Skip to main content

Biology, Diversity and Ecology of Free-Living Heterotrophic Flagellates

  • Chapter
Marine Protists
  • 3064 Accesses

Abstract

The free-living heterotrophic flagellates are phylogenetically very diverse, and their phylogenetic diversity is nearly equal to that of all eukaryotes. They constitute the microbial loop together with bacteria and other protists, and play an indispensable and important role in aquatic ecosystems. However, their diversity has not been fully understood. In addition, recent environmental DNA studies suggest that there are many unidentified heterotrophic flagellate lineages in nature. This chapter describes the current knowledge on the diversity, biology and ecology of various groups of free-living heterotrophic flagellates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adl SM, Simpson AGB, Lane CE et al (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–514

    Article  PubMed Central  PubMed  Google Scholar 

  • Azam F, Fenchel T, Field JG et al (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Bass D, Cavalier-Smith T (2004) Phylum-specific environmental DNA analysis reveals remarkably high global biodiversity of Cercozoa (Protozoa). Int J Syst Evol Microbiol 54:2393–2404

    Article  CAS  PubMed  Google Scholar 

  • Bell EM, Laybourn-Parry J (2003) Mixotrophy in the antarctic phytoflagellate, Pyramimonas gelidicola (Chlorophyta: Prasinophyceae). J Phycol 39:644–649

    Article  Google Scholar 

  • Bernard C, Simpson AGB, Patterson DJ (1997) An ultrastructural study of a free-living retortamonad, Chilomastix cuspidate (Larsen & Patterson, 1990) n. comb. (Retortamonadida, Protista). Eur J Protistol 33:254–265

    Article  Google Scholar 

  • Bernard C, Simpson AGB, Patterson DJ (2000) Some free-living flagellates (Protista) from anoxic habitats. Ophelia 52:113–142

    Article  Google Scholar 

  • Breglia SA, Yubuki N, Hoppenrath M et al (2010) Ultrastructure and molecular phylogenetic position of a novel euglenozoan with extrusive episymbiotic bacteria: Bihospites bacati n. gen. et sp. (Symbiontida). BMC Microbiol 10:145

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brugerolle G (1991a) Flagellar and cytoskeletal systems in amitochondrial flagellates: archamoeba, metamonada and parabasala. Protoplasma 164:70–90

    Article  Google Scholar 

  • Brugerolle G (1991b) Cell organization in free-living amitochondriate heterotrophic flagellates. In: Patterson DJ, Larsen J (eds) The biology of free-living heterotrophic flagellates. Clarendon, Oxford, pp 133–148

    Google Scholar 

  • Brugerolle G (2002) Colpodella vorax: ultrastructure, predation, life-cycle mitosis, and phylogenetic relationships. Eur J Protistol 38:113–125

    Article  Google Scholar 

  • Brugerolle G, Müller M (2000) Amitochondriate flagellates. In: Leadbeater BSC, Green JC (eds) Flagellates: unity, diversity and evolution. Taylor & Francis, London, pp 166–189

    Google Scholar 

  • Brugerolle G, Regnault JP (2001) Ultrastructure of the enteromonad flagellate Caviomonas mobilis. Parasitol Res 87:662–665

    Article  CAS  PubMed  Google Scholar 

  • Brugerolle G, Bricheux G, Philippe H et al (2002) Collodictyon triciliatum and Diphylleia rotans (= Aulacomonas submarina) form a new family of flagellates (Collodictyonidae) with tubular mitochondrial cristae that is phylogenetically distant from other flagellate groups. Protist 153:59–70

    Article  PubMed  Google Scholar 

  • Carr M, Leadbeater BSC, Hassan R et al (2008) Molecular phylogeny of choanoflagellates, the sister group to metazoa. Proc Natl Acad Sci U S A 105:16641–16646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of protozoa. Int J Syst Evol Microbiol 52:297–354

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T, Chao EEY (2003) Phylogeny of Choanozoa, Apusozoa, and other protozoa and early eukaryote megaevolution. J Mol Evol 56:540–563

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T, Chao EE (2004) Protalveolate phylogeny and systematics and the origins of Sporozoa and dinoflagellates (phylum Myzozoa nom. nov.). Eur J Protistol 40:185–212

    Article  Google Scholar 

  • Cavalier-Smith T, Scoble JM (2013) Phylogeny of Heterokonta: Incisomonas marina, a uniciliate gliding opalozoan related to Solenicola (Nanomonadea), and evidence that Actinophryida evolved from raphidophytes. Eur J Protistol 49:328–353

    Article  PubMed  Google Scholar 

  • del Campo J, Massana R (2011) Emerging diversity within chrysophytes, choanoflagellates and bicosoecids based on molecular surveys. Protist 162:435–448

    Article  PubMed  Google Scholar 

  • del Campo J, Balagué V, Forn I et al (2013) Culturing bias in marine heterotrophic flagellates analyzed through seawater enrichment incubations. Microb Ecol 66:489–499

    Article  CAS  PubMed  Google Scholar 

  • Deschamps P, Lara E, Marande W et al (2011) Phylogenomic analysis of kinetoplastids supports that trypanosomatids arose from within bodonids. Mol Biol Evol 28:53–58

    Article  CAS  PubMed  Google Scholar 

  • Dolezal P, Smíd O, Rada P et al (2005) Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc Natl Acad Sci U S A 102:10924–10929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ekelund F (2002) A study of the soil flagellate Phalansterium solitarium Sandon 1924 with preliminary data on its ultrastructure. Protistology 2:152–158

    Google Scholar 

  • Frias-Lopez J, Thompson A, Waldbauer J et al (2009) Use of stable isotope-labelled cells to identify active grazers of picocyanobacteria in ocean surface waters. Environ Microbiol 11:512–525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaines G, Elbrächter M (1987) Heterotrophic nutrition. In: Taylor FJR (ed) The biology of dinoflagellates. Blackwell, Oxford, pp 224–268

    Google Scholar 

  • Gely C, Wright M (1986) The centriole cycle in the amoebae of the myxomycete Physarum polycephalum. Protoplasma 132:23–31

    Article  Google Scholar 

  • Gornik SG, Ford KL, Mulhern TD et al (2012) Loss of nucleosomal DNA condensation coincides with appearance of a novel nuclear protein in dinoflagellates. Curr Biol 22:2303–2312

    Article  CAS  PubMed  Google Scholar 

  • Gould SB, Tham WH, Cowman AF et al (2008) Alveolins, a new family of cortical proteins that define the protist infrakingdom Alveolata. Mol Biol Evol 25:1219–1230

    Article  CAS  PubMed  Google Scholar 

  • Gray MW, Lang BF, Burger G (2004) Mitochondria of protists. Annu Rev Genet 38:477–525

    Article  CAS  PubMed  Google Scholar 

  • Guillou L, Viprey M, Chambouvet A et al (2008) Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol 10:397–408

    Article  CAS  Google Scholar 

  • Hampl V, Simpson AGB (2008) Possible mitochondria-related organelles in poorly-studied “amitochondriate” eukaryotes. In: Tachezy J (ed) Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes. Springer, Berlin, pp 265–282

    Chapter  Google Scholar 

  • Hansen PJ, Calado AJ (1999) Phagotrophic mechanisms and prey selection in free-living dinoflagellates. J Eukaryot Microbiol 46:382–389

    Article  Google Scholar 

  • Harding T, Brown MW, Plotnikov A et al (2013) Amoeba stages in the deepest branching heteroloboseans, including Pharyngomonas: evolutionary and systematic implications. Protist 164:272–286

    Article  PubMed  Google Scholar 

  • Hibberd DJ (1983) Ultrastructure of the colonial colourless zooflagellates Phalansterium digitatum Stein (Phalansteriida ord. nov.) and Spongomonas uvella Stein (Spongomonadida ord. nov.). Protistologica 19:523–535

    Google Scholar 

  • Honda D, Shono T, Kimura K et al (2007) Homologs of the sexually induced gene 1 (sig1) product constitute the stramenopile mastigonemes. Protist 158:77–88

    Article  CAS  PubMed  Google Scholar 

  • Hrdá Š, Fousek J, Szabová J et al (2012) The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids. PLoS One 7:e33746

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Inouye I, Kawachi M (1994) The haptonema. In: Green JC, Leadbeater BSC (eds) The haptophyte algae. Clarendon, Oxford, pp 73–89

    Google Scholar 

  • Karpov SA, Mamkaeva MA, Aleoshin VV et al (2014) Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia. Front Microbiol 5:112

    Article  PubMed Central  PubMed  Google Scholar 

  • Katz LA, Grant J, Parfrey LW et al (2011) Subulatomonas tetraspora nov. gen. nov. sp. is a member of a previously unrecognized major clade of eukaryotes. Protist 162:762–773

    Article  PubMed  Google Scholar 

  • Kim E, Archibald JM (2013) Ultrastructure and molecular phylogeny of the cryptomonad Goniomonas avonlea sp. nov. Protist 164:160–182

    Article  CAS  PubMed  Google Scholar 

  • King N, Westbrook MJ, Young SL et al (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:783–788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Hodoki Y, Ohbayashi K et al (2013) Grazing impact on the cyanobacterium Microcystis aeruginosa by the heterotrophic flagellate Collodictyon triciliatum in an experimental pond. Limnology 14:43–49

    Article  Google Scholar 

  • Kugrens P, Lee RE (1990) Ultrastructural evidence for bacterial incorporation and myxotrophy in the photosynthetic cryptomonad Chroomonas pochmanni Huber-Pestalozzi (Chyptomonadida). J Eukaryot Microbiol 37:263–267

    Google Scholar 

  • Lahr DJ, Grant J, Nguyen T et al (2011) Comprehensive phylogenetic reconstruction of amoebozoa based on concatenated analyses of SSU-rDNA and actin genes. PLoS One 6:e22780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lang BF, Burger G, O’Kelly CJ et al (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387:493–497

    Article  CAS  PubMed  Google Scholar 

  • Lara E, Chatzinotas A, Simpson AGB (2006) Andalucia (n. gen.)—the deepest branch within jakobids (Jakobida; Excavata), based on morphological and molecular study of a new flagellate from soil. J Eukaryot Microbiol 53:112–120

    Article  CAS  PubMed  Google Scholar 

  • Lara E, Moreira D, Vereshchaka A, López-García P (2009) Pan-oceanic distribution of new highly diverse clades of deep-sea diplonemids. Environ Microbiol 11:47–55

    Article  CAS  PubMed  Google Scholar 

  • Leadbeater BSC (1991) Choanoflagellate organization with special reference to loricate taxa. In: Patterson DJ, Larsen J (eds) The biology of free-living heterotrophic flagellates. Clarendon, Oxford, pp 241–258

    Google Scholar 

  • Leadbeater BSC (2008) Choanoflagellate evolution: the morphological perspective. Protistology 5:256–267

    Google Scholar 

  • Leakey RJG, Leadbeater BSC, Mitchell E et al (2002) The abundance and biomass of choanoflagellates and other nanoflagellates in waters of contrasting temperature to the north-west of South Georgia in the Southern Ocean. Eur J Protistol 38:333–350

    Article  Google Scholar 

  • Leander BS, Esson HJ, Breglia SA (2007) Macroevolution of complex cytoskeletal systems in euglenids. Bioessays 29:987–1000

    Article  PubMed  Google Scholar 

  • Liu H, Probert I, Uitz J et al (2009) Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans. Proc Natl Acad Sci U S A 106:12803–12808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marchant HJ, Thomsen HA (1994) Haptophytes in polar waters. In: Green JC, Leadbeater BSC (eds) The haptophyte algae. Clarendon, Oxford, pp 209–228

    Google Scholar 

  • Massana R, Castresana J, Balagué V et al (2004) Phylogenetic and ecological analysis of novel marine stramenopiles. Appl Environ Microbiol 70:3528–3534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Massana R, Terrado R, Forn I et al (2006) Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environ Microbiol 8:1515–1522

    Article  CAS  PubMed  Google Scholar 

  • Massana R, del Campo J, Sieracki ME et al (2014) Exploring the uncultured microeukaryote majority in the oceans: reevaluation of ribogroups within stramenopiles. ISME J 8:854–866

    Article  PubMed Central  PubMed  Google Scholar 

  • Mikrjukov KA, Mylnikov AP (1998) The fine structure of a carnivorous multiflagellar protist Multicilia marina Cienkowski, 1881 (Flagellata incertae sedis). Eur J Protistol 34:391–401

    Article  Google Scholar 

  • Moestrup Ø, Andersen RA (1991) Organization of heterotrophic heterokonts. In: Patterson DJ, Larsen J (eds) The biology of free-living heterotrophic flagellates. Clarendon, Oxford, pp 333–360

    Google Scholar 

  • Moriya M, Nakayama T, Inouye I (2000) Ultrastructure and 18S rDNA sequence analysis of Wobblia lunata gen. et sp. nov., a new heterotrophic flagellate (stramenopiles, incertae sedis). Protist 151:41–55

    Article  CAS  PubMed  Google Scholar 

  • Moriya M, Nakayama T, Inouye I (2002) A new class of the stramenopiles, Placididea classis nova: description of Placidia cafeteriopsis gen. et sp. nov. Protist 153:143–156

    Article  CAS  PubMed  Google Scholar 

  • Mylnikov AP (1991) Diversity of flagellates without mitochondria. In: Patterson DJ, Larsen J (eds) The biology of free-living heterotrophic flagellates. Clarendon, Oxford, pp 149–158

    Google Scholar 

  • Mylnikov AP (2009) Ultrastructure and phylogeny of colpodellids (Colpodellida, Alveolata). Biol Bull 36:582–590

    Article  Google Scholar 

  • Nikolaev SI, Berney C, Petrov NB et al (2006) Phylogenetic position of Multicilia marina and the evolution of Amoebozoa. Int J Syst Evol Microbiol 56:1449–1458

    Article  CAS  PubMed  Google Scholar 

  • Not F, Valentin K, Romari K et al (2007) Picobiliphytes: a marine picoplanktonic algal group with unknown affinities to other eukaryotes. Science 315:253–255

    Article  CAS  PubMed  Google Scholar 

  • O’Kelly CJ (1993) The jakobid flagellates: structural features of Jakoba, Reclinomonas and Histiona and implications for the early diversification of eukaryotes. J Eukaryot Microbiol 40:627–636

    Article  Google Scholar 

  • O’Kelly CJ (1997) Ultrastructure of trophozoites, zoospores and cysts of Reclinomonas americana Flavin & Nerad, 1993 (Protista incertae sedis: Histionidae). Eur J Protistol 33:337–348

    Article  Google Scholar 

  • O’Kelly CJ, Nerad TA (1998) Kinetid architecture and bicosoecid affinities of the marine heterotrophic nanoflagellate Caecitellus parvulus (Griessmann, 1913) Patterson et al., 1993. Eur J Protistol 34:369–375

    Article  Google Scholar 

  • O’Kelly CJ, Nerad TA (1999) Malawimonas jakobiformis n. gen., n. sp. (Malawimonadidae n. fam.): a jakoba-like heterotrophic nanoflagellate with discoidal mitochondrial cristae. J Eukaryot Microbiol 46:522–531

    Article  Google Scholar 

  • O’Kelly CJ, Patterson DJ (1996) The flagellar apparatus of Cafeteria roenbergensis Fenchel & Patterson, 1988 (Bicosoecales = Bicosoecida). Eur J Protistol 32:216–226

    Article  Google Scholar 

  • Oborník M, Lukeš J (2013) Cell biology of chromerids: autotrophic relatives to apicomplexan parasites. Int Rev Cell Mol Biol 306:333–369

    Article  PubMed  CAS  Google Scholar 

  • Okamoto N, Inouye I (2006) Hatena arenicola gen. et sp. nov., a katablepharid undergoing probable plastid acquisition. Protist 157:401–419

    Article  PubMed  Google Scholar 

  • Okamoto N, Chantangsi C, Horák A et al (2009) Molecular phylogeny and description of the novel katablepharid Roombia truncata gen. et sp. nov., and establishment of the Hacrobia taxon nov. PLoS One 4:e7080

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Okamoto N, Horák A, Keeling PJ (2012) Description of two species of early branching dinoflagellates, Psammosa pacifica n. g, n. sp. and P. atlantica n. sp. PLoS One 7:e34900

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Omori M, Hamner WM (1982) Patchy distribution of zooplankton: behavior, population assessment and sampling problems. Mar Biol 72:193–200

    Article  Google Scholar 

  • Opperdoes FR (2010) The glycosome of trypanosomatids. In: de Souza W (ed) Structures and organelles in pathogenic protists. Springer, Berlin, pp 285–298

    Chapter  Google Scholar 

  • Paps J, Medina-Chacón LA, Marshall W et al (2013) Molecular phylogeny of unikonts: new insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts. Protist 164:2–12

    Article  PubMed Central  PubMed  Google Scholar 

  • Park JS, Simpson AGB (2010) Characterization of halotolerant Bicosoecida and Placididea (Stramenopila) that are distinct from marine forms, and the phylogenetic pattern of salinity preference in heterotrophic stramenopiles. Environ Microbiol 12:1173–1184

    Article  CAS  PubMed  Google Scholar 

  • Park JS, Simpson AGB (2011) Characterization of Pharyngomonas kirbyi (= “Macropharyngomonas halophila” nomen nudum), a very deep-branching, obligately halophilic heterolobosean flagellate. Protist 162:691–709

    Article  PubMed  Google Scholar 

  • Patterson DJ, Lee WJ (2000) Geographic distribution and diversity of free-living heterotrophic flagellates. In: Leadbeater BSC, Green JC (eds) The flagellates: unity, diversity and evolution. Taylor & Francis, London, pp 269–287

    Google Scholar 

  • Raghukumar S, Damare VS (2011) Increasing evidence for the important role of Labyrinthulomycetes in marine ecosystems. Bot Mar 54:3–11

    Article  Google Scholar 

  • Richards TA, Cavalier-Smith T (2005) Myosin domain evolution and the primary divergence of eukaryotes. Nature 436:1113–1118

    Article  CAS  PubMed  Google Scholar 

  • Roy J, Faktorova D, Lukes J et al (2007) Unusual mitochondrial genome structures throughout the Euglenozoa. Protist 158:385–396

    Article  CAS  PubMed  Google Scholar 

  • Sanders RW (1991) Trophic strategies among heterotrophic flagellates. In: Patterson DJ, Larsen J (eds) The biology of free-living heterotrophic flagellates. Clarendon, Oxford, pp 21–38

    Google Scholar 

  • Schneider RE, Brown MT, Shiflett AM et al (2011) The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol 41:1421–1434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schnepf E (1994) Light and electron microscopical observations in Rhynchopus coscinodiscivorus spec. nov., a colorless, phagotrophic euglenozoon with concealed flagella). Arch Protistenkd 144:63–74

    Article  Google Scholar 

  • Seenivasan R, Sausen N, Medlin LK et al (2013) Picomonas judraskeda gen. et sp. nov.: the first identified member of the Picozoa phylum nov., a widespread group of picoeukaryotes, formerly known as ‘Picobiliphytes’. PLoS One 8:e59565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shadwick LL, Spiegel FW, Shadwick JD et al (2009) Eumycetozoa = Amoebozoa?: SSUrDNA phylogeny of protosteloid slime molds and its significance for the amoebozoan supergroup. PLoS One 4:e6754

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shalchian-Tabrizi K, Kauserud H, Massana R et al (2007) Analysis of environmental 18S ribosomal RNA sequences reveals unknown diversity of the cosmopolitan phylum Telonemia. Protist 158:173–180

    Article  PubMed  CAS  Google Scholar 

  • Shalchian-Tabrizi K, Minge MA, Espelund M et al (2008) Multigene phylogeny of choanozoa and the origin of animals. PLoS One 3:e2098

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sherr EB, Sherr BF (2007) Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea. Mar Ecol Prog Ser 352:187–197

    Article  Google Scholar 

  • Sierra R, Matz MV, Aglyamova G et al (2013) Deep relationships of Rhizaria revealed by phylogenomics: a farewell to Haeckel’s Radiolaria. Mol Phylogenet Evol 67:53–59

    Article  PubMed  Google Scholar 

  • Simek K, Jezbera J, Hornák K et al (2004) Role of diatom-attached choanoflagellates of the genus Salpingoeca as pelagic bacterivores. Aquat Microb Ecol 36:257–269

    Article  Google Scholar 

  • Simpson AGB (2003) Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). Int J Syst Evol Microbiol 53:1759–1777

    Article  PubMed  Google Scholar 

  • Simpson AGB, Patterson DJ (2001) On core jakobids and excavate taxa: the ultrastructure of Jakoba incarcerata. J Eukaryot Microbiol 48:480–492

    Article  CAS  PubMed  Google Scholar 

  • Simpson AGB, Bernard C, Patterson DJ (2000) The ultrastructure of Trimastix marina Kent, 1880 (Eukaryota), an excavate flagellate. Eur J Protistol 36:229–252

    Article  Google Scholar 

  • Sleigh MA (2000) Trophic strategies. In: Leadbeater BSC, Green JC (eds) The flagellates: unity, diversity and evolution. Taylor & Francis, London, pp 147–165

    Google Scholar 

  • Spaulding SA, McKnight DM, Smith RL (1994) Phytoplankton population dynamics in perennially ice-covered Lake Fryxell, Antarctica. J Plankton Res 16:527–541

    Article  Google Scholar 

  • Spiegel FW (1991) A proposed phylogeny of the flagellated protostelids. Biosystems 25:113–120

    Article  CAS  PubMed  Google Scholar 

  • Stoecker D, Michaels AE, Davis LH (1987) Large proportion of marine planktonic ciliates found to contain functional chloroplasts. Nature 326:790–792

    Article  Google Scholar 

  • Sturm NR, Maslov DA, Grisard EC et al (2001) Diplonema spp. possess spliced leader RNA genes similar to the Kinetoplastida. J Eukaryot Microbiol 48:325–331

    Article  CAS  PubMed  Google Scholar 

  • Takishita K, Kolisko M, Komatsuzaki H et al (2012) Multigene phylogenies of diverse Carpediemonas-like organisms identify the closest relatives of ‘amitochondriate’ diplomonads and retortamonads. Protist 163:344–355

    Article  PubMed  Google Scholar 

  • Tikhonenkov DV, Janouškovec J, Mylnikov AP et al (2014) Description of Colponema vietnamica sp. n. and Acavomonas peruviana n. gen. n. sp., two new alveolate phyla (Colponemidia nom. nov. and Acavomonidia nom. nov.) and their contributions to reconstructing the ancestral state of alveolates and eukaryotes. PLoS One 9:e95467

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tirok K, Gaedke U (2007) Regulation of planktonic ciliate dynamics and functional composition during spring in Lake Constance. Aquat Microb Ecol 49:87–100

    Article  Google Scholar 

  • Tong SM (1995) Developayella elegans nov. gen., nov. spec., a new type of heterotrophic flagellate from marine plankton. Eur J Protistol 31:24–31

    Article  Google Scholar 

  • Torruella G, Derelle R, Paps J et al (2012) Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single-copy protein domains. Mol Biol Evol 29:531–544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Triemer RE, Ott DW (1990) Ultrastructure of Diplonema ambulator Larsen & Patterson (euglenozoa) and its relationship to Isonema. Eur J Protistol 25:316–320

    Article  CAS  PubMed  Google Scholar 

  • Uhlig G, Sahling G (1990) Long-term studies on Noctiluca scintillans in the German Bight population dynamics and red tide phenomena 1968–1988. Neth J Sea Res 25:101–112

    Article  Google Scholar 

  • Unrein F, Gasol JM, Not F et al (2014) Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. ISME J 8:164–176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Urabe J, Gurang TB, Yoshida T et al (2000) Diel changes in phagotrophy by Cryptomonas in lake Biwa. Limnol Oceanogr 45:1558–1563

    Article  Google Scholar 

  • Verhagen FJ, Zölffel M, Brugerolle G et al (1994) Adriamonas peritocrescens gen. nov., sp. nov., a new free-living soil flagellate (Protista, Pseudodendromonadidae incertae sedis). Eur J Protistol 30:295–308

    Article  Google Scholar 

  • von der Heyden S, Cavalier-Smith T (2005) Culturing and environmental DNA sequencing uncover hidden kinetoplastid biodiversity and a major marine clade within ancestrally freshwater Neobodo designis. Int J Syst Evol Microbiol 55:2605–2621

    Article  PubMed  CAS  Google Scholar 

  • von der Heyden S, Chao EE, Vickerman K et al (2004) Ribosomal RNA phylogeny of bodonid and diplonemid flagellates and the evolution of euglenozoa. J Eukaryot Microbiol 51:402–416

    Article  PubMed  Google Scholar 

  • Vørs N, Buck KR, Chavez FP et al (1995) Nanoplankton of the equatorial Pacific with emphasis on the heterotrophic protists. Deep Sea Res II 42:585–602

    Article  Google Scholar 

  • Walker G, Simpson AGB, Edgcomb V et al (2001) Ultrastructural identities of Mastigamoeba punctachora, Mastigamoeba simplex and Mastigella commutans and assessment of hypotheses of relatedness of the pelobionts (Protista). Eur J Protistol 37:25–49

    Article  Google Scholar 

  • Walker G, Silberman JD, Karpov SA et al (2003) An ultrastructural and molecular study of Hyperamoeba dachnaya, n. sp., and its relationship to the mycetozoan slime moulds. Eur J Protistol 39:319–336

    Article  Google Scholar 

  • Walker G, Dacks JB, Martin Embley T (2006) Ultrastructural description of Breviata anathema, n. gen., n. sp., the organism previously studied as “Mastigamoeba invertens”. J Eukaryot Microbiol 53:65–78

    Article  CAS  PubMed  Google Scholar 

  • Walker G, Dorrell RG, Schlacht A et al (2011) Eukaryotic systematics: a 2011 user’s guide for cell biologists and parasitologists. Parasitol 138:1–26

    Google Scholar 

  • Yabuki A, Nakayama T, Yubuki N et al (2011) Tsukubamonas globosa n. gen., n. sp., a novel excavate flagellate possibly holding a key for the early evolution in “Discoba”. J Eukaryot Microbiol 58:319–331

    Article  PubMed  Google Scholar 

  • Yabuki A, Eikrem W, Takishita K et al (2013) Fine structure of Telonema subtilis Griessmann, 1913: a flagellate with a unique cytoskeletal structure among eukaryotes. Protist 164:556–569

    Article  CAS  PubMed  Google Scholar 

  • Yabuki A, Kamikawa R, Ishikawa SA et al (2014) Palpitomonas bilix represents a basal cryptist lineage: insight into the character evolution in Cryptista. Sci Rep 4:4641

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yamagishi T, Motomura T, Nagasato C et al (2007) A tubular mastigoneme-related protein, OCM1, isolated from the flagellum of a chromophyte alga, Ochromonas danica. J Phycol 43:519–527

    Article  CAS  Google Scholar 

  • Yamagishi T, Kai A, Kawai H (2012) Trichocyst ribbons of a cryptomonads are constituted of homologs of R-body proteins produced by the intracellular parasitic bacterium of Paramecium. J Mol Evol 74:147–157

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi A, Yubuki N, Leander BS (2012) Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy to phototrophy: description of Rapaza viridis n. gen. et sp. (Euglenozoa, Euglenida). BMC Evol Biol 12:29

    Article  PubMed Central  PubMed  Google Scholar 

  • Yoon HS, Price DC, Stepanauskas R et al (2011) Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332:714–717

    Article  CAS  PubMed  Google Scholar 

  • Yubuki N, Leander BS (2008) Ultrastructure and molecular phylogeny of Stephanopogon minuta: an enigmatic microeukaryote from marine interstitial environments. Eur J Protistol 44:241–253

    Article  PubMed  Google Scholar 

  • Yubuki N, Leander BS (2013) Evolution of microtubule organizing centers across the tree of eukaryotes. Plant J 75:230–244

    Article  CAS  PubMed  Google Scholar 

  • Yubuki N, Edgcomb VP, Bernhard JM et al (2009) Ultrastructure and molecular phylogeny of Calkinsia aureus: cellular identity of a novel clade of deep-sea euglenozoans with epibiotic bacteria. BMC Microbiol 9:16

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yubuki N, Ceza V, Cepicka I et al (2010a) Cryptic diversity of free living parabasalids, Pseudotrichomonas keilini and Lacusteria cypriaca n. g, n. sp., as inferred from small subunit rDNA sequences. J Eukaryot Microbiol 57:554–561

    Article  CAS  PubMed  Google Scholar 

  • Yubuki N, Leander BS, Silberman JD (2010b) Ultrastructure and molecular phylogenetic position of a novel phagotrophic stramenopile from low oxygen environments: Rictus lutensis gen. et sp. nov. (Bicosoecida, incertae sedis). Protist 161:264–278

    Article  CAS  PubMed  Google Scholar 

  • Yubuki N, Simpson AGB, Leander BS (2013a) Comprehensive ultrastructure of Kipferlia bialata provides evidence for character evolution within the Fornicata (Excavata). Protist 164:423–439

    Article  CAS  PubMed  Google Scholar 

  • Yubuki N, Simpson AGB, Leander BS (2013b) Reconstruction of the feeding apparatus in Postgaardi mariagerensis provides evidence for character evolution within the Symbiontida (Euglenozoa). Eur J Protistol 49:32–39

    Article  PubMed  Google Scholar 

  • Zhao S, Burki F, Bråte J et al (2012) Collodictyon – an ancient lineage in the tree of eukaryotes. Mol Biol Evol 29:1557–1568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zubáčová Z, Novák L, Bublíková J et al (2013) The mitochondrion-like organelle of Trimastix pyriformis contains the complete glycine cleavage system. PLoS One 8:e55417

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Nakayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Nakayama, T. (2015). Biology, Diversity and Ecology of Free-Living Heterotrophic Flagellates. In: Ohtsuka, S., Suzaki, T., Horiguchi, T., Suzuki, N., Not, F. (eds) Marine Protists. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55130-0_4

Download citation

Publish with us

Policies and ethics