Skip to main content

The BALB/c Mouse as a Model to Study Orthopoxviruses

  • Chapter
The BALB/c Mouse

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 122))

Abstract

The interaction of inbred mice such as the BALB/c group of strains with an infectious agent constitutes a system in which one can study either the pathogenesis of the agent or the host defense mechanisms operative during the disease process. Infection of the BALB/c mouse with poxviruses is such a model system.

I would like to thank Ms Mary Rust for typing the manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen AM, Clarke GL, Ganaway JR, Lock A, Werner RM (1981) Pathology and diagnosis of mousepox. Lab Anim Sci 31: 599–608

    PubMed  CAS  Google Scholar 

  • Baxby D (1977) Possible antigenic sub-divisions within the variola/vaccinia subgroup of poxviruses. Arch Virol 54: 143–145.

    Article  PubMed  CAS  Google Scholar 

  • Bennink JR, Doherty PC (1980) T cells that encounter virus in the complete absence of a particular H-2 antigen are nonresponsive when stimulated again in the context of that H-2 atigen. J Exp Med 151: 166–173

    Article  PubMed  CAS  Google Scholar 

  • Berger ML (1982a) Immunologic requirements for adoptive transfer of ectromelia virus meningitis. J Neuropathol Exp Neurol 41: 18–33.

    Article  PubMed  CAS  Google Scholar 

  • Berger ML (1982b) The role of the major histocompatibility complex in the adoptive transfer of ectromelia virus meningitis. J Neuropathol Exp Neurol 41: 34–44

    Article  PubMed  CAS  Google Scholar 

  • Biddison WE, Hansen TH, Levy RB, Doherty PC (1978) Gene products in virus immune thymus derived cell recognition: Evidence for an H-2L restricted thymus derived cell response. J Exp Med 148: 1678–1686

    Article  PubMed  CAS  Google Scholar 

  • Blanden RV (1974) T cell response to virual and bacterial infection. Transplant Rev 19: 56–88

    PubMed  CAS  Google Scholar 

  • Blanden RV, McKenzie IF, Kees U, Melvoid RW, Kohn HI (1977) Cytotoxic T-cell response to ectromelia virus-infected cells. Different H-2 requirements for triggering precursor T-cell induction or lysis by effector T cells defined by the BALB/c-H-2db mutation. J Exp Med 146: 869–880

    Article  PubMed  CAS  Google Scholar 

  • Borysiewicz J, Mizerski J, Pryjma J (1977) Effect of methisazone on immune response in mice. Chemotherapy 23: 276–281

    Article  PubMed  CAS  Google Scholar 

  • Bosse DC, Campbell WG, JR, Cassel WA (1982) Light and electron microscopic studies of the pathogenesis of vaccinia virus infection in mouse brain (41479). Proc Soc Exp Biol Med 171: 72–78

    PubMed  CAS  Google Scholar 

  • Buller RML, Smith GL, Cremer K, Notkins AL, Moss B (1985) Infectious vaccinia virus TK recombinants that express foreign genes are less virulent than wild-type virus in mice. In: Chanock R, Lerner R (ed) Vaccines 85: molecular and chemical basis of resistance to viral, bacterial and parasitic disease. PP 163–167

    Google Scholar 

  • Buller RML, (1985) Isolation and characterization of mutants of ectromelia virus (Strain NIH 79) which are less virulent than wild-type virus in BALB/cByJ mice. In Bhatt P, Morse III, HC New A Jacoby R (eds) Viral and Mycoplasma Infections of Laboratory Rodents: Effects on biomedical research in press

    Google Scholar 

  • Burnet FM, Boake WD (1946) The relationship between the virus of infectious ectromelia of mice and vaccinia virus. J Immunol 53: 1–13

    PubMed  CAS  Google Scholar 

  • Cremer KJ, Mackett M, Wohlenberg C, Notkins AL, Moss B (1985) Vaccinia virus recombinant that expresses the herpes simplex virus type-1 glycoprotein D protects mice against lethality and the establishment of latent herpes infection. Science in press.

    Google Scholar 

  • Dixon CW (1962) Smallpox. J and A Churchill Ltd, London P.96.

    Google Scholar 

  • Doherty PC, Bennink JR (1979) Vaccinia specific cytotoxic T-cell responses in the context of H-2 antigens not encountered in thymus may reflect aberrant recognition of a virus H-2 complex. J Exp Med 149: 150–157

    Article  PubMed  CAS  Google Scholar 

  • Doherty PC, Schwartz DH, Bennink JR, Korngold R (1981) Factors influencing the vaccinia-specific cytotoxic response of thymocytes from normal and chimeric mice. Transplant Proc 13: 1850–1853

    PubMed  CAS  Google Scholar 

  • Ermolaeva SN, Blandova ZK, Dushkin VA (1974) Genetic study on susceptibility of different mouse lines to ectromelia virus. Sov Genet 8:681–783

    PubMed  CAS  Google Scholar 

  • Fenner F (1947) Studies in infectious ectromelia of mice. I. Immunization of mice against ectromelia with living vaccinia virus. Aust J Exp Biol Med Sci 25: 257–274

    Article  PubMed  CAS  Google Scholar 

  • Fenner F (1948) The pathogenesis of the acute exanthems. An interpretation based upon experimental investigations with mouse-pox (infectious ectromelia of mice). Lancet ii: 915–920

    Article  Google Scholar 

  • Fenner F (1982) Mousepox. In: Foster HL, Small JD, Fox JG (eds) The mouse in biomedical research, volume II Diseases, Academic Press, New York p 208–230

    Google Scholar 

  • Ferrante A, O’Keefe DE, Thong YH (1980) Induction of suppressor cells in mice following vaccinia virus infection. Med Microbiol Immunol (Berl) 168: 227–233

    Article  CAS  Google Scholar 

  • Jacoby RO, Bhatt PN, Johnson EA, Paturzo FX (1983) Pathogenesis of vaccinia (IHD-T) virus infection in BALB/cAnN mice. Lab Anim Sci 33: 435–441

    PubMed  CAS  Google Scholar 

  • Kees VR, Blanden RV (1976) A single genetic element in H-2K affects mouse T-cell antiviral function in poxvirus infection. J Exp Med 143: 450–455.

    Article  PubMed  CAS  Google Scholar 

  • Lane JM, Ruben FL, Neff JM, Miller JD (1969) Complications of smallpox vaccination, 1968. National surveillance in the United States. N Eng J Med 281: 1201–1208

    Article  CAS  Google Scholar 

  • Mackett M, Archard LC (1979) Conservation and variation in orthopoxvirus genome structure. J Gen Virol 45: 683–701

    Article  PubMed  CAS  Google Scholar 

  • Moss B (1978) Poxviruses. In Nayak D (ed) The Molecular Biology of Animal Viruses, Vol 2, M. Dekker, NY p 849–898

    Google Scholar 

  • Moss B (1984) The use of virus vectors for vaccines. In: Bell R, Torrigiani G (eds) New Approaches to Vaccine Development, Schwabe and Co., AG, Basel p 167–177

    Google Scholar 

  • Moss B (1985) Principles of virus replication: Poxviruses. In: Fields B, (ed) Human viral diseases, Raven Press, New York in press

    Google Scholar 

  • Mullbacher A, Blanden RV, Brenan M (1983) Neonatal tolerance of major histocompatibility complex antigens alters Ir gene control of the cytotoxic T cell response to vaccinia virus. J Exp Med 157: 1324–1338

    Article  PubMed  CAS  Google Scholar 

  • Muller HK, Wittek R, Schaffner, W, Schumperli A, Menna A, Wyler R (1977) Comparison of five poxvirus genomes by analysis with restriction endonucleases HindIII, BamI and EcoRI. J Gen Virol 38: 135–147

    Article  Google Scholar 

  • O’Neill HC, Blanden RV (1983) Mechanisms determining innate resistance to ectromelia virus infection in C57BL mice. Infect Immun 41: 1391–1394

    PubMed  Google Scholar 

  • O’Neill HC, Blanden RV, O’Neill TJ (1983) H-2 linked control of resistance to ectromelia virus infection in BIO congenic mice. Immunogenetics 18: 255–265.

    Article  PubMed  Google Scholar 

  • Pang T, Blanden RV (1977) Genetic factors in the stimulation of T cell responses against ectromelia virus-infected cells role of H-2K, H-2D and H-2I genes. Aust J Exp Biol Med Sci 55: 549–559

    Article  PubMed  CAS  Google Scholar 

  • Schell K (1960) Studies on the innate resistance of mice to infection with mousepox. II. Route of inoculation and resistance; and some observations on the inheritance of resistance. Aust J Exp Biol Med Sci 38: 289–300

    Article  PubMed  CAS  Google Scholar 

  • Siegel S (1956) Wilcoxon 2-sample test. In: Non parametric Statistics for Behavioral Sciences, McGraw-Hill Book, Inc. New York p 116–126

    Google Scholar 

  • Simon J, Werner GT (1979) Vaccinia virus infection of the central nervous system in X-irradiated mice. Infect Immun 25: 1035–1042

    PubMed  CAS  Google Scholar 

  • Takahashi M, Kameyama S, Kato, Kamahora J (1959) The immunological relationship of the poxvirus group. Biken’s J 2: 27–29

    Google Scholar 

  • Wallace GD, Buller RML (1985a) Kinetics of ectromelia virus (mousepox) transmission and clinical response in C57BL/6J, BALB/cByJ and AKR/J mice. Lab Animal Sci 35: 41–46

    CAS  Google Scholar 

  • Wallace GD, Buller RML (1985b) Ectromelia virus (mousepox): biology, epizootiology, prevention and control. In Bhatt P, Morse III HC, New A, Jacoby R (eds) Viral and Mycoplasma Infections of Laboratory Rodents: Effects on Biomedical research in press

    Google Scholar 

  • Wallace GD, Buller RML, Morse III HC (1985) Genetic determinants of resistance to ectromelia (mousepox) virus-induced mortality, submitted for publication

    Google Scholar 

  • Werner GT, Jentzsch U, Metzger E, Simon J (1980) Studies on poxvirus infections in irradiated animals. Archives of Virology 64: 247–256

    Article  PubMed  CAS  Google Scholar 

  • Wilson GS (1967) In: The hazards of Immunization. Athlone, London p 159–169.

    Google Scholar 

  • Zgorniak-Nowosielska I, Gatkiewicz A, Veckenstedt A, Beladi I (1980) Effect of N, N’-bis (methylisatin-beta-thiosemicarbazone)-2-methylpiperazine against virus-induced encephalitis in mice. Acta Virol 24: 439–444

    PubMed  CAS  Google Scholar 

  • Zinkernagel RM, Burki K, Cottier F, De Dossodo S, Althage A, Illmensee K (1983) Thymus differentiation and T cell specificity in nu-nu plus-plus mouse aggregation chimeras. Eur Mol Biol Organ 2: 1665–1672

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Buller, R.M.L. (1985). The BALB/c Mouse as a Model to Study Orthopoxviruses. In: Potter, M. (eds) The BALB/c Mouse. Current Topics in Microbiology and Immunology, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70740-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70740-7_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70742-1

  • Online ISBN: 978-3-642-70740-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics