Skip to main content

The Theory of Context-Aware Ubiquitous Learning and the Affordances of This Approach for Geometry Learners

  • Chapter
  • First Online:
Mobile Learning Design

Part of the book series: Lecture Notes in Educational Technology ((LNET))

Abstract

The use of mobile learning has provided new pedagogical approaches to teaching geometry as a result of the technological affordances provided. One of the key affordances of mobile learning is the portability of the devices. This has untethered the learner from a particular environment to learn wherever and whenever the learner chooses. This chapter describes a subcategory of mobile learning called context-aware ubiquitous learning (context-aware ulearning) where learning happens in a real-world environment while using mobile devices to interact with that setting. This chapter delineates this subcategory and how this type of learning can be dichotomized into sensory and ambient context-aware ulearning. An argument is made that context-aware ulearning is a useful pedagogical approach for learning geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bartolini-Bussi, M. G., Taimina, D., & Isoda, M. (2010). Concrete models and dynamic instruments as early technology tools in classrooms at the dawn of ICMI: from Felix Klein to present application in mathematics classrooms in different parts of the world. ZDM, 42, 19–31.

    Article  Google Scholar 

  • Caudill, J. G. (2007). The growth of m-learning and the growth of mobile computing: parallel developments. International Review of Research in Open and Distance Learning, 8(2), 1–13.

    Google Scholar 

  • Chen, C. C., & Huang, T. C. (2012). Learning in a u-Museum: Developing a context-aware ubiquitous learning environment. Computers & Education, 59, 873–883.

    Article  Google Scholar 

  • Cheon, J., Lee, S., Crooks, S. M., & Song, J. (2012). An investigation of mobile learning readiness in higher education based on the theory of planned behavior. Computers & Education, 59, 1054–1064.

    Article  Google Scholar 

  • Clairaut, A. C. (2006). Elements de geometrie. Paris: Editions Jacques Gabay (Original work published 1741).

    Google Scholar 

  • Comenius, I. A. (1986). Didactica Magna. Akal Ediciones (Original work published 1657).

    Google Scholar 

  • Crompton, H. (2013). A historical overview of mobile learning: Toward learner-centered education. In Z. L. Berge & L. Y. Muilenburg (Eds.), Handbook of mobile learning (pp. 3–14). Florence, KY: Routledge.

    Google Scholar 

  • Crompton, H. (2015). Understanding angle and angle measure: A design-based research study using context-aware ubiquitous learning. International Journal for Technology in Mathematics Education, 22(1).

    Google Scholar 

  • Crompton, H., LaFrance, J., & van‘t Hooft, M. (2012). QR Codes 101. ISTE Learning and Leading with Technology., 39(8), 22–25.

    Google Scholar 

  • Crow, R., Santos, I. M., LeBaron, J., McFadden, A. T., & Osborne, C. F. (2010). Switching gears: Moving from e-learning to m-learning. Journal of Online Learning and Teaching, 6(1), 268–278.

    Google Scholar 

  • Elisson, J., & Ramberg, R. (2012). Design guidelines for location-based and contextual learning supported by mobile devices. International Journal of Handheld Computing Research, 3(2), 26–43.

    Article  Google Scholar 

  • Gainsburg, J. (2008). Real-world connections in secondary mathematics teaching. Journal of Mathematics Teacher Education, 11(3), 199–219.

    Article  Google Scholar 

  • Hands-On Math Geoboard. (2015). Ventura. Retrieved from https://itunes.apple.com/us/app/hands-on-math-geoboard/id493388133?ls=1&mt=8.

  • Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching mathematics with understanding. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 65–97). New York: Macmillan.

    Google Scholar 

  • Hughes, J. (2013). The role of teacher knowledge and learning experiences in forming technology-integrated pedagogy. Journal of Technology and Teacher Education, 21(4) 277–302. Retrieved December 29, 2014 from http://www.editlib.org/p/4622.

  • Hwang, G. J., Wu, T. T., & Chen, Y. J. (2007). Ubiquitous computing technologies in education. Journal of Distance Education Technologies, 5(4), 1–4.

    Article  Google Scholar 

  • Hwang, G., Tsai, C., & Yang, S. J. H. (2008). Criteria, strategies and research issues of context-aware ubiquitous learning. Educational Technology & Society, 11(2), 81–91.

    Google Scholar 

  • Laouris, Y., & Eteokleous, N. (2005, October 25–28). We need an educationally relevant definition of mobile learning. Paper Presented at the 4th World Conference on mLearning, Cape Town, South Africa.

    Google Scholar 

  • Law, C., & So, S. (2010). QR codes in education. Journal of Educational Technology Development and Exchange, 3(1), 85–100.

    Article  Google Scholar 

  • Liu, G. Z., & Hwang, G. J. (2009). A key step to understanding paradigm shifts in e-learning: Towards context-aware ubiquitous learning. Research Express, 10(5), 1–6.

    Google Scholar 

  • Lonsdale, P., Baber, C., Sharples, M., & Arvanitis, T. N. (2004). A context-awareness architecture for facilitating mobile learning. In J. Attewell & C. Savill-Smith (Eds.), Learning with mobile devices: Research and development (pp. 79–86). London: Learning and Skills Development Agency.

    Google Scholar 

  • Motion Math, (nd). [iOS]. Retrieved from http://motionmathgames.com/.

  • National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • National Research Council (NRC). (1990). Reshaping school mathematics: A philosophy and framework for curriculum. Washington, DC: National Academy Press.

    Google Scholar 

  • Operation Math Code Squad. (2014). Android and iOS application. Retrieved from https://itunes.apple.com/us/app/operation-math-code-squad/id555750694?mt=8.

  • Prescott, A., Mitchelmore, M., & White, P. (2002). Students’ difficulties in abstracting angle concepts from physical activities with concrete material. In K. C. Irwin. B. Barton, M. Pfannkuch, & M. O. Thomas (Eds.), Proceedings of the 25th Annual Conference of the Mathematics Education Research Group of Australasia (pp. 583–591). Sydney, Australia: MERGA.

    Google Scholar 

  • Sense-it. (2014). nQuire: Young Citizen Inquiry, Open University. Retrieved from https://play.google.com/store/apps/details?id=org.greengin.sciencetoolkit.

  • Sharples, M. Taylor., J., & Vavoula, G. (2005). Towards a theory of mobile learning. Proceedings Presented at the mLearn, Cape Town

    Google Scholar 

  • Soloway, E., Norris, C., Curtis, M., Jansen, R., Krajcik, J., Marx, R., et al. (2001). Making palm-sized computers the PC of choice for k-12. Learning and Leading with Technology, 28(7), 32–57.

    Google Scholar 

  • Steketee, S., & Crompton, H. (2012, April 13). Measure a Picture. An add-on program for SketchPad Explorer The Geometer’s Sketchpad Sketch Exchange. Retrieved from http://sketchexchange.keypress.com/browse/topic/all-topics/by-recent/1/448/measure-a-picture.

  • Stigler, J. W., & Hiebert, J. (1997). Understanding and improving classroom mathematics instruction. Phi Delta Kappan, 79, 14–21.

    Google Scholar 

  • Traxler, J. (2009a). The evolution of mobile learning. In Retta Guy (Ed.), The evolution of mobile teaching and learning (pp. 1–14). Santa Rosa, CA: Informing Science Press.

    Google Scholar 

  • Traxler, J. (2009b). Learning in a mobile age. International Journal of Mobile and Blended Learning, 1(1), 1–12.

    Article  Google Scholar 

  • Ubuz, B., & Ãœstün, I. (2004). Figural and conceptual aspects in defining and identifying polygons. Eurasian Journal of Educational Research, 16, 15–26.

    Google Scholar 

  • Williams-Carlin, R. (2009). A comparative study of geometry curricula (Doctoral dissertation, Louisiana State University, 2009). Dissertation Abstracts 1–82.

    Google Scholar 

  • Wu, P. H., Hwang, G. J., & Tsai, W. H. (2013). An expert system-based context-aware ubiquitous learning approach for conducting science learning activities. Educational Technology & Society, 16(4), 217–230.

    Google Scholar 

  • Zbiek, R. M., Heid, M. K., Blume, G. W., & Dick, T. P. (2007). Research on technology in mathematics education: A perspective of constructs. In F. K. Lester Jr (Ed.), Second handbook of research on mathematics in teaching and learning (pp. 1169–1208). Reston, VA: NCTM.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Crompton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Crompton, H. (2016). The Theory of Context-Aware Ubiquitous Learning and the Affordances of This Approach for Geometry Learners. In: Churchill, D., Lu, J., Chiu, T., Fox, B. (eds) Mobile Learning Design. Lecture Notes in Educational Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0027-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0027-0_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0025-6

  • Online ISBN: 978-981-10-0027-0

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics