Skip to main content

Hypoxia Induced Stress Responses in Cancer and Cancer-Stem Cells

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Mechanistic Aspects

Abstract

Oxygen is highly critical for the survival of complex organisms and lack of oxygen (hypoxia) promotes stress and death of the organism. However, cancer cells have evolved adaptive mechanisms to survive persistent pathological hypoxia experienced in the inner regions of the tumor. Normal cells rely on oxygen to meet the energy demands through mitochondrial oxidative phosphorylation, protein translation, and proper folding in the endoplasmic reticulum and for maintaining redox homeostasis. Therefore, cellular adaptive mechanisms will be employed by cancer cells through direct mechanisms such as down regulation of mitochondrial ATP production and autophagy to degrade the damage caused by hypoxia induced oxygen radicals. On the other hand, transcription factors such as hypoxia inducible factor-1 (HIF-1) and nuclear factor erythroid 2-related factor 2 (NRF2) enable the transcription of enzymes and stress responsive mechanisms to restore homeostasis indirectly. These stress response mechanisms promote resistance to cancer therapy. Hypoxia also influences other cells such as cancer stem cells (CSC) present in the hypoxic regions of the tumor. The current theory is CSCs are cells that initiate tumor with the ability to regenerate and hypoxia helps in their maintenance, thus contributes to drug resistance and relapse. Therefore, targeting hypoxia triggered adaptive mechanisms is intense area of research for drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bedard K, Krause K-H (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313

    Article  CAS  PubMed  Google Scholar 

  • Birner P, Schindl M, Obermair A, Breitenecker G, Oberhuber G (2001) Expression of hypoxia-inducible factor 1α in epithelial ovarian tumors: its impact on prognosis and on response to chemotherapy. Clin Cancer Res 7(6):1661–1668

    CAS  PubMed  Google Scholar 

  • Borad MJ, Reddy SG, Bahary N, Uronis HE, Sigal D, Cohn AL, Schelman WR, Stephenson J Jr, Chiorean EG, Rosen PJ (2015) Randomized phase II trial of gemcitabine plus TH-302 versus gemcitabine in patients with advanced pancreatic cancer. J Clin Oncol 33(13):1475

    Article  CAS  PubMed  Google Scholar 

  • Bos R, Van der Groep P, Greijer AE, Shvarts A, Meijer S, Pinedo HM, Semenza GL, Van Diest PJ, Van der Wall E (2003) Levels of hypoxia-inducible factor-1α independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer 97(6):1573–1581

    Article  PubMed  Google Scholar 

  • Brand MD (2016) Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 100:14–31

    Article  CAS  PubMed  Google Scholar 

  • Chandel N, Maltepe E, Goldwasser E, Mathieu C, Simon M, Schumacker P (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci 95(20):11715–11720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chipurupalli S, Kannan E, Tergaonkar V, D’Andrea R, Robinson N (2019) Hypoxia induced ER stress response as an adaptive mechanism in cancer. Int J Mol Sci 20(3):749

    Article  CAS  PubMed Central  Google Scholar 

  • Feldman DE, Chauhan V, Koong AC (2005) The unfolded protein response: a novel component of the hypoxic stress response in tumors. Mol Cancer Res 3(11):597–605

    Article  CAS  PubMed  Google Scholar 

  • Finley LW, Carracedo A, Lee J, Souza A, Egia A, Zhang J, Teruya-Feldstein J, Moreira PI, Cardoso SM, Clish CB (2011) SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell 19(3):416–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh D, Dawson MR (2018) Microenvironment influences cancer cell mechanics from tumor growth to metastasis. Biomechanics Oncol. Springer 1092:69–90

    Article  CAS  Google Scholar 

  • Giatromanolaki A, Koukourakis M, Sivridis E, Turley H, Talks K, Pezzella F, Gatter K, Harris A (2001) Relation of hypoxia inducible factor 1 α and 2 α in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer 85(6):881–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilkes DM, Semenza GL, Wirtz D (2014) Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer 14(6):430–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goda N, Kanai M (2012) Hypoxia-inducible factors and their roles in energy metabolism. Int J Hematol 95(5):457–463

    Article  CAS  PubMed  Google Scholar 

  • Graham K, Unger E (2018) Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int J Nanomedicine 13:6049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Helmlinger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH and pO 2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3(2):177–182

    Article  CAS  PubMed  Google Scholar 

  • Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, Shu Y (2019) Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer 18(1):157

    Article  PubMed  PubMed Central  Google Scholar 

  • Kroemer G, Mariño G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40(2):280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Wang Y, Kim E, Beemiller P, Wang C-Y, Swanson J, You M, Guan K-L (2007) Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J Biol Chem 282(49):35803–35813

    Article  CAS  PubMed  Google Scholar 

  • Lim J-H, Lee Y-M, Chun Y-S, Chen J, Kim J-E, Park J-W (2010) Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1α. Mol Cell 38(6):864–878

    Article  CAS  PubMed  Google Scholar 

  • Lin Q, Yun Z (2010) Impact of the hypoxic tumor microenvironment on the regulation of cancer stem cell characteristics. Cancer Biol Ther 9(12):949–956

    Article  CAS  PubMed  Google Scholar 

  • Luoto KR, Kumareswaran R, Bristow RG (2013) Tumor hypoxia as a driving force in genetic instability. Genome Integr 4(1):5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masoud GN, Li W (2015) HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5(5):378–389

    Article  PubMed  PubMed Central  Google Scholar 

  • Mele L, del Vecchio V, Liccardo D, Prisco C, Schwerdtfeger M, Robinson N, Desiderio V, Tirino V, Papaccio G, La Noce M (2020) The role of autophagy in resistance to targeted therapies. Cancer Treat Rev 88:102043

    Article  CAS  PubMed  Google Scholar 

  • Miao Z-F, Wang Z-N, Zhao T-T, Xu Y-Y, Gao J, Miao F, Xu H-M (2014) Peritoneal milky spots serve as a hypoxic niche and favor gastric cancer stem/progenitor cell peritoneal dissemination through hypoxia-inducible factor 1α. Stem Cells 32(12):3062–3074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mimeault M, Batra SK (2013) Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer-and metastasis-initiating cells. J Cell Mol Med 17(1):30–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Muz B, de la Puente P, Azab F, Azab AK (2015) The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia 3:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, Bronte V, Chouaib S (2014) PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211(5):781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norman JM, Cohen GM, Bampton ET (2010) The in vitro cleavage of the hAtg proteins by cell death proteases. Autophagy 6(8):1042–1056

    Article  CAS  PubMed  Google Scholar 

  • Paquette M, El-Houjeiri L, Pause A (2018) mTOR pathways in cancer and autophagy. Cancer 10(1):18

    Article  CAS  Google Scholar 

  • Peng G, Liu Y (2015) Hypoxia-inducible factors in cancer stem cells and inflammation. Trends Pharmacol Sci 36(6):374–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rockwell S, Dobrucki IT, Kim EY, Marrison ST, Vu VT (2009) Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr Mol Med 9(4):442–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (2010) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20(1):51–56

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148(3):399–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sofer A, Lei K, Johannessen CM, Ellisen LW (2005) Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol Cell Biol 25(14):5834–5845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spill F, Reynolds DS, Kamm RD, Zaman MH (2016) Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotechnol 40:41–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taguchi K, Yamamoto M (2017) The KEAP1–NRF2 system in cancer. Front Oncol 7:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Tong W-W, Tong G-H, Liu Y (2018) Cancer stem cells and hypoxia-inducible factors. Int J Oncol 53(2):469–476

    CAS  PubMed  Google Scholar 

  • Van Den Beucken T, Koch E, Chu K, Rupaimoole R, Prickaerts P, Adriaens M, Voncken JW, Harris AL, Buffa FM, Haider S (2014) Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER. Nat Commun 5(1):1–13

    Google Scholar 

  • Vaupel P, Harrison L (2004) Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 9:4–9

    Article  PubMed  Google Scholar 

  • Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49(23):6449–6465

    CAS  PubMed  Google Scholar 

  • Wang M, Kaufman RJ (2014) The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer 14(9):581–597

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Yang Z-Q, Zhang K (2010) Endoplasmic reticulum stress response in cancer: molecular mechanism and therapeutic potential. Am J Transl Res 2(1):65

    PubMed  PubMed Central  Google Scholar 

  • Weljie AM, Jirik FR (2011) Hypoxia-induced metabolic shifts in cancer cells: moving beyond the Warburg effect. Int J Biochem Cell Biol 43(7):981–989

    Article  CAS  PubMed  Google Scholar 

  • Xing F, Okuda H, Watabe M, Kobayashi A, Pai SK, Liu W, Pandey PR, Fukuda K, Hirota S, Sugai T (2011) Hypoxia-induced Jagged2 promotes breast cancer metastasis and self-renewal of cancer stem-like cells. Oncogene 30(39):4075–4086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun Z, Lin Q (2014) Hypoxia and regulation of cancer cell stemness. Tumor Microenviron Cellular Stress. Springer 772:41–53

    CAS  Google Scholar 

  • Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL, Simons JW (1999) Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res 59(22):5830–5835

    CAS  PubMed  Google Scholar 

  • Zimna A, Kurpisz M (2015) Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: applications and therapies. Biomed Res Int 2015:549412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmal Robinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chipurupalli, S., Kumari, S., Desiderio, V., Robinson, N. (2021). Hypoxia Induced Stress Responses in Cancer and Cancer-Stem Cells. In: Chakraborti, S., Ray, B.K., Roychowdhury, S. (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-4501-6_121-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4501-6_121-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4501-6

  • Online ISBN: 978-981-15-4501-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics