Skip to main content

Novel and Future Treatment Strategies for Biofilm-Associated Infections

  • Chapter
  • First Online:
Biofilm-Mediated Diseases: Causes and Controls

Abstract

Biofilm formation by pathogenic bacteria is a matter of considerable concern in healthcare as it is a leading cause of emerging multidrug resistance in microbes. Microbial biofilms are often found on the surfaces of biomaterials such as contact lenses and medical devices including implants and urinary catheters. Several bacteria like Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp., together termed as ESKAPE pathogens, are responsible for nosocomial infections that result in increased morbidity and mortality. This imposes a significant financial burden on the healthcare system. Available antimicrobial therapeutics are rendered ineffective due to compact and complex biofilm architecture which is composed of mainly extracellular polymeric substances (EPS). This leads to persistent infections untreatable by conventional therapy. Thus, there is a high demand for novel strategies for inhibition as well as disruption of biofilms to control biofilm-associated infections. In this chapter, we provide an elaborate account of complementary and alternative therapeutic strategies for biofilm control that include isolation of quorum-sensing inhibitors, metal chelators, and biofilm efflux pump inhibitors from medicinal plants. Further, dispersion of a preformed biofilm can be achieved by ultrasonic disruption, enzyme-mediated degradation of EPS, acidic electrolyzed water-assisted disruption, and bacteriophage-assisted biofilm disruption. Another attractive approach includes modification of the surface of medical devices by antibiofilm nanoscale biomaterials. Gold, silver, iron oxide, and bimetallic nanoparticles either individually or multifunctionalized with polymeric substances or drugs have also been fabricated to control biofilm formation by the interruption of quorum sensing, cell-to-cell communication, and multidrug efflux pumps. Similarly, antibiofilm nanostructures may also induce oxidative stress by generating reactive oxygen species which can play an important role in biofilm inhibition. Additionally, the future scope of integrating therapeutics, employing drugs, targeting ligands, and nanomedicine is discussed as promising strategies for better biofilm control compared to conventional treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achermann Y, Vogt M, Leunig M, Wüst J, Trampuz A (2010) Improved diagnosis of periprosthetic joint infection by multiplex PCR of sonication fluid from removed implants. J Clin Microbiol 48(4):1208–1214

    Article  PubMed  PubMed Central  Google Scholar 

  • Adersh A, Kulkarni AR, Ghosh S, More P, Chopade BA, Gandhi MN (2015) Surface defect rich ZnO quantum dots as antioxidant inhibiting α-amylase and α-glucosidase: a potential anti-diabetic nanomedicine. J Mater Chem B 3:4597–4606

    Article  CAS  Google Scholar 

  • Alkawash MA, Soothill JS, Schiller NL (2006) Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. APMIS 114(2):131–138

    Article  CAS  PubMed  Google Scholar 

  • Alves DR, Gaudion A, Bean JE, Perez Esteban P, Arnot TC, Harper DR, Kot W, Hansen LH, Enright MC, Jenkins ATA (2014) Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation. Appl Environ Microbiol 80:6694–6703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelova A, Garamus VM, Angelov B, Tian Z, Li Y, Zou A (2017) Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents. Adv Colloid Interf Sci 249:331–345

    Article  CAS  Google Scholar 

  • Arciola CR, Campoccia D, Montanaro L (2018) Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol 16:397–409

    Article  CAS  PubMed  Google Scholar 

  • Balaure PC, Grumezescu AM (2020) Recent advances in surface nanoengineering for biofilm prevention and control. Part I: molecular basis of biofilm recalcitrance. Passive anti-biofouling nanocoatings. Nanomaterials (Basel) 10(6):1230

    Article  CAS  PubMed Central  Google Scholar 

  • Bernardos A, Piacenza E, Sancenon F, Mehrdad H, Maleki A, Turner RJ, Martinez-Manez R (2019) Mesoporous silica-based materials with bactericidal properties. Small 15:1900669

    Article  CAS  Google Scholar 

  • Berne C, Ellison C, Ducret A, Brun YV (2018) Bacterial adhesion at the single-cell level. Nat Rev Microbiol 16:616–627

    Article  CAS  PubMed  Google Scholar 

  • Bhagwat TR, Joshi KA, Parihar VS, Asok A, Bellare J, Ghosh S (2018) Biogenic copper nanoparticles from medicinal plants as novel antidiabetic nanomedicine. World J Pharm Res 7(4):183–196

    Google Scholar 

  • Bjerkan G, Witsø E, Bergh K (2009) Sonication is superior to scraping for retrieval of bacteria in biofilm on titanium and steel surfaces in vitro. Acta Orthop 80(2):245–250

    Article  PubMed  PubMed Central  Google Scholar 

  • Bodet C, Grenier D, Chandad F, Ofek I, Steinberg D, Weiss EI (2008) Potential oral health benefits of cranberry. Crit Rev Food Sci Nutr 48:672–680

    Article  CAS  PubMed  Google Scholar 

  • Booth SC, Workentine ML, Wen J, Shaykhutdinov R, Vogel HJ, Ceri H, Turner RJ, Weljie AM (2011) Differences in metabolism between the biofilm and planktonic response to metal stress. J Proteome Res 10:3190–3199

    Article  CAS  PubMed  Google Scholar 

  • Brackman G, Defoirdt T, Miyamoto C, Bossier P, Van Calenbergh S, Nelis H, Coenye T (2008) Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR. BMC Microbiol 8:149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corrigan RM, Grundling A (2013) Cyclic di-AMP: another second messenger enters the fray. Nat Rev Microbiol 11:413–524

    Article  CAS  Google Scholar 

  • Dai X, Chen X, Zhao J, Zhao Y, Guo Q, Zhang T, Chu C, Zhang X, Li C (2017) Structure−activity relationship of membrane-targeting cationic ligands on a silver nanoparticle surface in an antibiotic-resistant antibacterial and antibiofilm activity assay. ACS Appl Mater Interfaces 9:13837–−13848

    Article  CAS  PubMed  Google Scholar 

  • Delcaru C, Alexandru I, Podgoreanu P, Grosu M, Stavropoulos E, Chifiriuc MC, Lazar V (2016) Microbial biofilms in urinary tract infections and prostatitis: etiology, pathogenicity and combating strategies. Pathogens 5:65

    Article  PubMed Central  CAS  Google Scholar 

  • Donlan RM (2009) Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol 17(2):66–72

    Article  CAS  PubMed  Google Scholar 

  • Dotsch A, Eckweiler D, Schniederjans M, Zimmermann A, Jensen V, Scharfe M, Geffers R, Haussler S (2012) The Pseudomonas aeruginosa transcriptome in Planktonic cultures and static biofilms using RNA sequencing. PLoS One 7:e31092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Durmus NG, Webster TJ (2013) Eradicating antibiotic-resistant biofilms with silver conjugated superparamagnetic iron oxide nanoparticles. Adv Healthc Mater 2:165–171

    Article  CAS  PubMed  Google Scholar 

  • Eruardt M (2016) Strategies to block bacterial pathogenesis by interference with motility and chemotaxis. Curr Top Microbiol Immunol 398:185–205

    Google Scholar 

  • Feraco D, Blaha M, Khan S, Green JM, Plotkin BJ (2016) Host environmental signals and effects on biofilm formation. Microb Pathog 99:253–263

    Article  CAS  PubMed  Google Scholar 

  • Fey PD, Olson ME (2010) Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiol 5:917–933

    Article  CAS  PubMed  Google Scholar 

  • Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Article  CAS  PubMed  Google Scholar 

  • Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent from of bacterial life. Nat Rev Microbiol 14:563–575

    Article  CAS  PubMed  Google Scholar 

  • Ganegama-Arachchi GJ, Cridge AG, Dias-Wanigasekera BM, Cruz CD, McIntyre L, Liu R, Flint SH, Mutukumira AN (2013) Effectiveness of phages in the decontamination of Listeria monocytogenes adhered to clean stainless steel, stainless steel coated with fish protein, and as a biofilm. J Ind Microbiol Biotechnol 40:1105–1116

    Article  CAS  PubMed  Google Scholar 

  • Geilich BM, Gelfat I, Sridhar S, van de Ven AL, Webster TJ (2017) Superparamagnetic iron oxide-encapsulating polymersome nanocarriers for biofilm eradication. Biomaterials 119:78–85

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S (2018) Copper and palladium nanostructures: a bacteriogenic approach. Appl Microbiol Biotechnol 101(18):7693–7701

    Article  CAS  Google Scholar 

  • Ghosh S (2019) Mesoporous silica based nano drug delivery system synthesis, characterization and applications. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S (eds) Nanocarriers for drug delivery. Elsevier, Amsterdam, pp 285–317

    Chapter  Google Scholar 

  • Ghosh S, Chopade BA (2017) Dioscorea bulbifera: a model system in nanobiotechnology and medicine. LAP LAMBERT Academic Publishing GmbH & Co. KG, Germany

    Google Scholar 

  • Ghosh S, Patil S, Ahire M, Kitture R, Jabgunde A, Kale S, Pardesi K, Bellare J, Dhavale DD, Chopade BA (2011) Synthesis of gold nano-anisotrops using Dioscorea bulbifera tuber extract. J Nanomater 2011:354793. https://doi.org/10.1155/2011/354793

    Article  CAS  Google Scholar 

  • Ghosh S, Ahire M, Patil S, Jabgunde A, Bhat Dusane M, Joshi BN, Pardesi K, Jachak S, Dhavale DD, Chopade BA (2012a) Antidiabetic activity of Gnidia glauca and Dioscorea bulbifera: potent amylase and glucosidase inhibitors. Evid Based Complement Alternat Med 2012:929051. https://doi.org/10.1155/2012/929051

    Article  PubMed  Google Scholar 

  • Ghosh S, Patil S, Ahire M, Kitture R, Gurav DD, Jabgunde AM, Kale S, Pardesi K, Shinde V, Bellare J, Dhavale DD, Chopade BA (2012b) Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential. J Nanobiotechnol 10:17

    Article  CAS  Google Scholar 

  • Ghosh S, Patil S, Ahire M, Kitture R, Jabgunde A, Kale S, Pardesi K, Cameotra SS, Bellare J, Dhavale DD, Chopade BA (2012c) Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomedicine 7:483–496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Derle A, Ahire M, More P, Jagtap S, Phadatare SD, Patil AB, Jabgunde AM, Sharma GK, Shinde VS, Pardesi K, Dhavale DD, Chopade BA (2013) Phytochemical analysis and free radical scavenging activity of medicinal plants Gnidia glauca and Dioscorea bulbifera. PLoS One 8(12):e82529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghosh S, Jagtap S, More P, Shete UJ, Maheshwari NO, Rao SJ, Kitture R, Kale S, Bellare J, Patil S, Pal JK, Chopade BA (2015a) Dioscorea bulbifera mediated synthesis of novel AucoreAgshell nanoparticles with potent antibiofilm and antileishmanial activity. J Nanomater 2015:562938

    Article  CAS  Google Scholar 

  • Ghosh S, More P, Derle A, Kitture R, Kale T, Gorain M, Avasthi A, Markad P, Kundu GC, Kale S, Dhavale DD, Bellare J, Chopade BA (2015b) Diosgenin functionalized iron oxide nanoparticles as novel nanomaterial against breast cancer. J Nanosci Nanotechnol 15(12):9464–9472

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, More P, Nitnavare R, Jagtap S, Chippalkatti R, Derle A, Kitture R, Asok A, Kale S, Singh S, Shaikh ML, Ramanamurthy B, Bellare J, Chopade BA (2015c) Antidiabetic and antioxidant properties of copper nanoparticles synthesized by medicinal plant Dioscorea bulbifera. J Nanomed Nanotechnol S6:7

    Google Scholar 

  • Ghosh S, Nitnavare R, Dewle A, Tomar GB, Chippalkatti R, More P, Kitture R, Kale S, Bellare J, Chopade BA (2015d) Novel platinum-palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: anticancer and antioxidant activities. Int J Nanomedicine 10(1):7477–7490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Patil S, Chopade NB, Luikham S, Kitture R, Gurav DD, Patil AB, Phadatare SD, Sontakke V, Kale S, Shinde V, Bellare J, Chopade BA (2016a) Gnidia glauca leaf and stem extract mediated synthesis of gold nanocatalysts with free radical scavenging potential. J Nanomed Nanotechnol 7:358

    Article  Google Scholar 

  • Ghosh S, Harke AN, Chacko MJ, Gurav SP, Joshi KA, Dhepe A, Dewle A, Tomar GB, Kitture R, Parihar VS, Banerjee K, Kamble N, Bellare J, Chopade BA (2016b) Gloriosa superba mediated synthesis of silver and gold nanoparticles for anticancer applications. J Nanomed Nanotechnol 7:4

    Google Scholar 

  • Ghosh S, Chacko MJ, Harke AN, Gurav SP, Joshi KA, Dhepe A, Kulkarni AS, Shinde VS, Parihar VS, Asok A, Banerjee K, Kamble N, Bellare J, Chopade BA (2016c) Barleria prionitis leaf mediated synthesis of silver and gold nanocatalysts. J Nanomed Nanotechnol 7:4

    Article  Google Scholar 

  • Ghosh S, Gurav SP, Harke AN, Chacko MJ, Joshi KA, Dhepe A, Charolkar C, Shinde VS, Kitture R, Parihar VS, Banerjee K, Kamble N, Bellare J, Chopade BA (2016d) Dioscorea oppositifolia mediated synthesis of gold and silver nanoparticles with catalytic activity. J Nanomed Nanotechnol 7:5

    Google Scholar 

  • Ghosh S, Sanghavi S, Sancheti P (2018) Metallic biomaterial for bone support and replacement. In: Balakrishnan P, Sreekala MS, Thomas S (eds) Fundamental biomaterials: metals, vol 2. Woodhead Publishing., Elsevier, Amsterdam, pp 139–165

    Chapter  Google Scholar 

  • Ghosh S, Patil PD, Kitture RD (2019) Physically responsive nanostructures in breast cancer theranostics. In: Thorat ND, Bauer J (eds) External field and radiation stimulated breast cancer nanotheranostics. IOP Publishing Ltd, UK

    Google Scholar 

  • Gutiérrez D, Rodríguez-Rubio L, Martínez B, Rodríguez A, García P (2016) Bacteriophages as weapons against bacterial biofilms in the food industry. Front Microbiol 7:825

    Article  PubMed  PubMed Central  Google Scholar 

  • Han Q, Song X, Zhang Z, Fu J, Wang X, Malakar PK, Liu H, Pan Y, Zhao Y (2017) Removal of food borne pathogen biofilms by acidic electrolyzed water. Front Microbiol 8:988

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison JJ, Ceri H, Turner RJ (2007) Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 5:928–938

    Article  CAS  PubMed  Google Scholar 

  • Harrison JJ, Stremick CA, Turner RJ, Allan ND, Olson ME, Ceri H (2010) Microtiter susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model for high-throughput screening. Nat Protoc 5:1236–1254

    Article  CAS  PubMed  Google Scholar 

  • Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K (2015) Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Rev Microbiol 13:298–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Wang S, Wu T, Cao Y, Xu X, Zhou X (2013) Effects of ginkgoneolic acid on the growth, acidogenicity, adherence, and biofilm of Streptococcus mutans in vitro. Folia Microbiol 58:147–153

    Article  CAS  Google Scholar 

  • Hu D, Li H, Wang B, Ye Z, Lei W, Jia F, Jin Q, Ren K-F, Ji J (2017) Surface-adaptive gold nanoparticles with effective adherence and enhanced photothermal ablation of methicillin-resistant Staphylococcus aureus biofilm. ACS Nano 11:9330–−9339

    Article  CAS  PubMed  Google Scholar 

  • Jamdade DA, Rajpali D, Joshi KA, Kitture R, Kulkarni AS, Shinde VS, Bellare J, Babiya KR, Ghosh S (2019) Gnidia glauca and Plumbago zeylanica mediated synthesis of novel copper nanoparticles as promising antidiabetic agents. Adv Pharmacol Sci 2019:9080279

    PubMed  PubMed Central  Google Scholar 

  • Jenal U, Reinders A, Lori C (2017) Cyclic di- GMP: second messenger extraordinaire. Nat Rev Microbiol 15:271–284

    Article  CAS  PubMed  Google Scholar 

  • Jia K, Wang G, Liang L, Wang M, Wang H, Xu X (2017) Preliminary transcriptome analysis of mature biofilm and planktonic cells of Salmonella enteritidis exposure to acid stress. Front Microbiol 8:1861

    Article  PubMed  PubMed Central  Google Scholar 

  • Joshi KA, Ghosh S, Dhepe A (2019) Green synthesis of antimicrobial nanosilver using in-vitro cultured Dioscorea bulbifera. Asian J Org Med Chem 4(4):222–227

    Article  Google Scholar 

  • Jung H-S, Ehlers MM, Lombaard H, Redelinghuys MJ, Kock MM (2017) Etiology of bacterial vaginosis and polymicrobial biofilm formation. Crit Rev Microbiol 43:651–667

    Article  PubMed  Google Scholar 

  • Kale SN, Kitture R, Ghosh S, Chopade BA, Yakhmi JV (2017) Nanomaterials as enhanced antimicrobial agents/activity enhancer for transdermal applications: a review. In: Grumezescu AM (ed) Antimicrobial architectonics from synthesis to applications. Elsevier, Amsterdam, pp 279–321

    Google Scholar 

  • Karmakar S, Ghosh S, Kumbhakar P (2020) Enhanced sunlight driven photocatalytic and antibacterial activity of flower-like ZnO@MoS2 nanocomposite. J Nanopart Res 22:11

    Article  CAS  Google Scholar 

  • Kelly D, McAuliffe O, Ross RP, Coffey A (2012) Prevention of Staphylococcus aureus biofilm formation and reduction in established biofilm density using a combination of phage K and modified derivatives. Lett Appl Microbiol 54:286–291

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Chang IM, Oh KB (2002) Inhibition of the bacterial surface protein anchoring transpeptidase sortase by medicinal plants. Biosci Biotechnol Biochem 66:2751–2754

    Article  CAS  PubMed  Google Scholar 

  • Kitture R, Ghosh S (2019) Hybrid nanostructures for in-vivo imaging. In: Bohara RA, Thorat N (eds) Hybrid nanostructures for cancer theranostics. Elsevier, Amsterdam, pp 173–208

    Chapter  Google Scholar 

  • Kitture R, Ghosh S, Kulkarni P, Liu XL, Maity D, Patil SI, Jun D, Dushing Y, Laware SL, Chopade BA, Kale SN (2012) Fe3O4-citrate-curcumin: promising conjugates for superoxide scavenging, tumor suppression and cancer hyperthermia. J Appl Phys 111:064702–064707

    Article  CAS  Google Scholar 

  • Kitture R, Chordiya K, Gaware S, Ghosh S, More PA, Kulkarni P, Chopade BA, Kale SN (2015) ZnO nanoparticles-red sandalwood conjugate: a promising anti-diabetic agent. J Nanosci Nanotechnol 15:4046–4051

    Article  CAS  PubMed  Google Scholar 

  • Lambert G, Estévez-Salmeron L, Oh S, Liao D, Emerson BM, Tlsty TD, Austin RH (2011) An analogy between the evolution of drug resistance in bacterial communities and malignant tissues. Nat Rev Cancer 11(5):375–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanter BB, Sauer K, Davies DG (2014) Bacteria present in carotid arterial plaques are found as biofilm deposits which may contribute to enhanced risk of plaque rupture. MBio 5:e01206–e01214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lebeaux D, Ghigo J-M, Beloin C (2014) Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbial Mol Biol Rev 78:510–543

    Article  Google Scholar 

  • Lee JH, Regmi SC, Kim JA, Cho MH, Yun H, Lee CS, Lee J (2011) Apple flavonoid phloretin inhibits Escherichia coli O157:H7 biofilm formation and ameliorates colon inflammation in rats. Infect Immun 79:4819–4827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemire JJ, Kalan L, Gugala N, Bradu A, Turner RJ (2017) Silver oxynitrate—an efficacious compound for the prevention and eradication of dual—species biofilms. Biofouling 33:460–469

    Article  CAS  PubMed  Google Scholar 

  • Leuba KD, Durmus NG, Taylor EN, Webster TJ (2013) Short communication: carboxylate functionalized superparamagnetic iron oxide nanoparticles (SPION) for the reduction of S. aureus growth post biofilm formation. Int J Nanomedicine 8:731–736

    PubMed  PubMed Central  Google Scholar 

  • Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Hu W, Tian Z, Yuan D, Yi G, Zhou Y, Cheng Q, Zhu J, Li M (2019) Developing natural products as potential anti-biofilm agents. Chin Med 14:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Maas M (2016) Carbon nanomaterials as antibacterial colloids. Materials (Basel) 9(8):617

    Article  CAS  Google Scholar 

  • Malik A, Mohammad Z, Ahmad J (2013) The diabetic foot infections: biofilms and antimicrobial resistance. Diab Metab Syndr 7(2):101–107

    Article  Google Scholar 

  • Meireles A, Borges A, Giaouris E, Simões M (2016) The current knowledge on the application of anti-biofilm enzymes in the food industry. Food Res Int 86:140–146

    Article  CAS  Google Scholar 

  • Monds RD, O’Toole GA (2008) The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 17:73–87

    Article  CAS  Google Scholar 

  • Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR (2019) Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front Microbiol 10:539

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadell CD, Xavier JB, Foster KR (2009) The sociobiology of biofilms. FEMS Microbiol Rev 33:206–240

    Article  CAS  PubMed  Google Scholar 

  • Ono K, Oka R, Toyofuku M, Sakaguchi A, Hamada M, Yoshida S, Nomura N (2014) cAMP signaling affects irreversible attachment during biofilm formation by Pseudomonas aeruginosa PAO1. Microbes Environ 29:104–106

    Article  PubMed  PubMed Central  Google Scholar 

  • Orgaz B, Neufeld RJ, SanJose C (2007) Single-step biofilm removal with delayed release encapsulated Pronase mixed with soluble enzymes. Enzym Microb Technol 40(5):1045–1051

    Article  CAS  Google Scholar 

  • Peng X, Zhang Y, Bai G, Zhou X, Wu H (2016) Cyclic di-AMP mediates biofilm formation. Mol Microbiol 99:945–959

    Article  CAS  PubMed  Google Scholar 

  • Persson T, Hansen TH, Rasmussen TB, Skinderso ME, Givskov M, Nielsen J (2005) Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. Org Biomol Chem 3:253–262

    Article  CAS  PubMed  Google Scholar 

  • Petrova OE, Sauer K (2012) Sticky situations: key components that control bacterial surface attachment. J Bacteriol 194:2413–2425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghuwanshi N, Kumari P, Srivastava AK, Vashisth P, Yadav TC, Prasad R, Pruthi V (2017) Synergistic effects of Woodfordia fruticosa gold nanoparticles in preventing microbial adhesion and accelerating wound healing in Wistar albino rats in vivo. Mater Sci Eng C 80:252–262

    Article  CAS  Google Scholar 

  • Robkhob P, Ghosh S, Bellare J, Jamdade D, Tang IM, Thongmee S (2020) Effect of silver doping on antidiabetic and antioxidant potential of ZnO nanorods. J Trace Elem Med Biol 126448:58

    Google Scholar 

  • Rohacek M, Weisser M, Kobza R, Schoenenberger AW, Pfyffer GE, Frei R, Erne P, Trampuz A (2010) Bacterial colonization and infection of electrophysiological cardiac devices detected with sonication and swab culture. Circulation 121(15):1691–1697

    Article  PubMed  Google Scholar 

  • Rokade SS, Joshi KA, Mahajan K, Tomar G, Dubal DS, Parihar VS, Kitture R, Bellare J, Ghosh S (2017) Novel anticancer platinum and palladium nanoparticles from Barleria prionitis. Glob J Nanomed 2(5):555600

    Google Scholar 

  • Rokade S, Joshi K, Mahajan K, Patil S, Tomar G, Dubal D, Parihar VS, Kitture R, Bellare JR, Ghosh S (2018) Gloriosa superba mediated synthesis of platinum and palladium nanoparticles for induction of apoptosis in breast cancer. Bioinorg Chem Appl 2018:4924186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salunke GR, Ghosh S, Santosh RJ, Khade S, Vashisth P, Kale T, Chopade S, Pruthi V, Kundu G, Bellare JR, Chopade BA (2014) Rapid efficient synthesis and characterization of AgNPs, AuNPs and AgAuNPs from a medicinal plant, Plumbago zeylanica and their application in biofilm control. Int J Nanomedicine 9:2635–2653

    PubMed  PubMed Central  Google Scholar 

  • Sant DG, Gujarathi TR, Harne SR, Ghosh S, Kitture R, Kale S, Chopade BA, Pardesi KR (2013) Adiantum philippense L. frond assisted rapid green synthesis of gold and silver nanoparticles. J Nanoparticles 2013:1–9

    Article  CAS  Google Scholar 

  • Schwering M, Song J, Louie M, Turner RJ, Ceri H (2013) Multi-species biofilms defined from drinking water microorganisms provide striking protection against chlorine disinfection. Biofouling 29:917–928

    Article  CAS  PubMed  Google Scholar 

  • Shende S, Joshi KA, Kulkarni AS, Shinde VS, Parihar VS, Kitture R, Banerjee K, Kamble N, Bellare J, Ghosh S (2017) Litchi chinensis peel: a novel source for synthesis of gold and silver nanocatalysts. Glob J Nanomed 3(1):555603

    Google Scholar 

  • Shende S, Joshi KA, Kulkarni AS, Charolkar C, Shinde VS, Parihar VS, Kitture R, Banerjee K, Kamble N, Bellare J, Ghosh S (2018) Platanus orientalis leaf mediated rapid synthesis of catalytic gold and silver nanoparticles. J Nanomed Nanotechnol 9:2

    Article  Google Scholar 

  • Shinde SS, Joshi KA, Patil S, Singh S, Kitture R, Bellare J, Ghosh S (2018) Green synthesis of silver nanoparticles using Gnidia glauca and computational evaluation of synergistic potential with antimicrobial drugs. World J Pharm Res 7(4):156–171

    Google Scholar 

  • Subhadra B, Kim DH, Woo K, Surendran S, Choi CH (2018) Control of biofilm formation in healthcare: recent advances exploiting quorum-sensing interference strategies and multidrug efflux pump inhibitors. Materials 11(9):1676

    Article  PubMed Central  CAS  Google Scholar 

  • Sun JL, Zhang SK, Chen JY, Han BZ (2012) Efficacy of acidic and basic electrolyzed water in eradicating Staphylococcus aureus biofilm. Can J Microbiol 58(8):448–454

    Article  CAS  PubMed  Google Scholar 

  • Vandersteegen K, Kropinski AM, Nash JH, Noben JP, Hermans K, Lavigne R (2013) Romulus and Remus, two phage isolates representing a distinct clade within the Twortlike virus genus, display suitable properties for phage therapy applications. J Virol 87:3237–3247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veenstra GJ, Cremers FF, van Dijk H, Fleer A (1996) Ultrastructural organization and regulation of a biomaterial adhesin of Staphylococcus epidermidis. J Bacteriol 178:537–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veerachamy S, Yarlagadda T, Manivasagam G, Yarlagadda PK (2014) Bacterial adherence and biofilm formation on medical implants: a review. Proc Inst Mech Eng H 228:1083–1099

    Article  PubMed  Google Scholar 

  • Vestby LK, Gronseth T, Simm R, Nesse LL (2020) Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics 9:59

    Article  CAS  PubMed Central  Google Scholar 

  • Vikram A, Jesudhasan PR, Pillai SD, Patil BS (2012) Isolimonic acid interferes with Escherichia coli O157:H7 biofilm and TTSS in QseBC and QseA dependent fashion. BMC Microbiol 12:261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh LJ (2020) Novel approaches to detect and treat biofilms within the root canals of teeth: a review. Antibiotics 9:129

    Article  CAS  PubMed Central  Google Scholar 

  • Wilking JN, Zaburdaev V, De Volder M, Losick R, Brenner MP, Weitz DA (2013) Liquid transport facilitated by channels in Bacillus subtilis biofilms. Proc Natl Acad Sci U S A 110:848–852

    Article  CAS  PubMed  Google Scholar 

  • Wolska KI, Grudniak AM, Rudnicka Z, Markowska K (2016) Genetic control of bacterial biofilms. J Appl Genet 57:225–238

    Article  CAS  PubMed  Google Scholar 

  • Workentine ML, Harrison JJ, Weljie AM, Tran VA, Stenroos PU, Tremaroli V, Vogel HJ, Ceri H, Turner RJ (2010) Phenotypic and metabolic profiling of colony morphology variants evolved from Pseudomonas fluorescens biofilms. Environ Microbiol 12:1565–1577

    CAS  PubMed  Google Scholar 

  • Workentine ML, Wang S, Ceri H, Turner RJ (2013) Spatial distributions of Pseudomonas fluorescens variants in mixed-culture biofilms. BMC Microbiol 13:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Young D, Morton R, Bartley J (2010) Therapeutic ultrasound as treatment for chronic rhinosinusitis: preliminary observations. J Laryngol Otol 124(5):495–499

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Trase I, Ren M, Duval K, Guo X, Chen Z (2016) Design of nanoparticle-based carriers for targeted drug delivery. J Nanomater 2016:1087250

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao G, Usui ML, Lippman SI, James GA, Stewart PS, Flecxkman P, Olerud JE (2013) Biofilms and inflammation in chronic wounds. Adv Wound Care (New Rochelle) 2:389–399

    Article  Google Scholar 

  • Zimmerli W, Sendi P (2017) Orthopaedic biofilm infections. APMIS 125(4):353–364

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Sougata Ghosh acknowledges the Department of Science and Technology (DST), Ministry of Science and Technology, Government of India, and Jawaharlal Nehru Centre for an Advanced Scientific Research, India, for funding under the Post-doctoral Overseas Fellowship in Nano Science and Technology (Ref. JNC/AO/A.0610.1(4) 2019-2260 dated August 19, 2019).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, S., Turner, R.J., Bhagwat, T., Webster, T.J. (2021). Novel and Future Treatment Strategies for Biofilm-Associated Infections. In: Ray, R.R., Nag, M., Lahiri, D. (eds) Biofilm-Mediated Diseases: Causes and Controls. Springer, Singapore. https://doi.org/10.1007/978-981-16-0745-5_10

Download citation

Publish with us

Policies and ethics