Skip to main content

C/C and C/SiC Composites for Aerospace Applications

  • Chapter
  • First Online:
Aerospace Materials and Material Technologies

Part of the book series: Indian Institute of Metals Series ((IIMS))

Abstract

This chapter deals with different aspects of the carbon fibre-reinforced carbon composites (C/C) and carbon fibre-reinforced silicon carbide composites (C/SiC), especially for aerospace applications. The reinforcement and matrix materials and the process technologies developed for these composites are discussed. Typical mechanical and thermal properties at room and high temperatures are also presented, together with some actual and potential aerospace applications. Some products developed in India are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rohini G, Rama Rao K (1993) Carbon-carbon composites—an overview. Defence Sci J 43(4):369–383

    Article  Google Scholar 

  2. Masataka Y, Motohiro A, Masayuki Y, Itsuro I, Satoshi M (1996) Development of C/C composites for OREX (orbital reentry experimental vehicle) nose cap. Adv Compo Mater 5(3):241–247

    Article  Google Scholar 

  3. Buckley JD, Eddie DD (1992) Carbon/carbon materials and composites. Noyes Publications, Park Ridge, NJ, USA

    Google Scholar 

  4. Fitzer E, Manocha LM (1998) Carbon fibers and carbon/carbon composites. Springer, Heidelberg, Germany

    Book  Google Scholar 

  5. Torsten W, Gordon B (1997) Carbon-carbon composites: a summary of recent developments and applications. Mater Des 18(1):11–15

    Google Scholar 

  6. Glass DE (2008) Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles. Paper AIAA-2008-2682 in: 15th AIAA Space planes and hypersonic systems and technologies conference, Dayton, Ohio, USA

    Google Scholar 

  7. Windhorst T, Blount G (1997) Carbon–carbon composites; a summary of recent developments and applications. J Mater Des 18:11–15

    Article  Google Scholar 

  8. Li KZ, Shen XT, Li HJ, Zhang SY, Feng T, Zhang LL (2011) Ablation of the carbon/carbon composite nozzle-throats in a small solid rocket motor. Carbon 49:1208–1215

    Article  Google Scholar 

  9. Auweter-Kurtz M, Hilfer G, Habiger H et al (1999) Investigation of oxidation protected C/C heat Shield material in different plasma wind Tunnels. Acta Astronaut 45(2):93–108

    Article  Google Scholar 

  10. Bacon RG (1960) Structure and properties of graphite whiskers. J Appl Phys 31:283–290

    Article  Google Scholar 

  11. Valentin N, Popov (2004) Carbon nanotubes: properties and application. Mater Sci Eng 43:61–102

    Article  Google Scholar 

  12. Li, Y-L, Shen, M-Y, Su, H-S, Chiang, C-L, Yip, M-C (2012) A study on mechanical properties of CNT-reinforced carbon/carbon composites. J Nanomaterials, Article ID 262694, 6 p

    Google Scholar 

  13. Zhang Hai, Guo Lingjun, Song Qiang, Fu Qiangang, Li Hejun, Li Kezhi (2013) Microstructure and flexural properties of carbon/carbon composite with in-situ grown carbon nanotube as secondary reinforcement. Prog Nat Sci Mater Int 23(2):157–163

    Article  Google Scholar 

  14. Baker RTK (1989) Catalytic growth of carbon filaments. Carbon 27:315–323

    Google Scholar 

  15. Rodriguez NM (1993) A review of catalytically grown carbon nanofibres. J Mater Res 8:3233–3250

    Article  Google Scholar 

  16. Kumar Suresh, Kumar Anil, Rohini Devi G, Gupta AK (2011) Preparation of 3D orthogonal woven C-SiC composite and its characterization for thermo-mechanical properties. Mater Sci Eng, A 528:6210–6216

    Article  Google Scholar 

  17. Kumar Suresh, Kumar Anil, Ramesh Babu M, Raghvendra Rao M (2015) Fabrication and ablation studies of 4D C/SiC composite nozzle under liquid propulsion. Int J Appl Ceram Tech 12(S3):E176–E190

    Article  Google Scholar 

  18. Kumar S, Kumar A, Sampath K, Bhanu Prasad VV, Chaudhary JC, Gupta AK, Rohini Devi G (2011) Fabrication and erosion studies of C–SiC composite jet vanes in solid rocket motor exhaust. J Euro Ceram Soc 31(13):2425–2431

    Google Scholar 

  19. Manocha LM (2003) High performance carbon–carbon composites. Sadhana 28(1–2):349–358 (Printed in India)

    Google Scholar 

  20. Goleki I, Morris RC, Narasimhan D, Clements N (1995) Rapid densification of carbon–carbon composites by thermal-gradient chemical vapor infiltration. In: Evans AG, Naslain R (eds) High temperature ceramic matrix composites II. Ceram Trans 58:231–236

    Google Scholar 

  21. Besmann TM (1995) CVI processing of ceramic matrix composites. In: Evans AG, Naslain R (eds) High temperature ceramic matrix composites II. Ceram Trans 58:1–12

    Google Scholar 

  22. Naslain R (2004) Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compo Sci Tech 64:155–170

    Article  Google Scholar 

  23. Kumar Suresh, Kushwaha Juhi, Mondal Samar, Kumar Anil, Jain RK, Rohini Devi G (2013) Fabrication and ablation testing of 4D C/C composite at 10 MW/m2 heat flux under a plasma arc heater. Mater Sci Eng A 56:102–111

    Article  Google Scholar 

  24. Hatta H, Takei T, Taya M (2000) Effect of dispersed microvoids on thermal expansion behavior of composite materials. Mater Sci Eng A285:99–110

    Google Scholar 

  25. Kelly A, Zweben C, Warren R (2000) Comprehensive composite materials, C/C, cement, and ceramic matrix composites, vol 4. Pergamon Press (Elsevier), New York, USA, p 413

    Google Scholar 

  26. Chen JD et al (1995) Low energy tribological behavior of carbon-carbon composites. Carbon 33:57–62

    Article  Google Scholar 

  27. Birch S (1996) A light touch on the brakes. Aerospace engineering, 24–25 Dec 1996

    Google Scholar 

  28. Berdoyes M (2006) Snecma propulsion solide advanced technology SRM Nozzles. History and future, Paper AIAA 2006-4596 in: 42nd AIAA/ASME/SAE/ASEE Joint propulsion conference & exhibit, Sacramento, California, USA

    Google Scholar 

  29. Hald H, Ortelt E, Fischer I, Greuel D, Haidn (2005) Effusion cooled cmc rocket combustion chamber. AIAA/CIRA 13th international space planes and hypersonics systems and technologies, CIRA, Italy. AIAA-2005-3229

    Google Scholar 

  30. Krenkel W (2004) Carbon fiber reinforced CMC for high performance structures. Int J Appl Ceram Tech 1(2):188–200

    Google Scholar 

  31. Jones, R.H., Steiner, D., Heinisch, H.L., Newsome, G.A., Kerch, H.M.,1997, “Radiation resistant ceramic matrix composites”, J Nuclear Mater., 245, Pp.87–107

    Google Scholar 

  32. Kerans RJ, Hay RS (2002) Parthasarathy TA, Cinibulk MK (2002) Interface design for oxidation-resistant ceramic composites. J Am Ceram Soc 85(11):2599–632

    Google Scholar 

  33. Naslain R (1998) The design of the fibre-matrix interfacial zone in ceramic matrix composites. Compos Part A 29A:1145–55

    Google Scholar 

  34. Naslain R, Dugne O, Guette A, Sévely J, Robin-Brosse C, Rocher JP, Cotteret J (1991) Boron nitride interphase in ceramic matrix composites. J Am Ceram Soc 74:2482–2488

    Google Scholar 

  35. Richard ML (1993) Preceramic polymer routes to silicon carbide. Chem Mater 5:260–279

    Article  Google Scholar 

  36. Jian K, Chen ZH, Ma QS et al (2005) Effects of pyrolysis processes on the microstructures and mechanical properties of Cf/SiC composites using polycarbosilane. Mater Sci Eng A 390:154–158

    Article  Google Scholar 

  37. Rak ZS (2001) A process for Cf/SiC composites using liquid polymer infiltration. J Am Ceram Soc 84:2235–2239

    Article  Google Scholar 

  38. Berbon M, Calabrese M (2002) “Effect of 1600 °C heat treatment on C/SiC composites fabricated by polymer infiltration and pyrolysis with allylhydridopolycarbosilane. J Am Ceram Soc 85:1891–1893

    Article  Google Scholar 

  39. Kumar S, Misra MK, Mondal S, Gupta RK, Mishra R, Ranjan A., Saxena AK (2015) Polycarbosilane based UD C/SiC composites: effect of in-situ grown SiC nano-pins on mechanical properties. Ceram Trans 41(10) Part A:12849–12860

    Google Scholar 

  40. Interrante LV, Whitmarsh CW, Sherwood W (1995) Fabrication of SiC matrix composites using a liquid polycarbosilane as the matrix source. In: Evans AG, Naslain R (eds) High temperature ceramic matrix composites II. Ceram Trans, 58:111–118

    Google Scholar 

  41. Hillig WB (1994) Making ceramic composites by melt infiltration. Am Ceram Soc Bull 73(4):56–62

    Google Scholar 

  42. Suresh K, Sweety K, Anil K, Anupam S, Gupta AK, Rohini Devi G (2008) Mechanical properties of LSI based 3D-stitched-C–SiC composites prepared by coal–tar pitch as carbon precursor. Scripta Mater 58:826–9

    Google Scholar 

  43. Bansal NP (2005) “Hand book of ceramic composites. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  44. Hald H, Weihs H, Benitsch B, Fischer I, Reimer T, Winkelmann P, Gulhan A (1999) Development of a nose cap system for X-38, In: Proceedings of international symposium atmospheric re-entry vehicles and systems, Arcachon, France

    Google Scholar 

  45. Muhlratzer A, Leuchs M (2001) Application of non-oxide CMCs, High temperature ceramics matrix composites. In: Krenkel, W,.Naslain R, Scheider H (eds) Wiley-VCH, Weinheim, Germany, pp 288–298

    Google Scholar 

  46. Trabandt U, Fischer W (2001) Paper 01-ICES-184 in: Proceedings of the international congress on environmental systems, Orlando, FL, USA

    Google Scholar 

  47. Chawla KK (2003) Ceramic Matrix Composites, 2nd edn. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  48. Liu CJ, Chen HH, Wang Y, Zhang Z (2004) A long duration and high reliability liquid apogee engine for satellites. Acta Astronaut 55:401–408

    Article  Google Scholar 

  49. Schmidt Stephan, Beyer Steffen, Immich Hans (2005) Ceramic matrix composites: a challenge in space-propulsion technology applications. Int J Appl Ceram Technol 2(2):85–96

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the contribution of the colleague scientists at DMSRDE, ASL and DMRL who have given their valuable time for discussion about the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kumar, S., Shekar, K.C., Jana, B., Manocha, L.M., Eswara Prasad, N. (2017). C/C and C/SiC Composites for Aerospace Applications. In: Prasad, N., Wanhill, R. (eds) Aerospace Materials and Material Technologies . Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-2134-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2134-3_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2133-6

  • Online ISBN: 978-981-10-2134-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics