Skip to main content

Lung Volume Measurement

  • Chapter
  • First Online:
Respiratory Monitoring in Mechanical Ventilation
  • 1298 Accesses

Abstract

Static lung volumes are commonly described as volumes or capacities. Volumes are not subdivided and include tidal volume (Vt), inspiratory reserve volume (IRV), expiratory reserve volume (ERV), and residual volume (RV). However, capacities consist of at least two lung volumes and include total lung capacity (TLC), vital capacity (VC), functional residual capacity (FRC), and inspiratory capacity (IC) (Fig. 4.1). Definition of lung volumes are described in Table 4.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dubois AB, Botelho SY, Bedell GN, Marshall R, Comroe JH Jr. A rapid plethysmographic method for measuring thoracic gas volume: a comparison with a nitrogen washout method for measuring functional residual capacity in normal subjects. J Clin Invest. 1956;35(3):322–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vilozni D, Efrati O, Hakim F, Adler A, Livnat G, Bentur L. FRC measurements using body plethysmography in young children. Pediatr Pulmonol. 2009;44(9):885–91.

    Article  PubMed  Google Scholar 

  3. Criee CP, Sorichter S, Smith HJ, Kardos P, Merget R, Heise D, Berdel D, Kohler D, Magnussen H, Marek W, et al. Body plethysmography—its principles and clinical use. Respir Med. 2011;105(7):959–71.

    Article  CAS  PubMed  Google Scholar 

  4. Stocks J, Godfrey S, Beardsmore C, Bar-Yishay E, Castile R. Plethysmographic measurements of lung volume and airway resistance. ERS/ATS Task Force on Standards for Infant Respiratory Function Testing. European Respiratory Society/American Thoracic Society. Eur Respir J. 2001;17(2):302–12.

    Article  CAS  PubMed  Google Scholar 

  5. Zysman-Colman Z, Lands LC. Whole body plethysmography: practical considerations. Paediatr Respir Rev. 2016;19:39–41.

    PubMed  Google Scholar 

  6. Cala SJ, Kenyon CM, Ferrigno G, Carnevali P, Aliverti A, Pedotti A, Macklem PT, Rochester DF. Chest wall and lung volume estimation by optical reflectance motion analysis. J Appl Physiol. 1996;81(6):2680–9.

    Article  CAS  PubMed  Google Scholar 

  7. Kenyon CM, Cala SJ, Yan S, Aliverti A, Scano G, Duranti R, Pedotti A, Macklem PT. Rib cage mechanics during quiet breathing and exercise in humans. J Appl Physiol. 1997;83(4):1242–55.

    Article  CAS  PubMed  Google Scholar 

  8. Aliverti A, Cala SJ, Duranti R, Ferrigno G, Kenyon CM, Pedotti A, Scano G, Sliwinski P, Macklem PT, Yan S. Human respiratory muscle actions and control during exercise. J Appl Physiol. 1997;83(4):1256–69.

    Article  CAS  PubMed  Google Scholar 

  9. Massaroni C, Carraro E, Vianello A, Miccinilli S, Morrone M, Levai IK, Schena E, Saccomandi P, Sterzi S, Dickinson JW, et al. Optoelectronic plethysmography in clinical practice and research: a review. Respiration. 2017;93(5):339–54.

    Article  PubMed  Google Scholar 

  10. Lanini B, Bianchi R, Binazzi B, Romagnoli I, Pala F, Gigliotti F, Scano G. Chest wall kinematics during cough in healthy subjects. Acta Physiol (Oxford, England). 2007;190(4):351–8.

    Article  CAS  Google Scholar 

  11. Aliverti A, Dellaca R, Pelosi P, Chiumello D, Gatihnoni L, Pedoti A. Compartmental analysis of breathing in the supine and prone positions by optoelectronic plethysmography. Ann Biomed Eng. 2001;29(1):60–70.

    Article  CAS  PubMed  Google Scholar 

  12. Romei M, Mauro AL, D’Angelo MG, Turconi AC, Bresolin N, Pedotti A, Aliverti A. Effects of gender and posture on thoraco-abdominal kinematics during quiet breathing in healthy adults. Respir Physiol Neurobiol. 2010;172(3):184–91.

    Article  CAS  PubMed  Google Scholar 

  13. Ferrigno G, Pedotti A. ELITE: a digital dedicated hardware system for movement analysis via real-time TV signal processing. IEEE Trans Biomed Eng. 1985;32(11):943–50.

    Article  CAS  PubMed  Google Scholar 

  14. Konno K, Mead J. Measurement of the separate volume changes of rib cage and abdomen during breathing. J Appl Physiol. 1967;22(3):407–22.

    Article  CAS  PubMed  Google Scholar 

  15. Aliverti A, Dellaca R, Pedotti A. Optoelectronic plethysmography: a new tool in respiratory medicine. Recenti Prog Med. 2001;92(11):644–7.

    CAS  PubMed  Google Scholar 

  16. Borghese NA, Ferrigno G. An algorithm for 3-D automatic movement detection by means of standard TV cameras. IEEE Trans Biomed Eng. 1990;37(12):1221–5.

    Article  CAS  PubMed  Google Scholar 

  17. Dellaca RL, Ventura ML, Zannin E, Natile M, Pedotti A, Tagliabue P. Measurement of total and compartmental lung volume changes in newborns by optoelectronic plethysmography. Pediatr Res. 2010;67(1):11–6.

    Article  PubMed  Google Scholar 

  18. Vogiatzis I, Georgiadou O, Golemati S, Aliverti A, Kosmas E, Kastanakis E, Geladas N, Koutsoukou A, Nanas S, Zakynthinos S, et al. Patterns of dynamic hyperinflation during exercise and recovery in patients with severe chronic obstructive pulmonary disease. Thorax. 2005;60(9):723–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferguson GT, Enright PL, Buist AS, Higgins MW. Office spirometry for lung health assessment in adults: a consensus statement from the National Lung Health Education Program. Chest. 2000;117(4):1146–61.

    Article  CAS  PubMed  Google Scholar 

  20. Valentinuzzi ME, Johnston R. Spirometry: a historical gallery up to 1905. IEEE Pulse. 2014;5(1):73–6.

    Article  PubMed  Google Scholar 

  21. Spriggs EA. The history of spirometry. Br J Dis Chest. 1978;72(3):165–80.

    Article  CAS  PubMed  Google Scholar 

  22. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CP, Gustafsson P, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–38.

    Article  CAS  PubMed  Google Scholar 

  23. Townsend MC. The effects of leaks in spirometers on measurements of pulmonary function. The implications for epidemiologic studies. J Occup Med. 1984;26(11):835–41.

    Article  CAS  PubMed  Google Scholar 

  24. Standardization of Spirometry. Update. American Thoracic Society. Am J Respir Crit Care Med 1995. 1994;152(3):1107–36.

    Google Scholar 

  25. Ferris BG Jr, Speizer FE, Bishop Y, Prang G, Weener J. Spirometry for an epidemiologic study: deriving optimum summary statistics for each subject. Bull Eur Physiopathol Respir. 1978;14(2):145–66.

    PubMed  Google Scholar 

  26. Kanner RE, Schenker MB, Munoz A, Speizer FE. Spirometry in children. Methodology for obtaining optimal results for clinical and epidemiologic studies. Am Rev Respir Dis. 1983;127(6):720–4.

    CAS  PubMed  Google Scholar 

  27. Brusasco V, Pellegrino R, Rodarte JR. Vital capacities in acute and chronic airway obstruction: dependence on flow and volume histories. Eur Respir J. 1997;10(6):1316–20.

    Article  CAS  PubMed  Google Scholar 

  28. Pellegrino R, Crimi E, Gobbi A, Torchio R, Antonelli A, Gulotta C, Baroffio M, Papa GF, Dellaca R, Brusasco V. Severity grading of chronic obstructive pulmonary disease: the confounding effect of phenotype and thoracic gas compression. J Appl Physiol. 2015;118(7):796–802.

    Article  PubMed  Google Scholar 

  29. Conrad DJ, Bailey BA, Hardie JA, Bakke PS, Eagan TML, Aarli BB. Median regression spline modeling of longitudinal FEV1 measurements in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) patients. PLoS One. 2017;12(12):e0190061.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Cho O, Oh YT, Chun M, Noh OK, Heo JS. Prognostic implication of FEV1/FVC ratio for limited-stage small cell lung cancer. J Thorac Dis. 2018;10(3):1797–805.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Majid A, Sosa AF, Ernst A, Feller-Kopman D, Folch E, Singh AK, Gangadharan S. Pulmonary function and flow-volume loop patterns in patients with tracheobronchomalacia. Respir Care. 2013;58(9):1521–6.

    Article  PubMed  Google Scholar 

  32. Lunn WW, Sheller JR. Flow volume loops in the evaluation of upper airway obstruction. Otolaryngol Clin North Am. 1995;28(4):721–9.

    Article  CAS  PubMed  Google Scholar 

  33. Miller RD, Hyatt RE. Obstructing lesions of the larynx and trachea: clinical and physiologic characteristics. Mayo Clin Proc. 1969;44(3):145–61.

    CAS  PubMed  Google Scholar 

  34. Pierce R. Spirometry: an essential clinical measurement. Aust Fam Physician. 2005;34(7):535–9.

    PubMed  Google Scholar 

  35. Varga J, Casaburi R, Ma S, Hecht A, Hsia D, Somfay A, Porszasz J. Relation of concavity in the expiratory flow-volume loop to dynamic hyperinflation during exercise in COPD. Respir Physiol Neurobiol. 2016;234:79–84.

    Article  PubMed  Google Scholar 

  36. Vincken WG, Elleker MG, Cosio MG. Flow-volume loop changes reflecting respiratory muscle weakness in chronic neuromuscular disorders. Am J Med. 1987;83(4):673–80.

    Article  CAS  PubMed  Google Scholar 

  37. Lu Q, Rouby JJ. Measurement of pressure-volume curves in patients on mechanical ventilation: methods and significance. Crit Care. 2000;4(2):91–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liang BM, Lam DC, Feng YL. Clinical applications of lung function tests: a revisit. Respirology. 2012;17(4):611–9.

    Article  PubMed  Google Scholar 

  39. Robinson PD, Latzin P, Verbanck S, Hall GL, Horsley A, Gappa M, Thamrin C, Arets HG, Aurora P, Fuchs SI, et al. Consensus statement for inert gas washout measurement using multiple- and single-breath tests. Eur Respir J. 2013;41(3):507–22.

    Article  CAS  PubMed  Google Scholar 

  40. Wrigge H, Sydow M, Zinserling J, Neumann P, Hinz J, Burchardi H. Determination of functional residual capacity (FRC) by multibreath nitrogen washout in a lung model and in mechanically ventilated patients. Accuracy depends on continuous dynamic compensation for changes of gas sampling delay time. Intensive Care Med. 1998;24(5):487–93.

    Article  CAS  PubMed  Google Scholar 

  41. Olegard C, Sondergaard S, Houltz E, Lundin S, Stenqvist O. Estimation of functional residual capacity at the bedside using standard monitoring equipment: a modified nitrogen washout/washin technique requiring a small change of the inspired oxygen fraction. Anesth Analg. 2005;101(1):206–12, table of contents

    Article  PubMed  Google Scholar 

  42. Brewer LM, Orr JA, Sherman MR, Fulcher EH, Markewitz BA. Measurement of functional residual capacity by modified multiple breath nitrogen washout for spontaneously breathing and mechanically ventilated patients. Br J Anaesth. 2011;107(5):796–805.

    Article  CAS  PubMed  Google Scholar 

  43. Chiumello D, Cressoni M, Chierichetti M, Tallarini F, Botticelli M, Berto V, Mietto C, Gattinoni L. Nitrogen washout/washin, helium dilution and computed tomography in the assessment of end expiratory lung volume. Crit Care. 2008;12(6):R150.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mitchell RR, Wilson RM, Holzapfel L, Benis AM, Sierra D, Osborn JJ. Oxygen wash-in method for monitoring functional residual capacity. Crit Care Med. 1982;10(8):529–33.

    Article  CAS  PubMed  Google Scholar 

  45. Fretschner R, Deusch H, Weitnauer A, Brunner JX. A simple method to estimate functional residual capacity in mechanically ventilated patients. Intensive Care Med. 1993;19(7):372–6.

    Article  CAS  PubMed  Google Scholar 

  46. Zinserling J, Wrigge H, Varelmann D, Hering R, Putensen C. Measurement of functional residual capacity by nitrogen washout during partial ventilatory support. Intensive Care Med. 2003;29(5):720–6.

    Article  PubMed  Google Scholar 

  47. Brunner J, Langenstein H, Wolff G. Direct accurate gas flow measurement in the patient: compensation for unavoidable error. Med Prog Technol. 1983;9(4):233–8.

    CAS  PubMed  Google Scholar 

  48. Tonga KO, Robinson PD, Farah CS, King GG, Thamrin C. In vitro and in vivo functional residual capacity comparisons between multiple-breath nitrogen washout devices. ERJ Open Res. 2017:3(4).

    Google Scholar 

  49. Tang R, Huang Y, Chen Q, Hui X, Li Y, Yu Q, Zhao H, Yang Y, Qiu H. The effect of alveolar dead space on the measurement of end-expiratory lung volume by modified nitrogen wash-out/wash-in in lavage-induced lung injury. Respir Care. 2012;57(12):2074–81.

    PubMed  Google Scholar 

  50. Dellamonica J, Lerolle N, Sargentini C, Beduneau G, Di Marco F, Mercat A, Richard JC, Diehl JL, Mancebo J, Rouby JJ, et al. Accuracy and precision of end-expiratory lung-volume measurements by automated nitrogen washout/washin technique in patients with acute respiratory distress syndrome. Crit Care. 2011;15(6):R294.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Heinze H, Eichler W. Measurements of functional residual capacity during intensive care treatment: the technical aspects and its possible clinical applications. Acta Anaesthesiol Scand. 2009;53(9):1121–30.

    Article  CAS  PubMed  Google Scholar 

  52. Wood EH. Noninvasive three-dimensional viewing of the motion and anatomical structure of the heart, lungs, and circulatory system by high speed computerized X-ray tomography. CRC Crit Rev Biochem. 1979;7(2):161–86.

    Article  CAS  PubMed  Google Scholar 

  53. Ritman EL, Kinsey JH, Robb RA, Gilbert BK, Harris LD, Wood EH. Three-dimensional imaging of heart, lungs, and circulation. Science (New York, NY). 1980;210(4467):273–80.

    Article  CAS  Google Scholar 

  54. Hoffman EA. Effect of body orientation on regional lung expansion: a computed tomographic approach. J Appl Physiol. 1985;59(2):468–80.

    Article  CAS  PubMed  Google Scholar 

  55. Hoffman EA, Ritman EL. Effect of body orientation on regional lung expansion in dog and sloth. J Appl Physiol. 1985;59(2):481–91.

    Article  CAS  PubMed  Google Scholar 

  56. Tajik JK, Chon D, Won C, Tran BQ, Hoffman EA. Subsecond multisection CT of regional pulmonary ventilation. Acad Radiol. 2002;9(2):130–46.

    Article  PubMed  Google Scholar 

  57. Hoffman EA, Tajik JK, Kugelmass SD. Matching pulmonary structure and perfusion via combined dynamic multislice CT and thin-slice high-resolution CT. Comput Med Imaging Graph. 1995;19(1):101–12.

    Article  CAS  PubMed  Google Scholar 

  58. Gattinoni L, Presenti A, Torresin A, Baglioni S, Rivolta M, Rossi F, Scarani F, Marcolin R, Cappelletti G. Adult respiratory distress syndrome profiles by computed tomography. J Thorac Imaging. 1986;1(3):25–30.

    Article  CAS  PubMed  Google Scholar 

  59. Gattinoni L, Pelosi P, Crotti S, Valenza F. Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med. 1995;151(6):1807–14.

    Article  CAS  PubMed  Google Scholar 

  60. Aliverti A, Pennati F, Salito C, Woods JC. Regional lung function and heterogeneity of specific gas volume in healthy and emphysematous subjects. Eur Respir J. 2013;41(5):1179–88.

    Article  PubMed  Google Scholar 

  61. Galban CJ, Han MK, Boes JL, Chughtai KA, Meyer CR, Johnson TD, Galban S, Rehemtulla A, Kazerooni EA, Martinez FJ, et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med. 2012;18(11):1711–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pennati F, Salito C, Baroni G, Woods J, Aliverti A. Comparison between multivolume CT-based surrogates of regional ventilation in healthy subjects. Acad Radiol. 2014;21(10):1268–75.

    Article  PubMed  Google Scholar 

  63. Vieira SR, Puybasset L, Richecoeur J, Lu Q, Cluzel P, Gusman PB, Coriat P, Rouby JJ. A lung computed tomographic assessment of positive end-expiratory pressure-induced lung overdistension. Am J Respir Crit Care Med. 1998;158(5 Pt 1):1571–7.

    Article  CAS  PubMed  Google Scholar 

  64. Puybasset L, Cluzel P, Gusman P, Grenier P, Preteux F, Rouby JJ. Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. CT Scan ARDS Study Group. Intensive Care Med. 2000;26(7):857–69.

    Article  CAS  PubMed  Google Scholar 

  65. Pennati F, Roach DJ, Clancy JP, Brody AS, Fleck RJ, Aliverti A, Woods JC. Assessment of pulmonary structure-function relationships in young children and adolescents with cystic fibrosis by multivolume proton-MRI and CT. J Magn Reson Imaging. 2018;48(2):531–42.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zapke M, Topf HG, Zenker M, Kuth R, Deimling M, Kreisler P, Rauh M, Chefd’hotel C, Geiger B, Rupprecht T. Magnetic resonance lung function—a breakthrough for lung imaging and functional assessment? A phantom study and clinical trial. Respir Res. 2006;7:106.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Petersson J, Sanchez-Crespo A, Larsson SA, Mure M. Physiological imaging of the lung: single-photon-emission computed tomography (SPECT). J Appl Physiol. 2007;102(1):468–76.

    Article  PubMed  Google Scholar 

  68. Simon BA, Kaczka DW, Bankier AA, Parraga G. What can computed tomography and magnetic resonance imaging tell us about ventilation? J Appl Physiol. 2012;113(4):647–57.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Malbouisson LM, Muller JC, Constantin JM, Lu Q, Puybasset L, Rouby JJ. Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001;163(6):1444–50.

    Article  CAS  PubMed  Google Scholar 

  70. Barber DC, Brown BH. Applied potential tomography. J Br Interplanet Soc. 1989;42(7):391–3.

    CAS  PubMed  Google Scholar 

  71. Harris ND, Suggett AJ, Barber DC, Brown BH. Applications of applied potential tomography (APT) in respiratory medicine. Clin Phys Physiol Meas. 1987;8(Suppl A):155–65.

    Article  PubMed  Google Scholar 

  72. Frerichs I, Hahn G, Hellige G. Thoracic electrical impedance tomographic measurements during volume controlled ventilation-effects of tidal volume and positive end-expiratory pressure. IEEE Trans Med Imaging. 1999;18(9):764–73.

    Article  CAS  PubMed  Google Scholar 

  73. Karsten J, Stueber T, Voigt N, Teschner E, Heinze H. Influence of different electrode belt positions on electrical impedance tomography imaging of regional ventilation: a prospective observational study. Crit Care. 2016;20:3.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Reifferscheid F, Elke G, Pulletz S, Gawelczyk B, Lautenschlager I, Steinfath M, Weiler N, Frerichs I. Regional ventilation distribution determined by electrical impedance tomography: reproducibility and effects of posture and chest plane. Respirology. 2011;16(3):523–31.

    Article  PubMed  Google Scholar 

  75. Krueger-Ziolek S, Schullcke B, Kretschmer J, Muller-Lisse U, Moller K, Zhao Z. Positioning of electrode plane systematically influences EIT imaging. Physiol Meas. 2015;36(6):1109–18.

    Article  PubMed  Google Scholar 

  76. Bachmann MC, Morais C, Bugedo G, Bruhn A, Morales A, Borges JB, Costa E, Retamal J. Electrical impedance tomography in acute respiratory distress syndrome. Crit Care. 2018;22(1):263.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Mauri T, Bellani G, Confalonieri A, Tagliabue P, Turella M, Coppadoro A, Citerio G, Patroniti N, Pesenti A. Topographic distribution of tidal ventilation in acute respiratory distress syndrome: effects of positive end-expiratory pressure and pressure support. Crit Care Med. 2013;41(7):1664–73.

    Article  PubMed  Google Scholar 

  78. Frerichs I, Dargaville PA, van Genderingen H, Morel DR, Rimensberger PC. Lung volume recruitment after surfactant administration modifies spatial distribution of ventilation. Am J Respir Crit Care Med. 2006;174(7):772–9.

    Article  PubMed  Google Scholar 

  79. Meier T, Luepschen H, Karsten J, Leibecke T, Grossherr M, Gehring H, Leonhardt S. Assessment of regional lung recruitment and derecruitment during a PEEP trial based on electrical impedance tomography. Intensive Care Med. 2008;34(3):543–50.

    Article  PubMed  Google Scholar 

  80. Frerichs I, Hinz J, Herrmann P, Weisser G, Hahn G, Dudykevych T, Quintel M, Hellige G. Detection of local lung air content by electrical impedance tomography compared with electron beam CT. J Appl Physiol. 2002;93(2):660–6.

    Article  PubMed  Google Scholar 

  81. Victorino JA, Borges JB, Okamoto VN, Matos GF, Tucci MR, Caramez MP, Tanaka H, Sipmann FS, Santos DC, Barbas CS, et al. Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med. 2004;169(7):791–800.

    Article  PubMed  Google Scholar 

  82. Adler A, Amyot R, Guardo R, Bates JH, Berthiaume Y. Monitoring changes in lung air and liquid volumes with electrical impedance tomography. J Appl Physiol. 1997;83(5):1762–7.

    Article  CAS  PubMed  Google Scholar 

  83. Frerichs I, Hahn G, Schiffmann H, Berger C, Hellige G. Monitoring regional lung ventilation by functional electrical impedance tomography during assisted ventilation. Ann N Y Acad Sci. 1999;873:493–505.

    Article  CAS  PubMed  Google Scholar 

  84. Mauri T, Eronia N, Turrini C, Battistini M, Grasselli G, Rona R, Volta CA, Bellani G, Pesenti A. Bedside assessment of the effects of positive end-expiratory pressure on lung inflation and recruitment by the helium dilution technique and electrical impedance tomography. Intensive Care Med. 2016;42(10):1576–87.

    Article  PubMed  Google Scholar 

  85. Wrigge H, Zinserling J, Muders T, Varelmann D, Gunther U, von der Groeben C, Magnusson A, Hedenstierna G, Putensen C. Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury. Crit Care Med. 2008;36(3):903–9.

    Article  PubMed  Google Scholar 

  86. Muders T, Luepschen H, Zinserling J, Greschus S, Fimmers R, Guenther U, Buchwald M, Grigutsch D, Leonhardt S, Putensen C, et al. Tidal recruitment assessed by electrical impedance tomography and computed tomography in a porcine model of lung injury. Crit Care Med. 2012;40(3):903–11.

    Article  PubMed  Google Scholar 

  87. Kobylianskii J, Murray A, Brace D, Goligher E, Fan E. Electrical impedance tomography in adult patients undergoing mechanical ventilation: a systematic review. J Crit Care. 2016;35:33–50.

    Article  PubMed  Google Scholar 

  88. Frerichs I, Amato MB, van Kaam AH, Tingay DG, Zhao Z, Grychtol B, Bodenstein M, Gagnon H, Bohm SH, Teschner E, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 2017;72(1):83–93.

    Article  PubMed  Google Scholar 

  89. Dargaville PA, Rimensberger PC, Frerichs I. Regional tidal ventilation and compliance during a stepwise vital capacity manoeuvre. Intensive Care Med. 2010;36(11):1953–61.

    Article  PubMed  Google Scholar 

  90. Franchineau G, Brechot N, Lebreton G, Hekimian G, Nieszkowska A, Trouillet JL, Leprince P, Chastre J, Luyt CE, Combes A, et al. Bedside contribution of electrical impedance tomography to setting positive end-expiratory pressure for extracorporeal membrane oxygenation-treated patients with severe acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;196(4):447–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, JF., Zhou, JX. (2021). Lung Volume Measurement. In: Zhou, JX., Chen, GQ., Li, HL., Zhang, L. (eds) Respiratory Monitoring in Mechanical Ventilation. Springer, Singapore. https://doi.org/10.1007/978-981-15-9770-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9770-1_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9769-5

  • Online ISBN: 978-981-15-9770-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics