Skip to main content

Introduction to Active Smart Materials for Biomedical Applications

  • Chapter
Piezoelectric Nanomaterials for Biomedical Applications

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

Smart Materials, with their ability to change some of their properties in response to an external stimulus or to changes in conditions of their surrounding environment, have gained considerable attention in the biomedical community because of the interest in applications that could be foreseen for them in a multitude of active structures and devices.

A short introduction to Smart Materials is given in this chapter as well as some summary of recent achievements in biomedicine is also given. An overview of the different classes of Smart Materials, with a special emphasis on smart polymers is presented and classification is proposed based on the different chemistry. Biomedical applications of selected Smart Materials are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shabalovskaya, S., et al.: Critical overview of Nitinol surfaces and their modifications for medical applications. Acta Biomaterialia 4, 447–467 (2008)

    Article  Google Scholar 

  2. Lendlein, A., Kelch, S.: Shape-memory polymers. Angewandte Chemie - International Edition 41, 2035–2057 (2002)

    Google Scholar 

  3. Behl, M., Lendlein, A.: Actively moving polymers. Soft Matter 3, 58–67 (2007)

    Article  Google Scholar 

  4. Schild, H.G.: Poly(N-isopropylacrylamide): Experiment, theory and application. Progress in Polymer Science (Oxford) 17, 163–249 (1992)

    Article  Google Scholar 

  5. Trask, R.S., et al.: Self-healing polymer composites: Mimicking nature to enhance performance. Bioinspiration and Biomimetics 2, P1–P9 (2007)

    Google Scholar 

  6. Wu, D.Y., et al.: Self-healing polymeric materials: A review of recent developments. Progress in Polymer Science (Oxford) 33, 479–522 (2008)

    Article  Google Scholar 

  7. Haertling, G.H.: Ferroelectric Ceramics: History and Technology. Journal of the American Ceramic Society 82, 797–818 (1999)

    Article  Google Scholar 

  8. Lang, S.B.: Guide to the literature of piezoelectricity and pyroelectricity 28. Ferroelectrics 361, 130–216 (2007)

    Article  Google Scholar 

  9. Jaffe, B., et al.: Piezoelectric ceramics. Academic Press, New York (1971)

    Google Scholar 

  10. Jagur-Grodzinski, J.: Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polymers for Advanced Technologies 21, 27–47 (2010)

    Google Scholar 

  11. Jeong, B., Gutowska, A.: Lessons from nature: Stimuli-responsive polymers and their biomedical applications. Trends in Biotechnology 20, 305–311 (2002)

    Article  Google Scholar 

  12. Capadona, J.R., et al.: Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319, 1370–1374 (2008)

    Article  Google Scholar 

  13. Liu, C.: Recent developments in polymer MEMS. Advanced Materials 19, 3783–3790 (2007)

    Article  Google Scholar 

  14. Kumar, A., et al.: Smart polymers: Physical forms and bioengineering applications. Progress in Polymer Science (Oxford) 32, 1205–1237 (2007)

    Article  Google Scholar 

  15. Galaev, I.Y., Mattiasson, B.: Smart polymers and what they could do in biotechnology and medicine. Trends in Biotechnology 17, 335–340 (1999)

    Article  Google Scholar 

  16. Hoffman, A.S., et al.: Really smart bioconjugates of smart polymers and receptor proteins. Journal of Biomedical Materials Research 52, 577–586 (2000)

    Article  Google Scholar 

  17. Qiu, Y., Park, K.: Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews 53, 321–339 (2001)

    Article  Google Scholar 

  18. Min Kyoon, S., et al.: Nanocomposite Hydrogel with High Toughness for Bioactuators. Advanced Materials 21, 1712–1715 (2009)

    Article  Google Scholar 

  19. Wang, Z.L., Kang, Z.C.: Functional and smart materials structural evolution and structure analysis. Springer (1998) http://www.knovel.com/knovel2/Toc.jsp?BookID=906

  20. Alarcon, C.D.L.H., et al.: Stimuli responsive polymers for biomedical applications. Chemical Society Reviews 34, 276–285 (2005)

    Article  Google Scholar 

  21. Meng, H., Hu, J.: A Brief Review of Stimulus-active Polymers Responsive to Thermal, Light, Magnetic, Electric, and Water/Solvent Stimuli. Journal of Intelligent Material Systems and Structures 21, 859–885 (2010)

    Article  Google Scholar 

  22. Nelson, A.: Stimuli-responsive polymers: Engineering interactions. Nature Materials 7, 523–525 (2008)

    Article  Google Scholar 

  23. Stuart, M.A.C., et al.: Emerging applications of stimuli-responsive polymer materials. Nature Materials 9, 101–113 (2010)

    Article  Google Scholar 

  24. Roy, D., et al.: Future perspectives and recent advances in stimuli-responsive materials. Progress in Polymer Science (Oxford) 35, 278–301 (2010)

    Article  Google Scholar 

  25. Huck, W.T.S.: Responsive polymers for nanoscale actuation. Materials Today 11, 24–32 (2008)

    Article  Google Scholar 

  26. Heeger, A.J.: Semiconducting and metallic polymers: The fourth generation of polymeric materials (nobel lecture). Angewandte Chemie - International Edition 40, 2591–2611 (2001)

    Article  Google Scholar 

  27. MacDiarmid, A.G.: "Synthetic metals": A novel role for organic polymers (Nobel lecture). Angewandte Chemie - International Edition 40, 2581–2590 (2001)

    Article  Google Scholar 

  28. Shirakawa, H.: The discovery of polyacetylene film: The dawning of an era of conducting polymers (Nobel lecture). Angewandte Chemie - International Edition 40, 2575–2580 (2001)

    Article  Google Scholar 

  29. Jang, J.: Conducting polymer nanomaterials and their applications. Advances in Polymer Science 199, 189–259 (2006)

    Article  Google Scholar 

  30. Terje, J.R., Skotheim, A. (eds.): Conjugated Polymers: Theory, Synthesis, Properties, and Characterization. Handbook of Conducting Polymers, 3rd edn. CRC Press, Boca Raton (2006)

    Google Scholar 

  31. Guimard, N.K., et al.: Conducting polymers in biomedical engineering. Progress in Polymer Science 32, 876–921 (2007)

    Article  Google Scholar 

  32. Elschner, A.: PEDOT: principles and applications of an intrinsically conductive polymer. CRC Press, Boca Raton (2011)

    Google Scholar 

  33. Skotheim, T.A., Reynolds, J.R.: Conjugated polymers. CRC Press, Boca Raton (2007)

    Google Scholar 

  34. Jang, J.: Conducting polymer nanomaterials and their applications. Advances in Polymer Science 199, 189–260 (2006)

    Google Scholar 

  35. Kirchmeyer, S., Reuter, K.: Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). Journal of Materials Chemistry 15, 2077–2088 (2005)

    Article  Google Scholar 

  36. Groenendaal, L., et al.: Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future. Advanced Materials 12, 481–494 (2000)

    Article  Google Scholar 

  37. Smela, E.: Conjugated Polymer Actuators for Biomedical Applications. Advanced Materials 15, 481–494 (2003)

    Article  Google Scholar 

  38. Greco, F., et al.: Ultra-thin conductive free-standing PEDOT/PSS nanofilms. Soft Matter 7, 10642–10650 (2011)

    Article  Google Scholar 

  39. Jager, E.W.H., et al.: Electroactive surfaces based on conducting polymers for controlling cell adhesion, signaling, and proliferation. In: International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS 2009), pp. 1778–1781 (2009)

    Google Scholar 

  40. Svennersten, K., et al.: Electrochemical modulation of epithelia formation using conducting polymers. Biomaterials 30, 6257–6264 (2009)

    Article  Google Scholar 

  41. Kim, J.Y., et al.: Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synthetic Metals 126, 311–316 (2002)

    Article  MATH  Google Scholar 

  42. Ravichandran, R., et al.: Applications of conducting polymers and their issues in biomedical engineering. Journal of The Royal Society Interface (July 7, 2010)

    Google Scholar 

  43. Carpi, F., Smela, E.: Biomedical applications of electroactive polymer actuators. John Wiley & Sons, Chichester (2009)

    Book  Google Scholar 

  44. Carpi, F., De Rossi, D.: Electroactive polymer-based devices for e-textiles in biomedicine. IEEE Transactions on Information Technology in Biomedicine 9, 295–318 (2005)

    Article  Google Scholar 

  45. Lu, W., et al.: Use of ionic liquids for π-conjugated polymer electrochemical devices. Science 297, 983–987 (2002)

    Article  Google Scholar 

  46. Smela, E., et al.: Controlled folding of micrometer-size structures. Science 268, 1735–1738 (1995)

    Article  Google Scholar 

  47. Jager, E.W.H., et al.: Microfabricating conjugated polymer actuators. Science 290, 1540–1545 (2000)

    Article  Google Scholar 

  48. Immerstrand, C., et al.: Conjugated-polymer micro- and milliactuators for biological applications. MRS Bulletin 27, 461–464 (2002)

    Article  Google Scholar 

  49. Svennersten, K., et al.: Organic bioelectronics in nanomedicine. Biochimica et Biophysica Acta - General Subjects 1810, 276–285 (2011)

    Article  Google Scholar 

  50. Abidian, M.R., et al.: Conducting-polymer nanotubes for controlled drug release. Advanced Materials 18, 405–409 (2006)

    Article  Google Scholar 

  51. Kim, D.H., et al.: Conducting polymers grown in hydrogel scaffolds coated on neural prosthetic devices. Journal of Biomedical Materials Research - Part A 71, 577–585 (2004)

    Article  Google Scholar 

  52. Martin, D.C., et al.: Nanostructured conducting polymer coatings for biomedical devices. Microscopy and Microanalysis 12, 550–551 (2006)

    Article  Google Scholar 

  53. Abidian, M.R., Martin, D.C.: Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes. Biomaterials 29, 1273–1283 (2008)

    Article  Google Scholar 

  54. Abidian, M.R., et al.: Interfacing conducting polymer nanotubes with the central nervous system: chronic neural recording using poly(3,4-ethylenedioxythiophene) nanotubes. Advanced Materials 21, 3764–3770 (2009)

    Google Scholar 

  55. Abidian, M.R., Martin, D.C.: Multifunctional nanobiomaterials for neural interfaces. Advanced Functional Materials 19, 573–585 (2009)

    Article  Google Scholar 

  56. Abidian, M.R., et al.: Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment and neurite outgrowth of neural electrodes. Small 6, 421–429 (2010)

    Article  Google Scholar 

  57. Urbanchek, M.G., et al.: Microscale electrode implantation during nerve repair: Effects on nerve morphology, electromyography, and recovery of muscle contractile function. Plastic and Reconstructive Surgery 128, 270e–278e (2011)

    Google Scholar 

  58. Saltó, C., et al.: Control of neural stem cell adhesion and density by an electronic polymer surface switch. Langmuir 24, 14133–14138 (2008)

    Article  Google Scholar 

  59. Osada, Y., et al.: Polymer Gels. Journal of Macromolecular Science - Polymer Reviews 44, 87–112 (2004)

    Article  Google Scholar 

  60. Park, T.G., Hoffman, A.S.: Synthesis and characterization of pH- and/or temperature-sensitive hydrogels. Journal of Applied Polymer Science 46, 659–671 (1992)

    Article  Google Scholar 

  61. Suzuki, A., Tanaka, T.: Phase transition in polymer gels induced by visible light. Nature 346, 345–347 (1990)

    Article  Google Scholar 

  62. Sershen, S.R., et al.: Independent optical control of microfluidic valves formed from optomechanically responsive nanocomposite hydrogels. Advanced Materials 17, 1366–1368 (2005)

    Article  Google Scholar 

  63. Tanaka, T., et al.: Collapse of gels in an electric field. Science 218, 467–469 (1982)

    Article  Google Scholar 

  64. Miyata, T., et al.: A reversibly antigen-responsive hydrogen. Nature 399, 766–768 (1999)

    Article  Google Scholar 

  65. Yoshida, M., et al.: From advanced biomedical coatings to multi-functionalized biomaterials. Polymer Reviews 46, 347–375 (2006)

    Google Scholar 

  66. Papaefthimiou, V., et al.: Switchable surfaces: Responsive polymer layers. Chemie in Unserer Zeit 42, 102–115 (2008)

    Article  Google Scholar 

  67. Karg, M., Hellweg, T.: New "smart" poly(NIPAM) microgels and nanoparticle microgel hybrids: Properties and advances in characterisation. Current Opinion in Colloid and Interface Science 14, 438–450 (2009)

    Article  Google Scholar 

  68. Burmistrova, A., et al.: Temperature Response of PNIPAM Derivatives at Planar Surfaces: Comparison between Polyelectrolyte Multilayers and Adsorbed Microgels. ChemPhysChem 11, 3571–3579 (2010)

    Article  Google Scholar 

  69. Guan, Y., Zhang, Y.: PNIPAM microgels for biomedical applications: From dispersed particles to 3D assemblies. Soft Matter 7, 6375–6384 (2011)

    Article  Google Scholar 

  70. Gan, D., Lyon, L.A.: Tunable swelling kinetics in core - shell hydrogel nanoparticles. Journal of the American Chemical Society 123, 7511–7517 (2001)

    Article  Google Scholar 

  71. Kuckling, D., et al.: Preparation of nanogels with temperature-responsive core and pH-responsive arms by photo-cross-linking. Langmuir 18, 4263–4269 (2002)

    Article  Google Scholar 

  72. Fu, Q., et al.: Control of molecular transport through stimuli-responsive ordered mesoporous materials. Advanced Materials 15, 1262–1266 (2003)

    Article  Google Scholar 

  73. Gao, J., Frisken, B.J.: Cross-linker-free N-isopropylacrylamide gel nanospheres. Langmuir 19, 5212–5216 (2003)

    Article  Google Scholar 

  74. Wu, J., et al.: Phase behavior of thermally responsive microgel colloids. Physical Review Letters 90, 483041–483044 (2003)

    Google Scholar 

  75. Beebe, D.J., et al.: Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404, 588–590 (2000)

    Article  Google Scholar 

  76. Dong, L., et al.: Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551–554 (2006)

    Article  Google Scholar 

  77. Lin, C.C., Metters, A.T.: Hydrogels in controlled release formulations: Network design and mathematical modeling. Advanced Drug Delivery Reviews 58, 1379–1408 (2006)

    Article  Google Scholar 

  78. Chaterji, S., et al.: Smart polymeric gels: Redefining the limits of biomedical devices. Progress in Polymer Science (Oxford), 32, 1083–1122 (2007)

    Article  Google Scholar 

  79. Kaehr, B., Shear, J.B.: Multiphoton fabrication of chemically responsive protein hydrogels for microactuation. Proceedings of the National Academy of Sciences 105, 8850–8854 (2008)

    Article  Google Scholar 

  80. Banta, S., et al.: Protein engineering in the development of functional hydrogels. Annual Review of Biomedical Engineering 12, 167–186 (2010)

    Article  Google Scholar 

  81. Oishi, M., Nagasaki, Y.: Stimuli-responsive smart nanogels for cancer diagnostics and therapy. Nanomedicine 5, 451–468 (2010)

    Article  Google Scholar 

  82. Woltman, S.J., et al.: Liquid-crystal materials find a new order in biomedical applications. Nature Materials 6, 929–938 (2007)

    Article  Google Scholar 

  83. Ohm, C., et al.: Liquid Crystalline Elastomers as Actuators and Sensors. Advanced Materials 22, 3366–3387 (2010)

    Article  Google Scholar 

  84. Saito, Y., et al.: Laser-induced fluorescence imaging of plants using a liquid crystal tunable filter and charge coupled device imaging camera. Review of Scientific Instruments 76, 106103 (2005)

    Article  Google Scholar 

  85. Zuzak, K.J., et al.: Visible spectroscopic imaging studies of normal and ischemic dermal tissue. In: Proc. SPIE, vol. 3918, pp. 17–26 (2000)

    Google Scholar 

  86. Chen, C.Y., et al.: Liquid-crystal-based terahertz tunable Lyot filter. Appl. Phys. Lett. 88, 101107 (2006)

    Article  Google Scholar 

  87. McMurdy, J.W., et al.: Anemia detection utilizing diffuse reflectance of the palpebral conjunctiva and tunable liquid crystal filter technology. In: Proc. SPIE, vol. 6177, pp. 1–10 (2006)

    Google Scholar 

  88. Gebhart, S.C., et al.: Liquid-crystal tunable filter spectral imaging for brain tumor demarcation. Appl. Opt. 46, 1896–1910 (2007)

    Article  Google Scholar 

  89. Sorg, B.S., et al.: Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development. Journal of Biomedical Optics 10, 44004 (2005)

    Article  Google Scholar 

  90. Zuzak, K.J., et al.: Visible reflectance hyperspectral imaging: Characterization of a noninvasive, in vivo system for determining tissue perfusion. Analytical Chemistry 74, 2021–2028 (2002)

    Article  Google Scholar 

  91. Martin, M.E., et al.: Hyperspectral fluorescence imaging system for biomedical diagnostics. In: Proc. SPIE, vol. 6080, p. 60800 (2006)

    Google Scholar 

  92. Tingey, M.L., et al.: Imaging of affinity microcontact printed proteins by using liquid crystals. Langmuir 20, 6818–6826 (2004)

    Article  Google Scholar 

  93. Clare, B.H., Abbott, N.L.: Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events. Langmuir 21, 6451–6461 (2005)

    Article  Google Scholar 

  94. Hoogboom, J., et al.: LCD-based detection of enzymatic action. Chemical Communications 4, 434–435 (2006)

    Article  Google Scholar 

  95. Jang, C.H., et al.: Anchoring of nematic liquid crystals on viruses with different envelope structures. Nano Letters 6, 1053–1058 (2006)

    Article  Google Scholar 

  96. McCamley, M.K., et al.: Optical detection of sepsis markers using liquid crystal based biosensors. In: Proc. SPIE, vol. 6441, p. 64111Y (2007)

    Google Scholar 

  97. Mantovani, D.: Shape memory alloys: Properties and biomedical applications. Journal of the Minerals, Metals and Materials Society 52, 36–44 (2000)

    Article  Google Scholar 

  98. Duerig, T., et al.: An overview of nitinol medical applications. Materials Science and Engineering A 273-275, 149–160 (1999)

    Google Scholar 

  99. Simon, M., et al.: A vena cava filter using thermal shape memory alloy. Experimental aspects. Radiology 125, 8 (1977)

    Google Scholar 

  100. Es-Souni, M., Fischer-Brandies, H.: Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Analytical and Bioanalytical Chemistry 381, 557–567 (2005)

    Article  Google Scholar 

  101. Tarniţǎ, D., et al.: Properties and medical applications of shape memory alloys. Romanian Journal of Morphology and Embryology 50, 15–21 (2008)

    Google Scholar 

  102. Ye, Z.-G., et al.: Handbook of dielectric, piezoelectric and ferroelectric materials: synthesis, properties and applications. Woodhead Pub., Maney Pub. on behalf of The Institute of Materials, Minerals & Mining, CRC Press, Boca Raton (2008)

    Book  Google Scholar 

  103. Qi, Y., et al.: Piezoelectric Ribbons Printed onto Rubber for Flexible Energy Conversion. Nano Letters 10, 524–528 (2010)

    Article  Google Scholar 

  104. Qi, Y., McAlpine, M.C.: Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy & Environmental Science 3, 1275–1285 (2010)

    Article  Google Scholar 

  105. Qi, Y., et al.: Enhanced Piezoelectricity and Stretchability in Energy Harvesting Devices Fabricated from Buckled PZT Ribbons. Nano Letters 11, 1331–1336 (2011)

    Article  Google Scholar 

  106. Wang, Z.L.: Nanostructures of zinc oxide. Materials Today 7, 26–33 (2004)

    Article  Google Scholar 

  107. Baxter, F.R., et al.: Electrically active bioceramics: A review of interfacial responses. Annals of Biomedical Engineering 38, 2079–2092 (2010)

    Article  Google Scholar 

  108. Baxter, F.R., et al.: An in vitro study of electrically active hydroxyapatite-barium titanate ceramics using Saos-2 cells. Journal of Materials Science: Materials in Medicine 20, 1697–1708 (2009)

    Article  Google Scholar 

  109. Li, Z., et al.: Bioactive nano-titania ceramics with biomechanical compatibility prepared by doping with piezoelectric BaTiO 3. Acta Biomaterialia 5, 2189–2195 (2009)

    Article  Google Scholar 

  110. Dai, Y., et al.: Electric-field-induced deformation in boron nitride nanotubes. Journal of Physics D: Applied Physics 42 (2009)

    Google Scholar 

  111. Ciofani, G., et al.: Boron nitride nanotubes: An innovative tool for nanomedicine. Nano Today 4, 8–10 (2009)

    Article  Google Scholar 

  112. Ciofani, G., et al.: Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation. ACS Nano 4, 6267–6277 (2010)

    Article  Google Scholar 

  113. Wang, Z.L.: ZnO nanowire and nanobelt platform for nanotechnology. Materials Science and Engineering R: Reports 64, 33–71 (2009)

    Article  Google Scholar 

  114. Priya, S.: Advances in energy harvesting using low profile piezoelectric transducers. Journal of Electroceramics 19, 165–182 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Greco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-VerlagBerlin Heidelberg

About this chapter

Cite this chapter

Greco, F., Mattoli, V. (2012). Introduction to Active Smart Materials for Biomedical Applications. In: Ciofani, G., Menciassi, A. (eds) Piezoelectric Nanomaterials for Biomedical Applications. Nanomedicine and Nanotoxicology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28044-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28044-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28043-6

  • Online ISBN: 978-3-642-28044-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics