Skip to main content

From Singular Point Analysis to Rigorous Results on Integrability: a Dream of S. Kowalevskaya

  • Chapter
Hamiltonian Systems with Three or More Degrees of Freedom

Part of the book series: NATO ASI Series ((ASIC,volume 533))

Abstract

A Hamiltonian system with n degrees of freedom is called integrable if the system possesses n independent first integrals in involution. Solution of integrable systems is generically quasi-periodic and no chaos appears. Therefore to decide whether a given system is integrable or not is one of the most fundamental questions in the study of Hamiltonian dynamical systems. Although there is no guarantee that the ultimate criterion does exist, there have been a considerable progress in this direction, in the last decade. The candidate is sometimes called the singular point analysis, which has its origin in the work of S. Kowalevskaya in 1888.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, M. and van Moerbeke, P. (1982) Kowalevski’s asymptotic method, Kac-Moody Lie algebras and regularization, Commun. Math. Phys. 83, 83–106.

    Article  MATH  Google Scholar 

  2. Bountis, T., Segur, H. and Vivaldi, F. (1982) Integrable Hamiltonian systems and the Painlevé property, Phys. Rev. A25, 1257–1264.

    Article  MathSciNet  Google Scholar 

  3. Chang, Y.F., Tabor, M. and Weiss, J. (1982) Analytic structure of the Henon-Heiles Hamiltonians in integrable and nonintegrable regimes, J. Math. Phys. 23, 531–538.

    Article  MathSciNet  MATH  Google Scholar 

  4. Furta, S.D. (1996) On non-integrability of general systems of differential equations, Z. Angew. Math. Phys. 47, 112–131.

    Article  MathSciNet  MATH  Google Scholar 

  5. Goriely, A. (1996) Integrability, partial integrability and nonintegrability for systems of ordinary differential equations, J. Math. Phys. 37, 1871–1893.

    Article  MathSciNet  MATH  Google Scholar 

  6. Ito, H. (1985) Non-integrability of Hénon-Heiles system and a theorem of Ziglin, Kodai Math. J. 8, 120–138.

    Article  MathSciNet  MATH  Google Scholar 

  7. Kozlov, V.V. (1983) Integrability and non-integrability in Hamiltonian mechanics, Russian Math. Surveys 38, 1–76.

    Article  MATH  Google Scholar 

  8. Kowalevski, S. (1889) Sur le problèm de la rotation d’un corps solide autour d’un point fixe, Acta Math. 12, 177–232.

    Article  MathSciNet  MATH  Google Scholar 

  9. Kowalevski, S. (1890) Sur une propriété du système d’équations différentielles qui définit la rotation d’un corps solide autour d’un point fixe, Acta Math. 14, 81–93.

    Article  MathSciNet  MATH  Google Scholar 

  10. Leimanis, E. (1965) The general problem of the motion of coupled rigid bodies about a fixed point, Springer.

    Google Scholar 

  11. Ramani, A., Grammaticos, B. and Bountis, T. (1989) The Painlevé property and singularity analysis of integrable and non-integrable systems, Phys. Rep. 180, 159–245.

    Article  MathSciNet  Google Scholar 

  12. Siegel, C.L. (1941) Der Dreierstoss, Ann. Math. 42, 127–168.

    Article  Google Scholar 

  13. Umeno, K. (1994) Galois extensions in Kowalevski exponents and nonintegrability of nonlinear lattices, Phys. Lett. A190, 85–89.

    Article  MathSciNet  MATH  Google Scholar 

  14. Umeno, K. (1995) Non-integrable character of Hamiltonian systems with global and symmetric coupling, Physica D82, 11–35.

    MathSciNet  MATH  Google Scholar 

  15. Vanhaecke, P. (1992) Linearising two-dimensional integrable systems and the construction of actionangle variables, Math. Zeitschrift 211, 265–313.

    Article  MathSciNet  MATH  Google Scholar 

  16. Yoshida, H. (1983) Integrability of generalized Toda lattice systems and singularities in the complex t-plane, in Non-linear integrable. systems — classical theory and quantum theory, M. Jimbo and T. Miwa eds., World Scientific, 273–289.

    Google Scholar 

  17. Yoshida, H. (1983) Necessary conditions for the existence of algebraic first integrals, Celestial Mech. 31, 363–379, 381–399.

    Google Scholar 

  18. Yoshida, H. (1986) Existence of exponentially unstable periodic solutions and the non-integrability of homogeneous Hamiltonian systems, Physica D21, 163–170.

    MathSciNet  MATH  Google Scholar 

  19. Yoshida, H. (1987) A criterion for the non-existence of an additional integral in Hamiltonian systems with a homogeneous potential, Physica D29, 128–142.

    MathSciNet  MATH  Google Scholar 

  20. Yoshida, H. (1988) Ziglin analysis for proving non-integrability of Hamiltonian system, in Finite Dimensional Integrable Nonlinear Dynamical Systems, P.G.L. Leach and W.H. Steeb eds., World Scientific, 74–93.

    Google Scholar 

  21. Yoshida, H. (1989) A criterion for the non-existence of an additional analytic Integral in Hamiltonian systems with N-degrees of freedom, Phys. Lett. A141, 108–112.

    Article  MathSciNet  Google Scholar 

  22. Ziglin, S.L. (1983) Branching of solutions and nonexistence of first integrals in Hamiltonian mechanics, Functional Anal. Appl. 16, 181–189, and 17, 6–17.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yoshida, H. (1999). From Singular Point Analysis to Rigorous Results on Integrability: a Dream of S. Kowalevskaya. In: Simó, C. (eds) Hamiltonian Systems with Three or More Degrees of Freedom. NATO ASI Series, vol 533. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4673-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4673-9_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5968-8

  • Online ISBN: 978-94-011-4673-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics