Skip to main content
Log in

Minisatellite DNA ‘fingerprints’ can distinguish Rubus cultivars and estimate their degree of relatedness

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Minisatellite DNA from 13 Rubus cultivars, including five raspberries, two R. flagellaris derivatives, three R. ursinus derivatives, and the three raspberry-blackberry hybrids Boysen, Logan Thornless and Young, was hybridized with the M13 probe yielding cultivar-specific DNA fragment profiles. Estimates of similarity, assessed from the fragment profiles, showed a strong association with the degree of genetic relatedness among the cultivars. Boysen was shown to be closely related to Austin Thornless, Logan and Young, and is thus thought to be of similar origin to Young, that is Austin Thornless x Phenomenal. While genetic relatedness of Creston with Lloyd George was suggested, Lloyd George parentage of Creston cannot be confirmed from the data obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, L.H., 1941. Species batorum. The genus Rubus in North America I. Gentes Herb. 5: 1–64.

    Google Scholar 

  • Britton, D.M. & J.W. Hull, 1956. Mitotic instability in black-berry seedlings. J. Hered. 47: 205–210.

    Google Scholar 

  • Brown, S.W., 1943. The origin and nature of variability in the Pacific coast blackberries (R. ursinus Cham. & Schlecht. and R. lemurum sp. nov.). Amer. J. Bot. 30: 686–697.

    Google Scholar 

  • Cousineau, J.C. & D.J. Donnelly, 1989. Identification of raspberry cultivars in vivo and in vitro using isoenzyme analysis. HortScience 24: 490–492.

    Google Scholar 

  • Dallas, J.F., 1988. Detection of DNA ‘fingerprints’ of cultivated rice by hybridization with a human minisatellite probe. Proc. Natl. Acad. Sci. U.S.A. 85: 6831–6835.

    PubMed  Google Scholar 

  • Darrow, G.M., 1925. The Young dewberry, a new hybrid variety. Amer. Fruit Grower 45: 9, 33.

    Google Scholar 

  • Darrow, G.M., 1955. Blackberry-raspberry hybrids. J. Hered. 46: 67–71.

    Google Scholar 

  • Fejer, S.O., 1977. Inheritance of yield, yield components, and fall-fruiting habit in red raspberry diallel crosses. Can. J. Genet. Cytol. 19: 1–13.

    Google Scholar 

  • Georges, M., A.-S. Lequarré, M. Castelli, R. Hanset & G. Vassart, 1988. DNA fingerprinting in domestic animals using four different minisatellite probes. Cytogenet. Cell Genet. 47: 127–131.

    PubMed  Google Scholar 

  • Gilbert, D.A., N. Lehman, S.J. O'Brien & R.K. Wayne, 1990. Genetic fingerprinting reflects population differentiation in the California Channel Island fox. Nature 344: 764–767.

    Article  PubMed  Google Scholar 

  • Hall, H.K., 1990. Blackberry breeding. Plant Breeding Reviews 8.

  • Hillel, J., T. Schaap, A. Haberfeld, A.J. Jeffreys, Y. Plotzky, A. Cahaner & U. Lavi, 1990. DNA fingerprints applied to gene introgression in breeding programs. Genetics 124: 783–789.

    PubMed  Google Scholar 

  • Jeffreys, A.J., V. Wilson & S.L. Thein, 1985a. Hypervariable ‘minisatellite’ regions in human DNA. Nature 314: 67–73.

    PubMed  Google Scholar 

  • Jeffreys, A.J., V. Wilson & S.L. Thein, 1985b. Individual-specific ‘fingerprints’ of human DNA. Nature 316: 76–79.

    PubMed  Google Scholar 

  • Jennings, D.L., 1981. A hundred years of Loganberries. Fruit Var. J. 35: 34–37.

    Google Scholar 

  • Jennings, D.L., 1988. Raspberries and blackberries: their breeding, diseases and growth. Academic Press, London.

    Google Scholar 

  • Kuhnlein, U., D. Zadworny, Y. Dawe, R.W. Fairfull & J.S. Gavora, 1990. Assessment of inbreeding by DNA fingerprinting: development of a calibration curve using defined strains of chickens. Genetics 125: 161–165.

    PubMed  Google Scholar 

  • Lynch, M., 1988. Estimation of relatedness by DNA finger-printing. Mol. Biol. Evol. 5: 584–599.

    PubMed  Google Scholar 

  • Nybom, H., 1990a. DNA fingerprints in sports of ‘Red Delicious’ apples. HortScience: 1641–1642.

  • Nybom, H., 1990b. Genetic variation in ornamental apple trees and their seedlings (Malus, Rosaceae) revealed by DNA ‘fingerprinting’. Hereditas 113: 17–28.

    Google Scholar 

  • Nybom, H. & S.H. Rogstad, 1990. DNA ‘fingerprinting’ detect genetic variation in Acer negundo. Plant Syst. Evol. 173: 49–56.

    Google Scholar 

  • Nybom, H., S.H. Rogstad & B.A. Schaal, 1990. Genetic variation detected by use of the M13 ‘DNA fingerprint’ probe in Malus, Prunus, and Rubus (Rosaceae). Theor. Appl. Genet. 79: 153–156.

    Google Scholar 

  • Nybom, H. & B.A. Schaal, 1990a. DNA ‘fingerprints’ applied to paternity analysis in apples (Malus x domestica). Theor. Appl. Genet. 79: 763–768.

    Google Scholar 

  • Nybom, H. & B.A. Schaal, 1990b. DNA ‘fingerprints’ reveal genotypic distributions in natural populations of blackberries and raspberries. Amer. J. Bot. 77: 883–888.

    Google Scholar 

  • Nybom, H., B.A. Schaal & S.H. Rogstad, 1989. DNA ‘fingerprints’ can distinguish cultivars of blackberries and raspherries. Acta Hortic. 262: 305–310.

    Google Scholar 

  • Reeve, H.K., D.F. Westneat, W.A. Noon, P.W. Sherman & C.F. Aquadro, 1990. DNA ‘fingerprinting’ reveals high levels of inbreeding in colonies of the eusocial naked mole rat. Proc. Natl. Acad. Sci. U.S.A. 87: 2496–2500.

    PubMed  Google Scholar 

  • Rogstad, S.H., J.C. PattonII & B.A. Schaal, 1988. M13 repeat probe detects DNA minisatellite-like sequences in gymnosperms and angiosperms. Proc. Natl. Acad. Sci. U.S.A. 85: 9176–9178.

    PubMed  Google Scholar 

  • Ryskov, A.P., A.G. Jincharadze, M.I. Prosnyak, P.L. Ivanov & S.A. Limborska, 1988. M13 phage DNA as a universal marker for DNA fingerprinting of animals, plants and microorganisms. FEBS Letters 233: 388–392.

    Article  PubMed  Google Scholar 

  • Saghai-Maroof, M.A., K.M. Soliman, R.A. Jorgensen & R.W. Allard, 1984. Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. U.S.A. 81: 8014–8018.

    PubMed  Google Scholar 

  • Sokal, R.S. & F.J. Rohlf, 1969. Biometry. W.H. Freeman & Co., San Fransisco.

    Google Scholar 

  • Thompson, M.M., 1961. Cytogenetics of Rubus. II. Cytological studies of the varieties ‘Young’, ‘Boysen’ and related forms. Amer. J. Bot. 48: 667–673.

    Google Scholar 

  • Waldo, G.F., 1968. Blackberry breeding involving native Pacific coast parentage. Fruit Var. Hort. Digest 22: 3–7.

    Google Scholar 

  • Westneat, D.F., W.A. Noon, H.K. Reeve & C.F. Aquadro, 1988. Improved hybridization conditions for DNA ‘finger-prints’ probed with M13. Nucleic Acids. Res. 16: 4161.

    PubMed  Google Scholar 

  • Wetton, J.H., R.E. Carter, D.T. Parkin & D. Walters, 1987. Demographic study of a wild house sparrow population by DNA fingerprinting. Nature 327: 147–149.

    Article  PubMed  Google Scholar 

  • Zimmerman, P.A., N. Lang-Unnasch & C.A. Cullis, 1989. Polymorphic regions in plant genomes detected by an M13 probe. Genome 32: 824–828.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nybom, H., Hall, H.K. Minisatellite DNA ‘fingerprints’ can distinguish Rubus cultivars and estimate their degree of relatedness. Euphytica 53, 107–114 (1991). https://doi.org/10.1007/BF00023790

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023790

Key words

Navigation