Skip to main content

Population Genetics: Genetic Analysis and Modelling of Natural Populations

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 59))

  • 463 Accesses

Abstract

Gaining some insight into evolutionary processes by studying changes in the genetic composition of populations or species is one of the main purposes of population genetics within evolutionary biology. If questions about plant or animal breeding arise the genetic structures will be analysed with respect to the economic capability of those lines, populations or varieties concerned. Nowadays, population genetics has received special attention because of its various interrelationships with other scientific areas, in particular ecology. For example, estimating gene or genotype frequencies in time and space will give some results on the adaptiveness of a population to ecological constraints and its capability of surviving in a specific environment. Such analyses establish links between genetics and ecology, both significant subjects of evolutionary research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almgard G, Norman T (1970) Biochemical techniques as an aid in distinguishing some cultivars of barley and oats. Agric Hort Genet 28: 117–123

    CAS  Google Scholar 

  • Auger P (1995) Automates cellulaires et dynamique spatiale. Modélisation de la dynamique forestière. Rev Ecol (Terre Vie) 50: 261–272

    Google Scholar 

  • Balzter H, Braun P, Köhler W (1995) Detection of spatial discontinuities in vegetation data by a moving window algorithm. In: Gaul W, Pfeifer D (eds) From data to knowledge: theoretical and practical aspects of classification, data analysis and knowledge organization. Springer, Berlin Heidelberg New York, pp 243–252

    Google Scholar 

  • Balzter H, Braun P, Kôhler W (1996) Modelling population dynamics with cellular automata. In: Mowrer T, Czaplewski RL, Hamre RH (eds) Spatial accuracy assessment in natural resources and environmental sciences. 2nd Symp, 21–23 May 1996, General Technical Report RM-GTR-277. Rocky Mountain Forest and Range Experiment Station, Fort Collins, Colorado, pp 703–712

    Google Scholar 

  • Barrett JA (1980) Pathogen evolution in multilines and variety mixtures. Z Pflanzenkrankh Pflanzenschutz 87: 383–396

    Google Scholar 

  • Barrett JA (1987) The dynamics of genes in populations. In: Wolfe MS, Caten CE (eds) Populations of plant pathogens, their dynamics and genetics. Blackwell, Oxford, pp 39–53

    Google Scholar 

  • Bascompte J, Solé RV (1995) Rethinking complexity: modelling spatio-temporal dynamics in ecology. TREE 10: 361–366

    PubMed  CAS  Google Scholar 

  • Bassiri A, Rouhani I (1977) Identification of broad-bean cultivars based on isoenzyme patterns. Euphytica 26: 279–286

    Article  CAS  Google Scholar 

  • Batzli GO, Pitelka FA (1970) Influence of meadow mouse populations on California grassland. Ecology 51: 1027–1039

    Article  Google Scholar 

  • Becker J, Vos P, Kuiper M, Salamini F, Heun M (1995) Combined mapping of AFLP and RFLP markers in barley. Mol Gen Genet 249: 65–73

    Article  PubMed  CAS  Google Scholar 

  • Blogg D, Imrie BC (1982) Starch-gel electrophoresis for soybean cultivar identification. Seed Sci Technol 10: 19–24

    CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32: 314–331

    PubMed  CAS  Google Scholar 

  • Bowditch BM, Albright DG, Williams JGK, Braun J (1993) Use of randomly amplified polymorphic DNA markers in comparative genome studies. Methods Enzymol 224: 294–309

    Article  PubMed  CAS  Google Scholar 

  • Brandie U (1994) Studies on the genetic structure of local populations of Erysiphe graminis f. sp. hordei Marchal Diss ETH Zürich, Nr 10849

    Google Scholar 

  • Breese EL (1989) Regeneration and multiplication of germplasm resources in seed genebanks: the scientific background. IBPGR, Rome

    Google Scholar 

  • Brent KJ, Carter GA, Hollomon DW, Hunter T, Locke T, Proven M (1989) Factors affecting build-up of fungicide resistance in powdery mildew in spring barley. Neth J Plant Pathol 95: 31–41

    Article  CAS  Google Scholar 

  • Bronson CR, Ellingboe AH (1986) The influence of four unnecessary genes for virulence on the fitness of Erysiphe graminis f. sp. tritici. Phytopathology 76: 154–158

    Article  Google Scholar 

  • Brown JKM (1996) Fungicide resistance in barley powdery mildew: from genetics to crop protection. Cereal Rust Powdery Mildews Bull 24 (Suppl): 259–267

    Google Scholar 

  • Brown JKM, Wolfe MS (1990) Structure and evolution of a population of Erysiphe graminis f. sp. hordei. Plant Pathol 39: 376–390

    Article  Google Scholar 

  • Brown JKM, O’Dell M, Simpson CG, Wolfe MS (1990) The use of DNA polymorphisms to test hypotheses about a population of Erysiphe graminis f. sp. hordei. Plant Pathol 97: 391–401

    Article  Google Scholar 

  • Brown JKM, Jessop AC, Thomas S, Rezanoor HN (1992) Genetic control of the response of Erysiphe graminis f. sp. hordei to ethirimol and triadimenol. Plant Pathol 41: 126–135

    Article  CAS  Google Scholar 

  • Burdon JJ (1993) The structure of pathogen populations in natural plant communities. Annu Rev Phytopathol 31: 305–323

    Article  Google Scholar 

  • Burr B, Evola SV, Burr FA, Beckmann JS (1983) The application of restriction fragment length polymorphism to plant breeding. In: Setlow JK, Hollander A (eds) Genetic engineering principles and methods, vol 5. Plenum Press, New York, pp 45–59

    Google Scholar 

  • Campbell CL, Madden LV(1990) Introduction to plant disease epidemiology. Wiley, New York

    Google Scholar 

  • Chin HF, Pritchard HW (1988) Recalcitrant seeds, a status report, IBPGR, Rome

    Google Scholar 

  • Christ BJ, Person CO, Pope DD (1987) The genetic determination of variation in pathogenicity. In: Wolfe MS, Caten CE (eds) Population of plant pathogens, their dynamics and genetics. Blackwell, Oxford, pp 7–19

    Google Scholar 

  • Colasanti RL, Grime JP (1993) Resource dynamics and vegetation processes: a deterministic model using two-dimensional cellular automata. Funct Ecol 7: 169–176

    Article  Google Scholar 

  • Crawley MJ, May RM (1987) Population dynamics and plant community structure: competition between annuals and perennials. J Theor Biol 125: 475–489

    Article  Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Burgess, Minneapolis

    Google Scholar 

  • Czárán T, Bartha S (1992) Spatio-temporal dynamic models of plant populations and communities. TREE 7: 38–42

    PubMed  Google Scholar 

  • Daubenmire R (1968) Plant communities. Harper and Row, New York

    Google Scholar 

  • Day PR (1978) The genetic base of epidemics. In: Horsfall JG, Cowling JB (eds) Plant Disease, vol 2. Academic Press, New York, pp 263–283

    Google Scholar 

  • Devos KM, Gale MD (1992) The use of random amplified polymorphic DNA markers in wheat. Theor Appl Genet 84: 567–572

    Article  Google Scholar 

  • Dunning JB, Stewart DJ, Danielson BJ, Noon BR, Root TL, Lamberson RH, Stevens EE (1995) Spatially explicit population models: current forms and future uses. Ecol Appl 5: 3–11

    Article  Google Scholar 

  • Dytham C (1995) The effect of habitat destruction pattern on species persistence: a cellular model. Oikos 74: 340–344

    Article  Google Scholar 

  • Ellis RH, Hong TD, Roberts EH (1985) Handbook of seed technology for genbanks. IBPGR, Rome

    Google Scholar 

  • Ellison AM, Bedford BL (1995) Response of a vascular plant community to disturbance: a simulation study. Ecol Appl 5: 109–123

    Article  Google Scholar 

  • Engels JMM (1993) How can biotechnology be exploited in the conservation and use of biological diversity? In: GTZ Worksh on Plant biotechnology in technical cooperation programmes, 6–11 Oct 1993, Legaspi, Philippines

    Google Scholar 

  • Epperson BK (1995) Spatial structure of two-locus genotypes under isolation by distance. Genetics 140: 365–375

    PubMed  CAS  Google Scholar 

  • Falk DA, Holsinger KE (1991) Genetics and conservation of rare plants. Oxford University Press, New York

    Google Scholar 

  • FAO (1996) Report of the International Technical Conference of Plant Genetic Resources. Leipzig, Germany, 17–23 June, FAO, Rome

    Google Scholar 

  • Flor HH (1956) The complementary genetic systems in flax and flax rust. Adv Genet 8: 29–54

    Article  Google Scholar 

  • Giese H, Christiansen SK, Jensen HP (1990) Extrachromosomal plasmid-like DNA in the obligate parasitic fungus Erysiphe graminis f. sp. Hordei.Theor Appl Genet 79: 56–64

    CAS  Google Scholar 

  • Gilpin ME (1990) Extinction of finite metapopulations in correlated environments. In: Shorrocks B, Swingland IR (eds) Living in a patchy environment. Oxford University Press, New York, pp 177–186

    Google Scholar 

  • Goodman MM, Stuber CW (1980) Genetic identification of lines and crosses using isoenzyme electrophoresis. Ann Corn Sorghum Ind Res Conf Proc 35: 10–31

    Google Scholar 

  • Green DG (1989) Simulated effects of fire, dispersal and spatial pattern on competition within forest mosaics. Vegetation 82: 139–153

    Article  Google Scholar 

  • Guarino L, Ramanatha Rao V, Reid R (1995) Collecting plant genetic diversity — technical guidelines. CAB International, Wellingford

    Google Scholar 

  • Guttorp P (1995) Stochastic modelling of scientific data. Chapman and Hall, London

    Google Scholar 

  • Hadrys H, Balick M, Schierwater B (1992) Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol Ecol 1: 55–63

    Article  PubMed  CAS  Google Scholar 

  • Haefner JW, Poole GC, Dunn PV, Decker RT (1991) Edge effects in computer models of spatial competition. Ecol Model 56: 221–244

    Article  Google Scholar 

  • Hamrick JL (1989) Isozymes and analysis of genetic structure of plant populations. In: Soltis D, Soltis P (eds) Isozymes in plant biology. Dioscorides, Washington DC, pp 87–105

    Chapter  Google Scholar 

  • Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding, and genetic resources. Sinauer, Sunderland, pp 43–63

    Google Scholar 

  • Hassell MP, Comins HN, May RM (1991) Spatial structure and chaos in insect population dynamics. Nature 353: 255–258

    Article  Google Scholar 

  • Hau B (1987) Modelling epidemics of polycyclic foliar disease and development of simulators. In: Kranz J, Rotem J (eds) Experimental techniques in plant disease epidemiology. Springer, Berlin Heidelberg New York, pp 267–277

    Google Scholar 

  • Hau B, Pons J (1996) Selection of populations of barley powdery mildew influenced by fungicide strategies. In: Lyr H, Russell PE, Sisler HD (eds) Modern fungicides and antifungal compounds. Intercept, Andover, pp 357–364

    Google Scholar 

  • Hedrick P (1992) Shooting the RAPDs. Nature 355: 679–680

    Article  Google Scholar 

  • Hermansen JE (1980) A spontaneous mutation in Erysiphe graminis f. sp. hordei for virulence to host gene Ml-g. Phytopathol Z 98: 171–177

    Article  Google Scholar 

  • Hilu KW (1994) Evidence from RAPD markers in the evolution of Echinochloa millets (Poaceae). Plant Syst Evol 189: 247–257

    Article  CAS  Google Scholar 

  • Hodgkin T, Debouck DG (1992) Some possible applications of molecular genetics in the conservation of wild species for crop improvement. In: Adams RP, Adams JE (eds) Conservation of plant genes. DNA Banking and in vitro biotechnology. Academic Press, San Diego, pp 153–181

    Google Scholar 

  • Hollomon DW (1981) Genetic control of ethirimol resistance in a natural population of Erysiphe graminis f. sp. Hordei. Phytopathology 71: 536–540

    Article  CAS  Google Scholar 

  • Hollomon DW, Butters J, Clark J (1984) Genetic control of triadimenol resistance in barley powdery mildew. Proc Br Crop Prot Conf Pests Dis, pp 477–482

    Google Scholar 

  • Honecker L (1934) Über die Modifizierbarkeit des Befalles und das Auftreten verschiedener physiologischer Formen beim Mehltau der Gerste (Erysiphe graminis hordei Marchal). Z Pflanzenzücht 19: 577–602

    Google Scholar 

  • Hovmøller MS, Munk L, Østergård H (1995) Observed and predicted changes in virulence gene frequencies at 11 loci in a barley powdery mildew population. Phytopathology 83: 253–260

    Article  Google Scholar 

  • Hovmøller MS, Østergård H, Münk L (1997) Modelling virulence dynamics of airborne pathogens in relation to selection by host resistance in agricultural crops. In: Crute IR, Holub EB, Burdon JJ (eds) The gene-for-gene relationship in plant-parasite inter-actions. CAB International, Wallingford (in press)

    Google Scholar 

  • Huang R, Kranz J, Welz HG (1994) Selection of pathotypes of Erysiphe graminis f. sp. hordei in pure and mixed stands of spring barley. Plant Pathol 43: 58–470

    Article  Google Scholar 

  • Huff DR, Peakall R, Smouse PE (1993) RAPD variation within and among natural populations of outcrossing buffalograss (Buchlòe dactyloides). Theor Appl Genet 86: 927–934

    Article  CAS  Google Scholar 

  • IBPGR (1993) The use of RAPD to detect off-types of banana and plantain generated in vitro. Project proposal, IBPGR, Rome

    Google Scholar 

  • Jeffreys AJ (1987) Highly variable minisatellites and DNA fingerprints. Biochem Soc Trans 15: 309–317

    PubMed  CAS  Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable “minisatellite” regions in human DNA. Nature 314: 67–73

    Article  PubMed  CAS  Google Scholar 

  • Jeger MJ (1986) The potential of analytic compared with simulation approach in plant disease epidemiology. In: Leonard KJ, Fry WE (eds) Plant disease epidemiology, population dynamics and management, vol 1. Macmillan, New York, pp 255–281

    Google Scholar 

  • Jøgensen JH (eds) (1991) Integrated control of cereal mildew: virulence patterns and their change. Risø National Laboratory, Roskilde, Denmark

    Google Scholar 

  • Kareiva P, Wennergren U (1995) Connecting landscape patterns to ecosystem and population processes. Nature 373: 299–302

    Article  CAS  Google Scholar 

  • Koch G (1993) Genetische Struktur und Diversität europäischer Populationen von Erysiphe graminis f. sp. hordei: Isozym- und DNA-Markeranalyse, Shaker, Aachen

    Google Scholar 

  • Koch G, Köhler W (1990) Isozyme variation and genetic distances of Erysiphe graminis DC. Formae speciales. J Phytophathol 129: 9–101

    Article  Google Scholar 

  • Kranz J (1990) Epidemics, their mathematical analysis and modelling. An introduction. In: Kranz J (ed) Epidemics of plant disease. Springer, Berlin Heidelberg New York, pp 1–11

    Google Scholar 

  • Kranz J (1996) Epidemiologie der Pflanzenkrankheiten, Ulmer, Stuttgart

    Google Scholar 

  • Kranz J, Hau B (1980) Systems analysis in epidemiology. Annu Rev Phytopathol 18: 67–83

    Article  Google Scholar 

  • Kummer G, Jeltsch F, Brandl R, Grimm V (1994) Kopplung von Prozessen auf lokaler und regionaler Skala bei der Tollwutausbreitung: Ergebnisse eines neuen Modellansatzes. Verh Ges Ökol 23: 355–364

    Google Scholar 

  • Kusserow H, Langsdorf A, Salifou I (1997) Patterns of genetic diversity in wild forage species and in situ conservation in the Sahel region. IPGRI Newslett, IPGRI, Rome (in press)

    Google Scholar 

  • Lamboy WF (1994) Generation of DNA based markers in specific genome regions by two RAPD reactions. PCR Methods Appl 4: 31–43

    PubMed  CAS  Google Scholar 

  • Le Houréou HN (1989) The grazing ecoland systems of the African Sahel. Ecological studies 75. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Le Houréou HN (1991) Forage species diversity in Africa: an overview of the genetic resources. In: Attere F, Zedan H, Ng NQ, Perrino P (eds) Crop genetic resources of Africa, vol 1. Ebenezer Baylis, The Trinity Press, UK, pp 99–117

    Google Scholar 

  • Leonard KJ (1969) Selection in heterogenous populations of Puccinia graminis f. sp. avenae. Phytopathology 59: 1851–1857

    Google Scholar 

  • Leonard KJ (1987) The host population as a selective factor. In: Wolfe MS, Caten E (eds) Population of plant pathogens, their dynamics and genetics. Blackwell, Oxford, pp 163–179

    Google Scholar 

  • Li SZ (1995) Markov random field modeling in computer vision. Springer, Tokyo

    Google Scholar 

  • Lippe E, De Smidt JT, Glenn-Lewin DC (1985) Markov models and successions: a test from a heathland in the Netherlands. J Ecol 73: 775–791

    Article  Google Scholar 

  • Loh DK, Hsieh Y-TC(1995) Incorporating rule-based reasoning in the spatial modeling of succession in a savanna landscape. AI Appl 9: 29–40

    Google Scholar 

  • Lotka HJ (1925) Elements of physical biology. Williams and Wilkins, Baltimore

    Google Scholar 

  • Mackill DJ, Zhang Z, Redona ED, Colowit PM (1996) Level of polymorphism and genetic mapping of AFLP markers in rice. Genome 39: 969–977

    Article  PubMed  CAS  Google Scholar 

  • Madden LV (1980) Quantification of disease progression. Prot Ecol 2: 159–176

    Google Scholar 

  • Majer D, Mithen R; Lewis BG, Vos P, Oliver RP (1996) The use of AFLP fingerprinting for the detection of genetic variation in fungi. Mycol Res 9: 1107–1110

    Article  Google Scholar 

  • Marshall DR (1977) The advantages and hazards of genetic homogeneity. Ann NY Acad Sci 287: 1–20

    Article  Google Scholar 

  • Marsula R, Ratz A (1994) Einfluß von Feuer auf die Populationsdynamik von serotinen Pflanzen - ein Modell. Verh Ges Ökol 23: 365–372

    Google Scholar 

  • Maughan PJ, Maroof MAS, Buss GR, Huestis GM (1996) Molecular marker analysis of seed weight: genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theor Appl Genet 93: 392–401

    Article  CAS  Google Scholar 

  • McClelland M, Welsh J (1994) DNA fingerprinting by arbitrarily primed PCR. PCR Methods Appl 4: 59–65

    Google Scholar 

  • McCusker A, Toll J (1991) Ecogeographical survey of African species. In: Attere F, Zedan H, Ng NQ, Perrino P (eds) Crop genetic resource of Africa, vol 1. Ebenezer Baylis, The Trinity Press, UK, pp 121–132

    Google Scholar 

  • McDermott JM, Brändle U, Dutly F, Haemmerli UA, Keller S, Müller KE, Wolfe MS (1994) Genetic variation in powdery mildew of barley: development of RAPD, SCAR, and VNTR markers. Phytopathology 84: 1316–1321

    Article  CAS  Google Scholar 

  • McDonald BA, McDermott JM (1993) Population genetics of plant pathogenic fungi. Bioscience 43: 311–319

    Article  Google Scholar 

  • M’Ribuh KH, Hilu KW (1994) Detection of interspecific and intraspecific variation in Panicum millets through random amplified polymorphic DNA. Theor Appl Genet 88: 412–416

    Google Scholar 

  • Mösges G, Friedt W (1994) Genetic “fingerprinting” of sunflower lines and F1 hybrids using isozymes, simple and repetitive sequences as hybridization probes, and random primers for PCR. Plant Breed 113: 114–124

    Article  Google Scholar 

  • Nakamura Y (1987) Variable numbers of tandem repeat (VNTR) markers for human gene mapping. Science 235: 1616–1622

    Article  PubMed  CAS  Google Scholar 

  • Ndambuki BM (1991) In situ conservation and monitoring of rangeland genetic resources. In: Attere F, Zedan H, Ng NQ, Perrino P (eds) Crop genetic resources of Africa, vol 1. Ebenezer Baylis, The Trinity Press, UK, pp 177–184

    Google Scholar 

  • Nover I (1957) Sechsjährige Beobachtung über die physiologische Spezialisierung des echten Mehltaus (Erysiphe graminis DC.) von Weizen und Gerste in Deutschland. Phytopathol Z 31: 85–107

    Article  Google Scholar 

  • Nybom H, Hall HK (1991) Minisatellite DNA “fingerprints” can distinguish Rubus cultivars and estimate their degree of relatedness. Euphytica 53: 107–114

    Article  CAS  Google Scholar 

  • Nybom H, Schaal BA (1990) DNA “fingerprints” reveal genotypic distributions in natural populations of blackberries and raspberries (Rubus, Rosaceae). Am J Bot 77: 883–888

    Article  CAS  Google Scholar 

  • Nybom H, Schaal BA, Rogstad SH (1989) DNA “fingerprints” can distinguish cultivars of blackberries and raspberries. Acta Hortic 262: 305–310

    Google Scholar 

  • Østergård H (1983) Predicting development of epidemics on cultivar mixtures. Phytopathology 73: 166–172

    Article  Google Scholar 

  • Østergård H (1987) Estimating relative fitness in asexually reproducing plant pathogen populations. Theor Appl Genet 74: 87–94

    Article  Google Scholar 

  • Østergård H, Hovmoller MS (1991) Gametic disequilibria between virulence genes in barley powdery mildew populations in relation to selection and recombination. I. Models. Plant Pathol 40: 166–177

    Article  Google Scholar 

  • Packard NH, Wolfram S (1985) Two-dimensional cellular automata. J Statist Phys 38: 901–946

    Article  Google Scholar 

  • Perry JN, Gonzalez-Andujar JL (1993) Dispersal in a metapopulation neighbourhood model of an annual plant with a seedbank. J Ecol 83: 453–463

    Google Scholar 

  • Phipps MJ (1992) From local to global: the lesson of cellular automata. In: DeAngelis DL, Gross LJ (eds) Individual-based models and approaches in ecology: populations, communities and ecosystems. Chapman and Hall, New York, pp 165–187

    Google Scholar 

  • Plotnick RE, Gardner RH (1993) Lattices and landscapes. In: Gardner H (ed) Predicting spatial effects in ecological systems. Lect Math Life Sci 23: 129–157

    Google Scholar 

  • Pons J, Hau B (1991) Buildup of triadimenol resistant subpopulations of barley powdery mildew in generation experiments. In: Jørgensen JH (ed) Integrated control of cereal mildews: virulence patterns and their change. Risø National Laboratory, Roskilde, Denmark, pp 135–143

    Google Scholar 

  • Pons J, Hau B (1992) Variation in fungicide sensitivity in populations of Erysiphe graminis f. sp. hordei. Vortr Pflanzenzücht 24: 332–334

    Google Scholar 

  • Pons J, Hau B, Köhler W (1996) Dynamics of fungicide resistance and virulence of powdery mildew populations. Cereal Rust Powdery Mildews Bull 24 (Suppl): 275–278

    Google Scholar 

  • Pulliam HR, Dunning JB, Liu J (1992) Population dynamics in complex landscapes: a case study. Ecol Appl 2: 165–177

    Article  Google Scholar 

  • Ramanatha Rao V (1991) Problems and methodologies for management and retention of genetic diversity in germplasm collections. In: Becker B (ed) ATSAF/IBPGR Worksh on Conservation of plant genetic resources, ATSAF/IBPGR, Bonn, pp 61–68

    Google Scholar 

  • Ratz A (1994) Modellierung feuererzeugter räumlicher Strukturen in borealen Wäldern. Verh Ges Ökol 23: 373–381

    Google Scholar 

  • Renshaw E (1991) Modelling biological populations in space and time. Cambridge University Press, Cambridge

    Google Scholar 

  • Ricklefs RE (1979) Ecology, 2nd edn. Chiron Press, New York

    Google Scholar 

  • Riedy MF, Hamilton WJ, Aquadro CF (1992) Excess of non-parental bands in offspring from known primate pedigrees assayed RAPD PCR. Nucleic Acids Res 20: 918

    Article  PubMed  CAS  Google Scholar 

  • Rimmington GM, Charles-Edwards DA (1987) Mathematical descriptions of plant growth and development. In: Wisiol K, Hesketh JD (eds) Plant growth modeling for resource management, vol 1. Current models and methods. CRC Press, Boca Raton, pp 3–15

    Google Scholar 

  • Ruxton GD (1996) Effects of the spatial and temporal ordering of events on the behavior of a simple cellular automaton. Ecol Model 84: 311–314

    Article  Google Scholar 

  • Schaal BA, Leverich JW, Rogstad SH (1991) A comparison of methods for assessing genetic variation in plant conservation biology. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 123–134

    Google Scholar 

  • Schondelmaier JR, Steinrücken G, Jung C (1996) Integration of AFLP markers into a linkage map of sugar beet (Beta vulgaris L.). Plant Breed 115: 231–237

    Article  CAS  Google Scholar 

  • Shaw MW (1994) Modelling stochastic processes in plant pathology. Annu Rev Phytopathol 32: 523–544

    Article  PubMed  CAS  Google Scholar 

  • Sherwood JE, Slutsky CR, Somerville SC (1991) Induced morphological and virulence variants of the obligate barley pathogen Erysiphe graminis f. sp. hordei. Phytopathology 81: 1350–1357

    Article  Google Scholar 

  • Silvertown J, Holtier S, Johnson J, Dale P (1992) Cellular automaton models of interspecific competition for space - the effect of pattern on process. J Ecol 80: 527–534

    Article  Google Scholar 

  • Smith JJ, Scott-Craig JS, Leadbetter JR, Bush GL, Roberts DL, Fulbright DW (1994) Characterization of random amplified polymorphic DNA (RAPD) products from Xanthomonas campestris and some comments on the use of RAPD products in phylogenetic analysis. Mol Phylogenet Evol 3: 135–145

    Article  PubMed  CAS  Google Scholar 

  • Sobral BWS, Honeycutt RJ (1994) The polymerase chain reaction. In: Mullis KB, Ferre F, Gibbs RA (eds) The polymerase chain reaction. Birkhäuser, Boston, pp 304–319

    Chapter  Google Scholar 

  • Spedding CRW, Diekmahns EC (1972) Grasses and legumes in British agriculture. Alden Press, Oxford

    Google Scholar 

  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Bio Technology 7: 257–264

    CAS  Google Scholar 

  • Tao Y, Manners JM, Ludlow MM, Henzel RG (1993) DNA polymorphism in grain sorghum (Sorghum bicolor L.). Moench. Theor Appl Genet 86: 679–688

    Article  CAS  Google Scholar 

  • Thornley JHM, Johnson IR (1990) Plant and crop modelling. Clarendon Press, Oxford

    Google Scholar 

  • Tohme J, Gonzalez DO, Beebe S, Duque MC (1996) AFLP analysis of gene pools of wild bean core collection. Crop Sci 36 (5): 1375–1384

    Article  CAS  Google Scholar 

  • Torp J, Jensen HP (1985) Screening for spontaneous virulent mutants of Erysiphe graminis DC. f. sp. hordei on barley lines with resistance genes Ml-al, Ml-a6, Ml-a12 and Ml-g. Phytopathol Z 112: 17–27

    Article  Google Scholar 

  • Turner MG (1987) Spatial simulation of landscape changes in Georgia: a comparison of 3 transition models. Landsc Ecol 1: 29–36

    Article  Google Scholar 

  • Turner MG, Arthaud GJ, Engstrom RT, Hejl SJ, Liu J, Loeb S, McKelvey K (1995) Usefulness of spatially explicit population models in land management. Ecol Appl 5: 12–16

    Article  Google Scholar 

  • Van Tongeren O, Prentice IC (1986) A spatial simulation model for vegetation dynamics. Vegatatio 65: 163–173

    Article  Google Scholar 

  • Vanderplank JE (1963) Plant disease: epidemics and control. Academic Press, New York

    Google Scholar 

  • Volterra V (1926) Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem Acad Lincei 6: 31–113

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Weising K, Weigand F, Driesel AJ, Kahl G, Zischler H, Epplen J (1989) Polymorphic simple GATA/GACA repeats in plant genomes. Nucleic Acids Res 17: 10–18

    Google Scholar 

  • Weising K, Fiala B, Ramloch K, Kahl G, Epplen JT (1990) Oligonucleotide fingerprinting in angiosperms. Fingerprint News 2: 5–8

    Google Scholar 

  • Weising K, Ramser D, Kaemmer D, Kahl G, Epplen JT (1991) Oligonucleotide fingerprinting in plants and fungi. In: Burke T, Dolf G, Jeffreys AJ, Wolff R (eds) DNA fingerprinting: approaches and applications. Birkhäuser, Basel

    Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using arbitrary primers. Nucleic Acids Res 18: 7213–7218

    Article  PubMed  CAS  Google Scholar 

  • Welsh J, McClelland M (1994) The polymerase chain reaction. In: Mullis KB, Ferre F; Gibbs RA (eds) The polymerase chain reaction. Birkhäuser, Boston, pp 295–303

    Chapter  Google Scholar 

  • Welz G (1987) Analysis of virulence in pathogen populations. In: Kranz J, Rotem J (eds) Experimental techniques in plant disease epidemiology. Springer, Berlin Heidelberg New York, pp 165–178

    Google Scholar 

  • Welz G (1988) Virulence associations in populations of Erysiphe graminis f. sp. hordei. Z Pflanzenkrankh Pflanzenschutz 95: 392–405

    Google Scholar 

  • Welz G, Kranz J (1987) Effects of recombination on races of a barley powdery mildew population. Plant Pathol 26: 107–113

    Article  Google Scholar 

  • Welz HG, Nagarajan S, Kranz J (1990) Short-term virulence dynamics of Erysiphe graminis f. sp. hordei in a single epidemic on two susceptible barley cultivars. Z Pflanzenkrankh Pflanzenschutz 95: 124–137

    Google Scholar 

  • Wiegand T, Milton SJ, Wissel C (1994) Ein räumliches Simulationsmodell für eine Pflanzengemeinschaft in der südlichen Karoo, Südafrika. Verh Ges Ökol 23: 407–416

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids ResS 18: 6531–6535

    Article  PubMed  CAS  Google Scholar 

  • Winkler E, Klotz S, Wissel C (1994) Mathematische Modellierung der Phytozönosedy-namik eines Trockenrasens. Verh Ges Ökol 23: 451–458

    Google Scholar 

  • Withers LA (1991) Biotechnology and plant genetic resources conservation. In: Paroda RS, Arora RK (eds) Plant genetic resources conservation and management - concepts and approaches. IBPGR-ROSSEA, New Delhi, pp 273–297

    Google Scholar 

  • Withers LA (1994) New technologies for the conservation of plant genetic resources. In: Proc Crop Sei Congr, Ames, USA, Crop Science Society of America, pp 429–435

    Google Scholar 

  • Wolfe MS, McDermott JM (1994) Population genetics of plant pathogen interactions: the example of the Erysiphe graminis - Hordeum vulgare. Pathosystem. Annu Rev Phytopathol 32: 89–113

    Article  Google Scholar 

  • Wolfe MS, Slater SE, Minchin PN (1986) Mildew of barley. United Kingdom Cereal Pathogen Virulence Survey: 1985 Annual Report. Plant Breeding Institute, Cambridge, pp 27–34

    Google Scholar 

  • Wolfram S (1984) Universality and complexity in cellular automata. Physica 10D: 1–35

    Google Scholar 

  • Zeller FJ, Fischbeck G (eds) (1992) Cereal rusts and mildews. Vortr Pflanzenzücht 24

    Google Scholar 

  • Zucchini W, Guttorp P (1991) A hidden Markov model for space-time precipitation. Water Resources Res 27: 1917–1923

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pons, J., Balzter, H., Langsdorf, A., Köhler, W. (1998). Population Genetics: Genetic Analysis and Modelling of Natural Populations. In: Behnke, HD., Esser, K., Kadereit, J.W., Lüttge, U., Runge, M. (eds) Progress in Botany. Progress in Botany, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80446-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80446-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80448-9

  • Online ISBN: 978-3-642-80446-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics