Skip to main content

Properties and applications of bacterially derived polyhydroxyalkanoates

  • Chapter
Degradable Polymers

Summary

The polyhydroxyalkanoates represents a range of polyesters produced from renewable resources by bacterial fermentation. The class includes the 3-hydroxybutyrate-co-3-hydroxyvalerate polymers marketed under the Biopol trademark.

These copolymers are semi-crystalline with melting temperatures ranging from 120 to 180 °C depending on the copolymer composition. Flexibility and ductility improves with increasing hydroxyvalerate copolymer content.

The crystallization behaviour of these polymers has been studied extensively. Both monomer units have very similar crystal lattice requirements and exhibit the phenomenon of isodimorphism. Compared with other thermoplastics, the nucleation density is relatively low leading to slow rates of crystallization. This potential problem has been overcome at the commercial scale by the use of nucleant systems.

The copolymers are truly biodegradable and are enzymically degraded by a wide range of bacteria, fungi, and algae. Degradation times depend on the environment and material form and can range from weeks to over a year.

As the materials are thermoplastic, they can access injection moulding and extrusion blow moulding technologies. Cast film, sheet and tubes can also be formed. Paper and board coating has also been demonstrated on a commercial scale.

The applications of such polymers are wide ranging and extend to any area where biodegrability extends the range of disposal options. These include the disposable hygiene, agricultural and packaging markets. Medical applications exploit the key features of biocompatability and biodégradation over time-scales appropriate for tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lemoigne, M. (1925) Ann. Inst. Past., 39, 144.

    Google Scholar 

  2. Schlegel, H. G., Grottschalk, G. and Von Bartha, R. (1961) Nature, 191,463.

    Article  CAS  Google Scholar 

  3. Timm, A., Byrom, D. and Steinbüchel, A. (1990) Appl Microbiol. Biotechnol., 33, 296.

    Article  CAS  Google Scholar 

  4. Bonthrone, K. M., Clauss, J., Horowitz, D. M, Hunter, B. K. and Sanders, J. K. M. (1992) FEMS Microbiol. Rev., 103, 273.

    Google Scholar 

  5. Fritzche, K. and Lenz, W. (1990) Makromol. Chem., 191, 1957.

    Article  Google Scholar 

  6. Anderson, A. J. and Dawes, E. A. (1990) Microbiol. Rev., 54,450.

    CAS  Google Scholar 

  7. Brandl, H., Gross, R. A., Lenz, R. W. and Fuller, R. C. (1990) Advances in Biochemical Engineering/Biotechnology, Vol. 41, Springer.

    Google Scholar 

  8. Steinbüchel, A. (1991) Biomaterials — Novel Materials from Biological Sources, (ed. D. Byrom), Macmillan, p. 121.

    Google Scholar 

  9. Haywood, G. W., Anderson, A. J., Ewing, D. and Dawes, E. (1990) Appl. Environ. Microbiol., 56, 3354.

    CAS  Google Scholar 

  10. Brandl, H., Gross, R. A., Lenz, R. W. and Fuller, R. C. (1988) Appl. Environ. Microbiol., 54,1977.

    Google Scholar 

  11. Langeveen, R. G., Huisman, G. W., Preusting, H. et al. (1988) Appl. Environ. Microbiol., 54, 2924.

    Google Scholar 

  12. Anderson, A. J., Haywood, G. W., William, D. R. and Dawes, E. A. (eds) (1990) Novel Biodegradable Microbial Polymers, Kluwer Academic Publishers, Dordecht, pp. 119–129.

    Book  Google Scholar 

  13. Eggink, G., van der Waal, H. and Huyverts, G. (1990) in Novel Biodegradable Microbial Polymers, Kluwer Academic Publishers, Dordecht, pp. 441–444.

    Google Scholar 

  14. Lenz, R. W., Kim, B. W. and Ulmer, H. W. et al. (1990) in Novel Biodegradable Microbial Polymers, Kluwer Academic Publishers, Dordecht, pp. 23–25.

    Book  Google Scholar 

  15. Fritzche, K. and Lenz, R. W. (1990) Int. J. Macromol., 12,92.

    Article  Google Scholar 

  16. Holmes, P. A. (1985) Phys. Technol., 16, 32.

    Article  CAS  Google Scholar 

  17. Holmes, P. A., Wright, L. F. and Collins, S. M. (1983) European Patents 0069 497 (1983), 0052 459(1985).

    Google Scholar 

  18. Doi, Y., Tamaki, A., Kumoka, M. and Saga, K. (1987) Makromol Chem. Rapid Commun. 8, 631.

    Article  CAS  Google Scholar 

  19. Kunioko, M., Nakamura, Y. and Doi, Y. (1988) Polymer Comm., 29, 174.

    Google Scholar 

  20. Fritze, K., Lenz, R. W. and Fuller, R. C. (1990) Int. J. Biol, Macromol., 12, 85.

    Article  Google Scholar 

  21. Kunioka, M., Tamaki, A. and Doi, Y. (1989) Macromolecules, 22,694.

    Article  CAS  Google Scholar 

  22. Bluhm, T. L., Hamer, G. K. and Marchessault, R. H. et al. (1986) Macromolecules, 19, 287.

    Article  Google Scholar 

  23. Orts, W. J., Marchessault, R. H. and Bluhm, T. L. (1991) Macromolecules, 24, 6435.

    Article  CAS  Google Scholar 

  24. Doi, Y., Tamaki, A., Kunioka, M. and Soga, K. (1987) J. Chem. Soc. Chem. Commun., 21, 1635.

    Article  Google Scholar 

  25. Biopol Properties and Processing — ZENECA Bio Products data sheet (1993).

    Google Scholar 

  26. Preusting, H., Nijenhuis, A. and Witholt, B. (1990) Macromolecules, 23,4220.

    Article  CAS  Google Scholar 

  27. Gross, R. A., DeMello, C. and Lenz, R. W. et al. (1989) Macromolecules, 22,1106.

    Article  CAS  Google Scholar 

  28. Huisman, G. W., de Leeuw, O, Eggink, G. and Witholt, B. (1991) Appl. Environ. Microbiol., 55, 1949.

    Google Scholar 

  29. Marchessault, R. H., Monasterios, C. J., Morin, F. G. and Sundararajan, R. P. (1990) Int. J. Biol. Macromol., 12, 158.

    Article  Google Scholar 

  30. Doi, Y., Nakamura, Y. and Soga, K. (1988) Macromolecules, 21,2722.

    Article  CAS  Google Scholar 

  31. Kamiya, N., Sakurai, M. and Inoue, Y. et al. (1991) Macromolecules, 24,2178.

    Article  CAS  Google Scholar 

  32. Kamiya, N., Sakurai, M., Inoue, Y. and Chûjô, R. (1991) Macromolecules, 24,3888.

    Article  CAS  Google Scholar 

  33. Scandola, M., Ceccorulli, G., Pizzoli, M. and Gazzano, M. (1992) Macromolecules, 25, 1405.

    Article  CAS  Google Scholar 

  34. Okamura, K. and Marchessault, R. H. (1967) in Conformation of Biopolymers, Vol. 2, (ed. G. N. Ramachandron) Academic Press, London.

    Google Scholar 

  35. Cornibert, J. and Marchessault, R. H. (1972) J. Mol. Biol., 71, 735.

    Article  CAS  Google Scholar 

  36. Yokouchi, M., Chatoni, Y. and Tadokoro, H. et al. (1973) Polymer, 14, 267.

    Article  CAS  Google Scholar 

  37. Brückner, S., Meille, S. V. and Malpezzi, L. et al. (1988) Macromolecules, 21,967.

    Article  Google Scholar 

  38. Barham, P. J., Barker, P. and Organ, S. J. (1992) FEMS Microbol. Revs., 103, 289.

    Article  CAS  Google Scholar 

  39. Yokouchi, M., Chatani, Y., Tadokoro, H. and Tani, H. (1974) Polymer J., 6, 248.

    Article  CAS  Google Scholar 

  40. Pundsack, A. L. and Bluhm, T. L. (1981) J. Mat. Sci. Lett. 16, 545.

    CAS  Google Scholar 

  41. Yoshie, N., Sakurai, M., Inoue, Y. and Chûjô, R. (1992) Macromolecules, 25,2046.

    Article  CAS  Google Scholar 

  42. Bloembergen, S., Holden, D. A. and Hamer, G. K. et al. (1986) Macromolecules, 19, 2865.

    Article  CAS  Google Scholar 

  43. Barham, P. J., Keller, A., Otun, E. L. and Holmes, P. A. (1984) J. Mat. Scl., 19, 2781.

    Article  CAS  Google Scholar 

  44. Mitomo, H., Barham, P. J. and Keller, A. (1986) Sen-i Gakkaishi, 42, T-589.

    Google Scholar 

  45. Liggat, J. J. and Rule, R. J. to be published.

    Google Scholar 

  46. Barham, P. J. and Keller, A. (1986) J. Polym. Sci., Polym. Phys. Ed., 24, 69.

    Article  CAS  Google Scholar 

  47. Barham, P. J. (1984) J. Mat. Sci., 19, 3826.

    Article  CAS  Google Scholar 

  48. Black, S. N., Dobbs, B., Dempsey, P. S. and Davey, R. J. (1990) J. Mat. Sci. Lett., 9,51.

    Article  CAS  Google Scholar 

  49. Billingham, N. C, Henman, T. J., and Holmes, P. A. (1987) Developments in Polymer Degradation, 7, 81.

    Article  CAS  Google Scholar 

  50. Grassie, N., Murray, E. J. and Holmes, P. A. (1984) Polym. Degrad. Stab., 6,95.

    Article  CAS  Google Scholar 

  51. Grassie, N., Murray, E. J. and Holmes, P. A. (1984) Polym. Degrad. Stab., 6,127.

    Article  CAS  Google Scholar 

  52. Grassie, N., Murray, E. J. and Holmes, P. A. (1984) Polym. Degrad Stab., 6,47.

    Article  CAS  Google Scholar 

  53. Kunioka, M. and Doi, Y. (1990) Macromolecules, 23,1933.

    Article  CAS  Google Scholar 

  54. Cox, M. K. (1990) in Biodegradable Polymers and Plastics, (ed. M. Vert), Royal Society of Chemistry, Cambridge.

    Google Scholar 

  55. Kumagai, Y., Kanesawa, Y. and Doi, Y. (1992) Makromol. Chem., 193, 53.

    Article  CAS  Google Scholar 

  56. Doi, Y., Kanesawa, Y., Tanahashi, N. and Kumagai, Y. (1992) Polym. Degrad. Stab., 36,173.

    Article  CAS  Google Scholar 

  57. Kumagai, Y., and Doi, Y. (1992) Polym. Degrad. Stab., 36,241.

    Article  CAS  Google Scholar 

  58. Gidman, I. Pira International, personal communication.

    Google Scholar 

  59. Biopol Properties and Processing — ZENECA Bio Products Datasheet (1993).

    Google Scholar 

  60. Kemmish, D. J. Fundamentals of Biodegradable Materials and Packaging, (ed. D. Kaplan, E. Thomas and C. Ching), Technomic Publishing, in print.

    Google Scholar 

  61. Holland, S. J., Jolly, A. M., Yasin, M. and Tighe, B. J. (1987) Biomaterials, 8,289.

    Article  CAS  Google Scholar 

  62. Yasin, M., Holland, S. J. and Tighe, B. J. (1990) Biomaterials, 11,451.

    Article  CAS  Google Scholar 

  63. Saito, T., Tomita, K., Juni, K. and Ooba, K. (1992) Biomaterials, 12, 309.

    Article  Google Scholar 

  64. Bissery, M. C, Valeriote, F. and Thies, C. (1984) in Microspheres and Drug Therapy, (ed. S. S. Davis), Elsevier, Chapter 4.

    Google Scholar 

  65. Bissery, M, C, Puisieux, F. and Thies, C. (1982) 9th International Research Symposium, Fort Lauderdale, Florida July 26–28.

    Google Scholar 

  66. Bissery, M. C., Puisieux, F. and Thies, C. (1983) Proc. Expo. Congr. Int. Technol. Pharm., 3rd Chatenay-Malabry, France, 1983, 3, 233.

    Google Scholar 

  67. Juni, K., Nakano, M. and Kubota, M. (1986) J. Controlled Release, 4, 25.

    Article  CAS  Google Scholar 

  68. Kubota, M., Nakano, M. and Juni, K. (1988) Chem. Pharm. Bull, 36, 333.

    Article  CAS  Google Scholar 

  69. Korsatko, W., Wabnegg, B. and Braunegg, G. et al. (1983) Pharm. Ind., 45, 525.

    CAS  Google Scholar 

  70. Korsatko, W., Wabnegg, B. and Tillian, H. M. et al (1983) Pharm. Ind., 45,1004.

    CAS  Google Scholar 

  71. Embleton, J. K. and Tighe, B. J. (1992) J. Microencapsulation, 9, 73.

    Article  CAS  Google Scholar 

  72. Doyle, C., Saunders, D. and Bonfield, W. (1986) Proceeding of Computers in Biomedical Engineering, 1986, 9/1, Plastics and Rubber Institute.

    Google Scholar 

  73. Doyle, C., Tanner, E. T. and Bonfield, W. (1991) Biomaterials, 12,841.

    Article  CAS  Google Scholar 

  74. Malm, T. (1991) Acta Universitis Upsaiiensi 311, a Doctoral Thesis of the University of Uppsala.

    Google Scholar 

  75. Malm, T., Bowald, S. and Karacagil, S. et al (1992) Scand. J. Thor. Cardiovasc. Surg., 26,9.

    Article  CAS  Google Scholar 

  76. Malm, T., Bowald, S. and Saldeen, T. et al. (1992) Scand. J. Thor. Cardiovasc. Surg., 26, 15.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hammond, T., Liggat, J.J. (1995). Properties and applications of bacterially derived polyhydroxyalkanoates. In: Scott, G., Gilead, D. (eds) Degradable Polymers. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0571-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0571-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4253-6

  • Online ISBN: 978-94-011-0571-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics