-shortage

    Google Scholar 

  • Thoden TC, Korthals GW, Termorshuizen AJ (2011) Organic amendments and their influences on plant-parasitic and free-living nematodes: a promising method for nematode management? Nematol 13(2):133–153. https://doi.org/10.1163/138855410X541834

    Article  Google Scholar 

  • Thomas GA, Dalal RC, Standley J (2007) No-till effects on organic matter, pH, cation exchange capacity and nutrient distribution in a Luvisol in the semi-arid subtropics. Soil Tillage Res 94(2):295–304

    Article  Google Scholar 

  • Timper P (2014) Conserving and enhancing biological control of nematodes. J Nematol 46(2):75–89

    PubMed  PubMed Central  Google Scholar 

  • Toure AA, Rajot JL, Garba Z, Marticorena B, Petit C, Sebag D (2011) Impact of very low crop residues cover on wind erosion in the Sahel. Catena 85(3):205–214

    Article  Google Scholar 

  • Treonis AM, Austina EE, Buyer JS, Maul JE, Spicer L, Zasadac IA (2010) Effects of organic amendment and tillage on soil microorganisms and microfauna. App Soil Ecol 46:103–110. https://doi.org/10.1016/j.apsoil.2010.06.017

    Article  Google Scholar 

  • Treonis AM, Unangst SK, Kepler RM, Buyer JS, Cavigelli MA, Mirsky SB, Maul JE (2018) Characterization of soil nematode communities in three cropping systems through morphological and DNA metabarcoding approaches. Sci Rep 8(1). https://doi.org/10.1038/s41598-018-20366-5

  • Truman CC, Shaw JN, Flanagan DC, Reeves DW, Ascough JC (2009) Conservation tillage to effectively reduce interrill erodibility of highly-weathered Ultisols. J Soil Water Conserv 64(4):265–275

    Article  Google Scholar 

  • Truman CC, Strickland TC, Potter TL, Franklin DH, Bosch DD, Bednarz CW (2007) Variable rainfall intensity and tillage effects on runoff, sediment, and carbon losses from a loamy sand under simulated rainfall. J Environ Qual 36(5):1495–1502

    Article  CAS  PubMed  Google Scholar 

  • Turpin JE, Thompson JP, Waring SA, MacKenzie J (1998) Nitrate and chloride leaching in Vertosols for different tillage and stubble practices in fallow-grain cropping. Soil Res 36:31–44. https://doi.org/10.1071/S97037

    Article  Google Scholar 

  • Uddin MT, Dhar AR (2016) Conservation agriculture practice and its impact on farmer’s livelihood status in Bangladesh. SAARC J Agri 14(1):119–140. https://doi.org/10.3329/sja.v14i1.29582

    Article  Google Scholar 

  • Umaerus VR, Scholte K, Turkensteen LJ (1989) Crop rotation and the occurrence of fungal diseases in potatoes. In: Vos J, Loon CD, van Bollen GJ (eds) Effects of crop rotation on potato production in the temperate zones. Springer, Dordrecht, pp 171–189

    Chapter  Google Scholar 

  • Umar BB, Aune BJ, Johnsen HF, Lungu IO (2011) Options for improving smallholder conservation agriculture in Zambia. J Agric Sci 3(3):50–62. https://doi.org/10.5539/jas.v3n3p50

    Article  Google Scholar 

  • United Nations (2019) World population prospects 2019, world population prospects 2019, Total population (both sexes combined) by region, subregion and country, annually for 1950–2100 (thousands) estimates, 1950–2020. New York

    Google Scholar 

  • USDA (2014) Soil bulk density/moisture/aeration. Soil health-Guides for educators. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_050936. pdf (21 Jul 2016).

  • Usowicz B, Lipiec J (2020) The effect of exogenous organic matter on the thermal properties of tilled soils in Poland and the Czech Republic. J Soils Sediments 20(1):365–379

    Article  CAS  Google Scholar 

  • van Donk S, Klocke NL (2012) Tillage and crop residue removal effects on evaporation, irrigation requirements, and yield. In: Proceedings of the 24st annual Central Plains irrigation conference, Colby, Kansas, February 21–22, 2012, available from CPIA. N. Thompson, Colby, Kansas, p 760

    Google Scholar 

  • van Donk SJ (2010) Value of crop residue for water conservation. In: Proceedings of the 2010 Central Plains irrigation conference, Kearney, Nebraska, February 24–25, 2010. Colorado State University. Libraries. Proceedings of the 22nd Annual Central Plains Irrigation Conference, Kearney, NE., February 24–25, 2010. Available from CPIA, 760 N. Thompson, Colby, Kansas

    Google Scholar 

  • VandenBygaart AJ, Gregorich EG, Angers DA (2003) Influence of agricultural management on soil organic carbon: a compendium and assessment of Canadian studies. Can J Soil Sci 83:363–380. https://doi.org/10.4141/S03-009

    Article  CAS  Google Scholar 

  • Verhulst N, Govaerts B, Verachtert E, Castellanos-Navarrete A, Mezzalama M, Wall P, Deckers J, Sayre KD (2010) Conservation agriculture, improving soil quality for sustainable production systems? In: Lal R, Stewart BA (eds) Advances in soil science: food security and soil quality. CRC Press, Boca Raton, FL, pp 137–208

    Chapter  Google Scholar 

  • Vieira FCB, Bayer C, Zanatta J, Ernani PR (2009) Organic matter kept Al toxicity low in a subtropical no-tillage soil under long-term (21-year) legume-based crop systems and N fertilisation. Aust J Soil Res 47:707–714. https://doi.org/10.1071/SR08273

    Article  CAS  Google Scholar 

  • Virto I, Barré P, Burlot A, Chenu C (2012) Carbon input differences as the main factor explaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems. Biogeochemistry 108:17–26. https://doi.org/10.1007/s10533-011-9600-4

    Article  Google Scholar 

  • Vurukonda S, Giovanardi D, Stefani E (2018) Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int J Mol Sci 19(4):952. https://doi.org/10.3390/ijms19040952

    Article  CAS  PubMed Central  Google Scholar 

  • Wang L, Zhao Y, Al-Kaisi M, Yang J, Chen Y, Sui P (2020) Effects of seven diversified crop rotations on selected soil health indicators and wheat productivity. Agron 10:235. https://doi.org/10.3390/agronomy10020235

    Article  CAS  Google Scholar 

  • Wanjari RH, Singh MV, Ghosh PK (2004) Sustainable yield index: an approach to evaluate sustainability of long-term intensive cropping systems in India. J Sustain Agric 24:39–56. https://doi.org/10.1300/J064v24n04_05

    Article  Google Scholar 

  • Wei K, Chen ZH, Zhang XP, Liang WJ, Chen LJ (2014) Tillage effects on phosphorus composition and phosphatase activities in soil aggregates. Geoderma 217:37–44

    Article  CAS  Google Scholar 

  • Welke SE (2005) The effect of compost extract on the yield of strawberries and the severity of Botrytis cinerea. J Sustain Agric 25:57–68

    Article  Google Scholar 

  • Wilson CE, Keisling TC, Miller DM, Dillon CR, Pearce AD, Frizzel DL, Counce PA (2000) Tillage influence on soluble salt movement in silt loam soils cropped to paddy rice. Soil Sci Soc Am J 64:1771–1776

    Article  CAS  Google Scholar 

  • Wohlenberg EV, Reichert JM, Reinert DJ, Blume E (2004) Aggregation dynamics of a sandy soil under five cropping systems in rotation and in succession. Revista Brasileira de Ciencia do Solo 28(5):891–900

    Article  Google Scholar 

  • World Bank (2017) Climate-smart agriculture in Bangladesh. CSA country profiles for Asia series. International Center for Tropical Agriculture (CIAT). World Bank, Washington, DC, p 28

    Google Scholar 

  • World Bank (2020) World development indicators [WWW document]. Data Bank, World Development Indicators. https://databank.worldbank.org/data/reports.aspx?source=world-development-indicators. Accessed 2nd Jul 2019

  • Wu J (2020) Change in soil microbial biomass and regulating factors in an alpine meadow site on the Qinghai-Tibetan plateau. Soil Sci Plant Nutr 66:177–194. https://doi.org/10.1080/00380768.2019.1705181

    Article  CAS  Google Scholar 

  • Xiao D, Xiao S, Ye Y, Zhang W, He X, Wang K (2019) Microbial biomass, metabolic functional diversity, and activity are affected differently by tillage disturbance and maize planting in a typical karst calcareous soil. J Soils Sediments 19:809–821. https://doi.org/10.1007/s11368-018-2101-5

    Article  CAS  Google Scholar 

  • Yadav MR, Parihar CM, Kumar R, Yadav RK, Jat SL, Singh AK et al (2017) Conservation agriculture and soil quality—an overview. Int J Curr Microbiol App Sci 6(2):707–734. https://doi.org/10.20546/ijcmas.2017.602.080

    Article  CAS  Google Scholar 

  • Yihenew G (2002) Selected chemical and physical characteristics of soils adet research center and its testing sites in North-Western Ethiopia. Ethiopian J Natural Resour 4(2):199–215

    Google Scholar 

  • Yu G-H, Sun F-S, Yang L, He X-H, Matthew L, Polizzotto ML (2019) Influence of biodiversity and iron availability on soil peroxide: implications for soil carbon stabilization and storage. Land Degrad Dev 31(4):463–472. https://doi.org/10.1002/ldr.3463

    Article  Google Scholar 

  • Zeleke TB, Grevers MC, Si BC, Mermut AR, Beyene S (2004) Effect of residue incorporation on physical properties of the surface soil in the South Central Rift Valley of Ethiopia. Soil Tillage Res 77(1):35–46

    Article  Google Scholar 

  • Zhang B, He H, Ding X, Zhang X, Zhang X, Yang X, Filley TR (2012) Soil microbial community dynamics over a maize (Zea mays L.) growing season under conventional-and no-tillage practices in a rainfed agroecosystem. Soil Tillage Res 124:153–160

    Article  Google Scholar 

  • Zhang H, Lal R, Zhao X, Xue J, Chen F (2014a) Opportunities and challenges of soil carbon sequestration by conservation agriculture in China. Adv Agron 124:1–36. https://doi.org/10.1016/B978-0-12-800138-7.00001-2

    Article  CAS  Google Scholar 

  • Zhang P, Wei T, Jia Z, Han Q, Ren X (2014b) Soil aggregate and crop yield changes with different rates of straw incorporation in semiarid areas of Northwest China. Geoderma 230:41–49

    Article  Google Scholar 

  • Zhang S (2005) Soil hydraulic properties and water balance under various soil management regimes on the Loess Plateau, China. 1652-6880; 2005:126. http://urn.kb.se/resolve?urn=urn:nbn:se:slu:epsilon-845

  • Zhang X, Li H, He J, Wang Q, Golabi MH (2009) Influence of conservation tillage practices on soil properties and crop yields for maize and wheat cultivation in Beijing. China Soil Res 47(4):362–371

    Article  Google Scholar 

  • Zhao X, Liu SL, Pu C, Zhang XQ, Xue JF, Ren YX et al (2017) Crop yields under no-till farming in China: a meta-analysis. Eur J Agron 84:67–75. https://doi.org/10.1016/j.eja.2016.11.009

    Article  Google Scholar 

  • Zheng H, Liu W, Zheng J, Luo Y, Li R, Wang H, Qi H (2018) Effect of long-term tillage on soil aggregates and aggregate-associated carbon in black soil of Northeast China. PLoS One 13(6):e0199523. https://doi.org/10.1371/journal.pone.0199523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Liu C, Wang J, Meng Q, Yuan Y, Ma X, Liu X, Zhu Y, Ding G, Zhang J, Zeng X (2020) Soil aggregates stability and storage of soil organic carbon respond to cropping systems on Black Soils of Northeast China. Sci Rep 10(1):1–3. https://doi.org/10.1038/s41598-019-57193-1

    Article  CAS  Google Scholar 

  • Zotarelli L, Alves BJ, Urquiaga S, Boddey RM, Six J (2007) Impact of tillage and crop rotation on light fraction and intra-aggregate soil organic matter in two Oxisols. Soil Tillage Res 95(1–2):196–206

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, A. et al. (2021). Conservation Agriculture Improves Soil Health: Major Research Findings from Bangladesh. In: Jayaraman, S., Dalal, R.C., Patra, A.K., Chaudhari, S.K. (eds) Conservation Agriculture: A Sustainable Approach for Soil Health and Food Security . Springer, Singapore. https://doi.org/10.1007/978-981-16-0827-8_26

Download citation

Publish with us

Policies and ethics