Skip to main content

Insights from mosquito evolution: Patterns, tempo and speciation

  • Chapter
Nature at Work: Ongoing Saga of Evolution

Abstract

A great deal of information has accumulated on chromosome morphology and evolution, heterochromatin distribution and differentiation, and molecular structure, organization and evolution of genomes in the mosquito family Culicidae. Whereas numerically the haploid chromosome number (n = 3) has remained virtually unchanged, extensive variation exists at different levels of genomic structure and organization. A number of trends in genome evolution emerge when these data are considered in light of cladistic phylogenies of Culicidae and its sister families. Anophelinae have heteromorphic sex chromosomes, a small genome size and repetitive elements are distributed in a long-period interspersion pattern. In contrast, Culicinae have homomorphic sex chromosomes and repetitive DNA is organized in a short-period interspersion pattern. There has been a general increase in genome size during the evolution of culicine taxa. The most likely hypothesis for the evolution of sex chromosomes and genome organization in Culicidae would be that homomorphic sex chromosomes and a long-period interspersion pattern are ancestral in lineages leading to Toxorhynchitinae and Culicinae. Larger genomes developed in subsequent culicine lineages through accumulation of short-period interspersed repetitive elements. Heteromorphic sex chromosomes evolved early in the evolution of Anophelinae and a long-period interspersion pattern was retained. An alternative route may be that Culicidae arose from a Chaoborid Mochlonyx-like ancestor with heteromorphic sex chromosomes and possibly short-period interspersion. This would require the loss of heteromorphic sex chromosomes in the lineage leading to Toxorhynchitinae and Culicinae and ‘shedding’ of repetitive elements in the lineage leading to Anophelinae. Several interesting patterns have emerged from studies of C-banding and the distribution of heterochromatin in Culicidae and phylogenies derived from these studies are supported by the modern cladistic analyses.

Intensive multi-point linkage map studies suggest that recombination frequencies/genome have remained relatively constant over the course of culicid evolution such that Anophelinae with relatively small genome size has a linkage map of similar size to Aedini. As a consequence, taxa in Anophelinae have a higher amount of recombination per haploid genome size than Culicinae. Undoubtedly, family Culicidae represents one of the best studied systems of genome evolution in animals, and to ascertain the mechanics of sympatric v/s allopatric speciation in closely related group of species.

Extensive variation in vector competence to arboviral and other pathogens exists within and between species. Although the genetic basis of susceptibility or refractoriness of mosquito populations to certain parasites has been known for more than half a century, the underlying molecular mechanisms controlling such differential expression have been resolved relatively recently. Apparently, arboviral susceptibility in mosquitoes is under polygenic control. However, major genes for susceptibility of mosquito vectors to malaria have been identified and mapped.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Darwin C (1859) The Origin of Species by Means of Natural Selection. Murray, London

    Google Scholar 

  2. Kitzmiller JB (1953) Mosquito Genetics and Cytogenetics. Separata da Rev Bras de Malariol e D Trop 5:285–359

    CAS  Google Scholar 

  3. Rai KS, Pashley DP, Munstermann LE (1982) Genetics of speciation in aedine mosquitoes. In: Recent Advances in Genetics of Insect Disease Vectors. Steiner WMW, Tabachnick WJ, Rai KS, Narang SK (Eds.), Stipes, Champaign, IL

    Google Scholar 

  4. Rai KS (1999) Genetics of mosquitoes. J Genetics 78:163–169

    Article  Google Scholar 

  5. Rai KS, Black IV WC (1999) Mosquito Genomes: Structure, Organization and Evolution. Adv Genetics 41:1–33

    Article  CAS  Google Scholar 

  6. Knight KL, Stone AA (1977) Catalog of the Mosquitoes of the World (Diptera Culicidae), 2nd edition, College Park, MD. Entomol Soc Am

    Google Scholar 

  7. Knight KL (1978) Supplement to a Catalog of the Mosquitoes of the World. C llege Park, MD. Entomol Soc Am

    Google Scholar 

  8. Ward RA (1984) Second supplement to ‘A catalog of the mosquitoes of the world’ (Diptera: Culicidae). Mosq Syst 16:227–270

    Google Scholar 

  9. Ward RA (1992) Third supplement to A catalog of the mosquitoes of the world (Diptera: Culicidae). Mosq Syst 24:177–230

    Google Scholar 

  10. Service MW (1993) Mosquitoes (Culicidae). In: Medical Insects and Arachnids. Lane RP, Crosskey RW (Eds.), Chapman and Hall, New York

    Google Scholar 

  11. Edwards FW (1932) Genera Insectorum. Diptera, family Culicidae. Fasc. 194. Wytsman PAG (Ed.), Verteneuill, Brussels, Desmet

    Google Scholar 

  12. Wilson JT (1963) Continental Drift. Sci Am 208:86–100

    Article  Google Scholar 

  13. McClelland GAH (1967) Speciation and Evolution in Aedes. In: Genetics of Insect Vectors of Disease. Wright JW, Pal R (Eds.), Elsevier, New York1

    Google Scholar 

  14. Ross HH (1951) Conflict with Culex. Mosq News 11:128–132

    Google Scholar 

  15. Belkin JN (1968) Mosquito studies (Diptera: Culicidae). VII. The Culicidae of New Zealand. Contr. Am Ent Inst 3:1–182

    Google Scholar 

  16. Rohdendorf B (1974) The historical development of diptera. Alberta Press, Edmonton

    Google Scholar 

  17. Rick EF (1970) Fossil history. In: Insects of Australia. Melbourne Univ. Press, Victoria

    Google Scholar 

  18. Munstermann LE, Conn JE (1997) Systematics of mosquito disease vectors (Diptera: Culicidae): Impact of molecular biology and cladistic analysis. Ann Rev Entomol 42: 351–369

    Article  CAS  Google Scholar 

  19. Oosterbroek P, Courtney G (1995) Phylogeny of the nematocerous families of Diptera (Insecta). Zool J Linn Soc 115:267–231

    Google Scholar 

  20. Miller BR, Crabtree MB, Savage HM (1997) Phylogenetic relationships of the Culicomorpha inferred from the 18S and 5.8S ribosomal DNA sequences (Diptera: Nematocera). Ins Mol Biol 6:105–114

    Article  CAS  Google Scholar 

  21. Pawlowski, J, Szadziewski R, Kmieciak D, Fahmi J, Bitta G (1996) Phylogeny of the infraorder Culicomorpha (Diptera: Nematocera) based on 28S RNA gene sequences. Syst Ent 21:167–178

    Article  Google Scholar 

  22. Rai KS (1963) Comparative study of mosquito karyotypes. Ann Entomol Soc Am 56: 160–170

    Google Scholar 

  23. White GB (1980) Academic and applied aspects of mosquito cytogenetics. In: Insect Cytogenetics. Blackman RL, Hewitt GM, Ashburner M (Eds.), Blackwell Scientific Publications, London

    Google Scholar 

  24. Rao PN, Rai KS (1987a) Comparative karyotypes and chromosomal evolution in some genera of Nematocerous (Diptera: Nematocera) families. Ann Entomol Soc Am 80:321–332

    Google Scholar 

  25. Rao PN, Rai KS (1990) Genome evolution in the mosquitoes and other closely related members of superfamily Culicoidea. Hereditas 113:139–144

    Article  PubMed  CAS  Google Scholar 

  26. Matthews TC, Munstermann LE (1994) Chromosomal repatterning and linkage group conservation in mosquito karyotype evolution. Evolution 48:146–154

    Article  Google Scholar 

  27. Mori A, Severson DW, Christensen BM (1999) Comparative Linkage Maps for the Mosquitoes, Culex pipiens and Aedes aegypti, based on Common RFLP Loci. J Heredity 90:160–164

    Article  CAS  Google Scholar 

  28. Kreutzer RD (1978) A mosquito with eight chromosomes: Chagasia bathana Dyar. Mosq News 38:554–558

    Google Scholar 

  29. Baimai V, Rattanarithikul R, Kajchalao U (1993a) Metaphase Karyotypes of Anopheles of Thailand and Southeast Asia. I. The Hyrcanus Group. Am Mosq Control Assoc 9:59–67

    CAS  Google Scholar 

  30. Baimai V, Rattanarithikul R, Kajchalao U (1993b) Metaphase Karyotypes of Anopheles of Thailand and Southeast Asia. II. The Maculatus Group, Neocellia Series, subgenus Cellia. Mosq Syst 25:116–123

    Google Scholar 

  31. Baimai VR, Rattanarithikul R, Kajchalao U (1995) Metaphase Karyotypes of Anopheles of Thailand and Southeast Asia: IV. The Barbirostris and Umbrosus Species Groups, Subgenus Anopheles (Diptera: Culicidae). J Am Mosq Control Assoc 11:323–328

    Google Scholar 

  32. McDonald PT, Rai KS (1970) Correlation of linkage groups with chromosomes in the mosquito, Aedes aegypti. Genetics 66:475–485

    PubMed  CAS  Google Scholar 

  33. Gilcrist BM, Haldane JBS: Sex linkage and sex determination in a mosquito, Culex molestus. Hereditas 33:175

    Google Scholar 

  34. McClelland GAH (1947) Sex-linkage in Aedes aegypti. Trans Roy Soc Trop Med Hyg 56:4 (Abst.) (1962)

    Google Scholar 

  35. Baker RH, Sakai RK, Mian A (1971) Linkage group-chromosome correlation in a mosquito: translocations in Culex tritaeniorhynchus. J Hered 62:90–100

    PubMed  Google Scholar 

  36. Dennhöfer L (1972) Die Zuordnung der Koppelungsgruppen zu den Chromosomen bei der Stechmücke Culex pipiens L. Chromosoma 37:43–52

    Article  PubMed  Google Scholar 

  37. Rai KS (1980) Evolutionary cytogenetics of Aedine mosquitoes. Genetica 52/53: 281–290

    Google Scholar 

  38. Severson DW, Mori A, Kassner VA, Christensen BM (1995) Comparative linkage maps for the mosquitoes Aedes albopictus and Aedes aegypti based on common RFLP loci. Insect Mol Biol 4:41–45

    Article  PubMed  CAS  Google Scholar 

  39. White MJD (1973) In: Animal Cytology and Evolution. 3rd edition, Cambridge Univ. Press, UK

    Google Scholar 

  40. Mauldin I (1970) Preliminary Studies on Karyotypes of five species of Glossina. Parasitology 61:71–74

    Article  Google Scholar 

  41. Boyes JW (1967) The Cytology of Muscoid Flies. In: Genetics of Insect Vectors of Diseases. Wright J, Pal R (Eds.), Elsevier Publishing Co., New York

    Google Scholar 

  42. Rothfels KH (1979) Cytotaxonomy of Black Flies (Simuliidae). Ann Rev Entomol 24:507–539

    Article  Google Scholar 

  43. Charlesworth B (1978) A model for the evolution of Y chromosomes and dosage compensation. Proc Natl Acad Sci (USA) 75:5618

    Article  CAS  Google Scholar 

  44. Steinemann M, Steinemann S, Lottspeich F (1993) How Y chromosomes become genetically inert. Proc Natl Acad Sci (USA) 90:5737–5741

    Article  CAS  Google Scholar 

  45. Morell V (1994) Rise and Fall of the Y Chromosome. Science 263:171–172

    Article  PubMed  CAS  Google Scholar 

  46. Rice WR (1994) Degeneration of a Nonrecombining Chromosome. Science 263:230–232

    Article  PubMed  CAS  Google Scholar 

  47. Rice WR (1996) Evolution of the Y chromosome in animals. Bioscience 46:331–343

    Article  Google Scholar 

  48. Motara MA, Rai KS (1977) Chromosomal differentiation in two species of Aedes and their hybrids revealed by giemsa C-banding. Chromosoma 64:125–132

    Article  Google Scholar 

  49. Motara MA, Rai KS (1978) Giemsa C-banding patterns in Stegomyia mosquitoes. Chromosoma 70:51–58

    Article  Google Scholar 

  50. Motara MA (1982) Giemsa C-banding in four species of mosquitoes. Chromosoma 86:319–323

    Article  Google Scholar 

  51. Gatti M, Santini G, Pimpinelli S, Coluzzi M (1977) Fluorescence banding techniques in the identification of sibling species of the Anopheles gambiae complex. Heredity 38: 105–108

    Article  PubMed  CAS  Google Scholar 

  52. Baimai V (1988) Constitutive heterochromatin differentiation and evolutionary divergence of karyotype in Oriental Anopheles (Cellia). Pac Sci 42:13–27

    Google Scholar 

  53. Marchi A, Mezzanotte R (1990) Inter-and intraspecific heterochromatin variation detected by restriction endonuclease digestion in two sibling species of the Anopheles maculipennis complex. Heredity 65:135–142

    Article  PubMed  Google Scholar 

  54. Mezzanotte R, Marchi A, Ferrucci L (1979) Idenfication of sex chromosomes and characterization of the heterochromatin in Culiseta longiareolata (Macquart, 1838). Genetica 50:135–139

    Article  Google Scholar 

  55. Fraccaro M, Laudani U, Marchi A, Tiepolo L (1976) Karyotype, DNA replication and origin of sex chromosomes in Anopheles atroparvus. Chromosoma 55:27–36

    Article  PubMed  CAS  Google Scholar 

  56. Marchi A, Rai KS (1986) Cell cycle and DNA synthesis in Aedes aegypti. Canad J Gent Cyt 20:243–247

    Google Scholar 

  57. Green CA, Baimai V, Harrison BA, Andre RG (1985) Cytogenetic evidence for a complex of species within the taxon Anopheles maculatus (Diptera: Culicidae). Biol J Linn Soc 24:321–328

    Article  Google Scholar 

  58. Baimai V (1988) Constitutive heterochromatin differentiation and evolutionary divergence of karyotype in Oriental Anopheles (Cellia). Pac Sci 42:13–27

    Google Scholar 

  59. Redfern CPF (1981) Satellite DNA of Anopheles stephensi Liston (Diptera: Culicidae). Chromosomal Location and Under-Replication in Polytene Nuclei. Chromosoma 82: 561–581

    Article  PubMed  CAS  Google Scholar 

  60. MacLain DK, Rai KS, Fraser MJ (1987) Intraspecific and interspecific variation in the sequence and abundance of highly repeated DNA among mosquitoes of the Aedes albopictus subgroup. Heredity 58:373–381

    Article  Google Scholar 

  61. Kumar A, Rai KS (1991a) Organization of a cloned repetitive DNA fragment in mosquito genomes (Diptera: Culicidae). Genome 34:998–1106

    Article  PubMed  CAS  Google Scholar 

  62. Kumar A, Rai KS (1991b) Chromosomal localization and genomic organization of cloned repetitive DNA fragments in mosquitoes (Diptera: Culicidae). J Genet 70:189–202

    Article  Google Scholar 

  63. Kuma A, Rai KS (1992) Conservation of a highly repeated DNA family of Aedes albopictus among mosquito genomes (Diptera: Culicidae). Theor Appl Genet 83:557–564

    Google Scholar 

  64. Munstermann LE, Marchi A, Sabatini A, Coluzzi M (1985) Polytene chromosomes of orthopodomyia pulcripalpis (Diptera, Culicidae). Parassitologia 27:267–277

    PubMed  CAS  Google Scholar 

  65. Munstermann LE, Marchi A (1986) Cytogenetic and isozyme profile of Sabethes cyaneus. J Heredity 77:241–248

    CAS  Google Scholar 

  66. Jost E, Mameli M (1972) DNA content of nine species of Nematocera with special reference to the sibling species of the Anopheles maculipennis group and the Culex pipiens group. Chromosoma 37:201–208

    Article  PubMed  CAS  Google Scholar 

  67. Rao PN, Rai KS (1987b) Inter-and intraspecific variation in nuclear DNA content in Aedes mosquitoes. Heredity 59:253–258

    Article  PubMed  Google Scholar 

  68. Rao PN, Rai KS (1990) Genome evolution in the mosquitoes and other closely related members of superfamily Culicoidea. Hereditas 113:139–144

    Article  PubMed  CAS  Google Scholar 

  69. Black WC IV, Rai KS (1988) Genome evolution in mosquitoes; intraspecific and interspecific variation in repetitive DNA amounts and organization. Genet Res 51:185–196

    Article  PubMed  Google Scholar 

  70. Warren AM, Crampton JM (1991) The Aedes aegypti genome: Complexity and organization.Genet Res Camb 58:225–232

    Article  CAS  Google Scholar 

  71. Besansky NJ, Powell JR (1992) Reassociation kinetics of Anopheles gambiae (Diptera: Culicidae). DNA J Med Entomol 29:125–128

    CAS  Google Scholar 

  72. Davidson EH, Galua GA, Angerer RC, Britten RJ (1975) Comparative aspects of DNA organization in metazoa. Chromosoma 51:253–259

    Article  PubMed  CAS  Google Scholar 

  73. Wells R, Royer H, Hollenberger CP (1976) Non-Xenopus like DNA organization in the Chironomus tentans genome. Mol Gen Genetics 147:45–51

    Article  CAS  Google Scholar 

  74. Palmer MJ, Black WC IV (1997) The importance of DNA reassociation kinetics in insect molecular biology. In: The Molecular Biology of Insect Disease Vectors: A Methods Manual. Crampton J, Beard CB, Louis C (Eds.), Chapman and Hall Publishers, New York

    Google Scholar 

  75. Kumar A, Rai KS (1990) Intraspecific variation in nuclear DNA content among world populations of a mosquito, Aedes albopictus (Skuse). Theor Appl Genet 79:748–752

    Article  Google Scholar 

  76. MacLain DK, Rai KS, Fraser MJ (1987) Intraspecific and interspecific variation in the sequence and abundance of highly repeated DNA among mosquitoes of the Aedes albopictus subgroup. Heredity 58:373–381

    Article  Google Scholar 

  77. Palmer M (1996) Petitpierre E. Relationship of Genome Size to Body Size in Phylan semicostatus (Coleoptera: Tenebrionidae). Ann Entomol Soc Am 89:221–225

    Google Scholar 

  78. Walker LI, Spotorno AE, Sans J (1991) Genome size variation and its phenotypic consequences in Phyllotis rodents. Hereditas 115:99–107

    PubMed  CAS  Google Scholar 

  79. Cavalier-Smith T (1985) Introduction: The evolutionary significance of genome size. In: The Evolution of Genome Size. Cavalier-Smith T (Ed.), Wiley, New York

    Google Scholar 

  80. Ferrari J, Rai KS (1989) Phenotypic correlates of genome size variation in Aedes albopictus. Evolution 43:895–899

    Article  Google Scholar 

  81. Birago CA: Bucci ED, Frontali C, Zenobi P (1982) Mosquito infectivity is directly related to the proportion of repetitive DNA in Plasmodium berghei. Mol Biochem Parasit 6:1–12

    Article  CAS  Google Scholar 

  82. Severson DW, Mori A, Zhang Y, Christensen BM (1993) Linkage map for Aedes aegypti using restriction fragment polymorphism. J Hered 84:241–247

    PubMed  CAS  Google Scholar 

  83. Antolin MF, Bosio CF, Cotton J, Sweeney WP, Black IV WC (1996) Rapid and dense linkage mapping in a wasp (Bracon hebetor) and a mosquito (Aedes aegypti) with Single Strand Conformation Polymorphisms Analysis of Random Amplified Polymorphic DNA markers. Genetics 143:1727–1738

    PubMed  CAS  Google Scholar 

  84. Mutebi JP, Black IV WC, Bosio CF, Sweeney Jr WP, Craig Jr GB (1997) Linkage map for the Asian tiger Mosquito Aedes (Stegomyia) albopictus, based on SSCP analysis of RAPD markers. J Hered 88:489–494

    Article  PubMed  CAS  Google Scholar 

  85. Severson DW, Mori A, Kassner VA, Christensen BM (1995) Comparative linkage maps for the mosquitoes, Aedes albopictus and Aedes aegypti, based on common RFLP Loci. Insect Mol Biol 4:41–45

    Article  PubMed  CAS  Google Scholar 

  86. Dev V, Rai KS (1984) Genetics of speciation in the Aedes (Stegomyia) scutellaris group (Diptera: Culicidae). V. Chromosomal relationships among five species. Genetica 64:83–92

    Article  Google Scholar 

  87. Sherron DA, Rai KS (1984) Genetics of speciation in the Aedes (Stegomyia) scutellaris group (Diptera: Culicidae). 4. Chromosomal relationships of Aedes cooki with four sibling species. Can J Genetic Cytol 26:237–248

    CAS  Google Scholar 

  88. Munstermann LE, Craig GB Jr (1979) Genetics of Aedes aegypti. Updating the linkage map. J Hered 70:291–296

    Google Scholar 

  89. Ferdig MT, Taft AS, Severson DW, Christensen BM (1998) Development of a comparative genetic linkage map for Armigeres subalbatus using Aedes aegypti RFLP markers. Genome Research 8:41–47

    PubMed  CAS  Google Scholar 

  90. Zheng L, Benedict MQ, Cornel AJ, Collins FH, Kafatos FC (1996) An integrated genetic map of the African human malaria vector mosquito, Anopheles gambiae. Genetics 143: 941–952

    PubMed  CAS  Google Scholar 

  91. Dimopoulos GL, Zheng L, Kumar V, Torre A, Kafatos FC, Louis C (1996) Integrated genetic map of Anopheles gambiae: Use of RAPD polymorphisms for genetic, cytogenetic and STS landmarks. Genetics 143:953–960

    PubMed  CAS  Google Scholar 

  92. Charlesworth B, Langley CH, Stephan W (1986) The evolution of restricted recombination and the accumulation of repeated DNA sequences. Genetics 112:947–962

    PubMed  CAS  Google Scholar 

  93. Pashley DP, Rai KS (1983) Comparison of allozyme and morphological relationships in some Aedes (Stegomyia) mosquitoes (Diptera: Culicidae). Ann Entomol Soc Am 76:388–394

    Google Scholar 

  94. Dev V, Rai KS (1985) Genetic relationships among certain species of the Aedes (Stegomyia) sutellaris group (Diptera: Culicidae). Ann Trop Med Parasitol 79:325–331

    PubMed  CAS  Google Scholar 

  95. Pashley DP, Rai KS, Pashley DN (1985) Patterns of allozyme relationships compared with morphology, hybridization, and geologic history in allopatric island-dwelling mosquitoes. Evolution 39:985–997

    Article  Google Scholar 

  96. Mclain DK, Rai KS, Rao PN (1985) Ethological divergence in allopatry and asymmetrical isolation in the south pacific Aedes scutellaris subgroup. Evolution 39:998–1108

    Article  Google Scholar 

  97. Mclain DK, Rai KS (1986) Reinforcement for ethological isolation in the southeast asian Aedes albopictus subgroup (Diptera: Culicidae). Evolution 40:1346–1350

    Article  Google Scholar 

  98. Hardy JL, Houk EJ, Kramer LD, Reeves WC (1983) Intrinsic factors affecting vector competence of mosquitoes to arboviruses. Ann Rev Entomol 28:229–262

    Article  CAS  Google Scholar 

  99. Boromisa RD, Rai KS, Grimstad PR (1987) Variation in the vector competence of geographic strains of Aedes albopictus for dengue-1 virus. J Am Mosq Cont Assoc 3:378–386

    CAS  Google Scholar 

  100. Thomas RE, Wu WK, Verleye D, Rai KS (1993) Midgut basal lamina thickness an. dengue-1 virus dissemination rates in laboratory strains of Aedes triseriatus (Diptera Culicidae). J Med Entomol 30:326–331

    PubMed  CAS  Google Scholar 

  101. Grimstad PR, Walker ED (1991) Aedes triseriatus (Diptera: Culicidae) and La Cross virus. Nutritional deprivation of larvae affects the adult barriers to infection and transmission. J Med Entomol 28:378–386

    PubMed  CAS  Google Scholar 

  102. Hume JCC, Tunnicliff M, Ranford C, Day KP (2007) Susceptibility of Anopheles gambiae and Anopheles stephensi to tropical isolates of Plasmodium falciparum. Malaria J 6:139

    Article  Google Scholar 

  103. Beernsten BT, James AA, Christensen BM (2000) Genetics of mosquito vector competence. Microbiol Molecular Biol Rev 64:115–137

    Article  Google Scholar 

  104. Collins HH, Zheng L, Paskewitz SM, Kafatos (1997) Progress in the map based cloning of the Anopheles gambiae genes responsible for the encapsulation of malarial parasites. Ann Trop Med Parasit 91:517–522

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 The National Academy of Sciences, India

About this chapter

Cite this chapter

Singh Rai, K. (2010). Insights from mosquito evolution: Patterns, tempo and speciation. In: Sharma, V.P. (eds) Nature at Work: Ongoing Saga of Evolution. Springer, New Delhi. https://doi.org/10.1007/978-81-8489-992-4_13

Download citation

Publish with us

Policies and ethics