Skip to main content

Progression of Chronic Kidney Disease and Nephroprotection in Children

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Pediatric Nephrology

Abstract

Progression of chronic kidney disease (CKD) towards kidney replacement therapy is inevitable in some CKD patients and once significant impairment of kidney function has occurred it tends to progress almost irrespectively of the underlying kidney disorder.

In addition to the key players hypertension, proteinuria, and the renin-angiotensin system, other potential contributors such as the underlying kidney disease, age at onset, gender, genetic background, metabolic acidosis, renal anemia, altered mineral homeostasis, dyslipidemia, hyperuricemia, inflammation, and oxidative stress as well as general cardiovascular risk factors such as diabetes, smoking, and obesity also play a role. The current state of knowledge regarding the pathophysiology of kidney disease progression and therapeutic concepts will be discussed in this chapter.

H. W. Schnaper: deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Klag MJ, Whelton PK, Randall BL, Neaton JD, Brancati FL, Ford CE, et al. Blood pressure and end-stage renal disease in men. N Engl J Med. 1996;334(1):13–8. https://doi.org/10.1056/NEJM199601043340103.

    Article  CAS  PubMed  Google Scholar 

  2. Locatelli F, Marcelli D, Comelli M, Alberti D, Graziani G, Buccianti G, et al. Proteinuria and blood pressure as causal components of progression to end-stage renal failure. Northern Italian Cooperative Study Group. Nephrol Dial Transplant. 1996;11(3):461–7.

    CAS  PubMed  Google Scholar 

  3. Iseki K, Ikemiya Y, Iseki C, Takishita S. Proteinuria and the risk of developing end-stage renal disease. Kidney Int. 2003;63(4):1468–74. https://doi.org/10.1046/j.1523-1755.2003.00868.x.

    Article  PubMed  Google Scholar 

  4. Ardissino G, Dacco V, Testa S, Bonaudo R, Claris-Appiani A, Taioli E, et al. Epidemiology of chronic renal failure in children: data from the ItalKid project. Pediatrics. 2003;111(4 Pt 1):e382–7.

    PubMed  Google Scholar 

  5. Gonzalez Celedon C, Bitsori M, Tullus K. Progression of chronic renal failure in children with dysplastic kidneys. Pediatr Nephrol. 2007;22(7):1014–20. https://doi.org/10.1007/s00467-007-0459-5.

    Article  PubMed  Google Scholar 

  6. Wuhl E, van Stralen KJ, Verrina E, Bjerre A, Wanner C, Heaf JG, et al. Timing and outcome of renal replacement therapy in patients with congenital malformations of the kidney and urinary tract. Clin J Am Soc Nephrol. 2013;8(1):67–74. https://doi.org/10.2215/CJN.03310412.

    Article  PubMed  Google Scholar 

  7. Furth SL, Pierce C, Hui WF, White CA, Wong CS, Schaefer F, et al. Estimating time to ESRD in children with CKD. Am J Kidney Dis. 2018;71(6):783–92. https://doi.org/10.1053/j.ajkd.2017.12.011.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Centers for Disease Control and Prevention – Chronic Kidney Disease Initiative. https://www.cdc.gov/kidneydisease/prevention-risk/kidneys-blood-pressure.html (last access 30.05.2021).

  9. Harambat J, van Stralen KJ, Kim JJ, Tizard EJ. Epidemiology of chronic kidney disease in children. Pediatr Nephrol. 2012;27(3):363–73. https://doi.org/10.1007/s00467-011-1939-1.

    Article  PubMed  Google Scholar 

  10. Barisoni L, Schnaper HW, Kopp JB. A proposed taxonomy for the podocytopathies: a reassessment of the primary nephrotic diseases. Clin J Am Soc Nephrol. 2007;2(3):529–42.

    PubMed  Google Scholar 

  11. Fogo AB. Mesangial matrix modulation and glomerulosclerosis. Exp Nephrol. 1999;7(2):147–59. https://doi.org/10.1159/000020595.

    Article  CAS  PubMed  Google Scholar 

  12. Kriz W, Hahnel B, Hosser H, Rosener S, Waldherr R. Structural analysis of how podocytes detach from the glomerular basement membrane under hypertrophic stress. Front Endocrinol. 2014;5:207. https://doi.org/10.3389/fendo.2014.00207.

    Article  Google Scholar 

  13. Hodgkins KS, Schnaper HW. Tubulointerstitial injury and the progression of chronic kidney disease. Pediatr Nephrol. 2012;27(6):901–9. https://doi.org/10.1007/s00467-011-1992-9.

    Article  PubMed  Google Scholar 

  14. Furth SL, Abraham AG, Jerry-Fluker J, Schwartz GJ, Benfield M, Kaskel F, et al. Metabolic abnormalities, cardiovascular disease risk factors, and GFR decline in children with chronic kidney disease. Clin J Am Soc Nephrol. 2011;6(9):2132–40. https://doi.org/10.2215/CJN.07100810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Staples AO, Greenbaum LA, Smith JM, Gipson DS, Filler G, Warady BA, et al. Association between clinical risk factors and progression of chronic kidney disease in children. Clin J Am Soc Nephrol. 2010;5(12):2172–9. https://doi.org/10.2215/CJN.07851109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cerqueira DC, Soares CM, Silva VR, Magalhaes JO, Barcelos IP, Duarte MG, et al. A predictive model of progression of CKD to ESRD in a predialysis pediatric interdisciplinary program. Clin J Am Soc Nephrol. 2014;9(4):728–35. https://doi.org/10.2215/CJN.06630613.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kottgen A, Pattaro C, Boger CA, Fuchsberger C, Olden M, Glazer NL, et al. New loci associated with kidney function and chronic kidney disease. Nat Genet. 2010;42(5):376–84. https://doi.org/10.1038/ng.568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kottgen A, Glazer NL, Dehghan A, Hwang SJ, Katz R, Li M, et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat Genet. 2009;41(6):712–7. https://doi.org/10.1038/ng.377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boger CA, Gorski M, Li M, Hoffmann MM, Huang C, Yang Q, et al. Association of eGFR-related loci identified by GWAS with incident CKD and ESRD. PLoS Genet. 2011;7(9):e1002292. https://doi.org/10.1371/journal.pgen.1002292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wuttke M, Wong CS, Wuhl E, Epting D, Luo L, Hoppmann A, et al. Genetic loci associated with renal function measures and chronic kidney disease in children: the pediatric investigation for genetic factors linked with renal progression consortium. Nephrol Dial Transplant. 2016;31(2):262–9. https://doi.org/10.1093/ndt/gfv342.

    Article  CAS  PubMed  Google Scholar 

  21. Sanna-Cherchi S, Ravani P, Corbani V, Parodi S, Haupt R, Piaggio G, et al. Renal outcome in patients with congenital abnormalities of the kidney and urinary tract. Kidney Int. 2009;76:528–33.

    PubMed  Google Scholar 

  22. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ. 1989;298(6673):564–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Dotsch J, Plank C, Amann K. Fetal programming of renal function. Pediatr Nephrol. 2012;27(4):513–20. https://doi.org/10.1007/s00467-011-1781-5.

    Article  PubMed  Google Scholar 

  24. Uemura O, Ishikura K, Kaneko T, Hirano D, Hamasaki Y, Ogura M, et al. Perinatal factors contributing to chronic kidney disease in a cohort of Japanese children with very low birth weight. Pediatric nephrology. 2020; https://doi.org/10.1007/s00467-020-04791-1.

  25. Bakker H, Gaillard R, Franco OH, Hofman A, van der Heijden AJ, Steegers EA, et al. Fetal and infant growth patterns and kidney function at school age. J Am Soc Nephrol. 2014;25(11):2607–15. https://doi.org/10.1681/ASN.2013091003.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schaefer F, Mehls O. Hypertension in chronic kidney disease. In: Portman RJ, Sorof JM, Ingelfinger JR, editors. Pediatric hypertension. Totowa: Humana Press; 2004. p. 371–87.

    Google Scholar 

  27. Wingen AM, Fabian-Bach C, Schaefer F, Mehls O. Randomised multicentre study of a low-protein diet on the progression of chronic renal failure in children. European Study Group of Nutritional Treatment of chronic renal failure in childhood [see comments]. Lancet. 1997;349:1117–23.

    CAS  PubMed  Google Scholar 

  28. Hanratty R, Chonchol M, Havranek EP, Powers JD, Dickinson LM, Ho PM, et al. Relationship between blood pressure and incident chronic kidney disease in hypertensive patients. Clin J Am Soc Nephrol. 2011;6(11):2605–11. https://doi.org/10.2215/CJN.02240311.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Reynolds BC, Roem JL, Ng DKS, Matsuda-Abedini M, Flynn JT, Furth SL, et al. Association of time-varying blood pressure with chronic kidney disease progression in children. JAMA Netw Open. 2020;3(2):e1921213. https://doi.org/10.1001/jamanetworkopen.2019.21213.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Timio M, Venanzi S. “Non-dipper” hypertensive patients and progressive renal insufficiency: a 3-year longitudinal study. Clin Nephrol. 1995;43(6):382–7.

    CAS  PubMed  Google Scholar 

  31. Tsioufis C, Andrikou I, Thomopoulos C, Petras D, Manolis A, Stefanadis C. Comparative prognostic role of nighttime blood pressure and nondipping profile on renal outcomes. Am J Nephrol. 2011;33(3):277–88. https://doi.org/10.1159/000324697.

    Article  PubMed  Google Scholar 

  32. Tarver-Carr M, Brancati F, Eberhardt M, Powe N. Proteinuria and the risk of chronic kidney disease (CKD) in the United States. J Am Soc Nephrol. 2000;11:168A.

    Google Scholar 

  33. Iseki K, Kinjo K, Iseki C, Takishita S. Relationship between predicted creatinine clearance and proteinuria and the risk of developing ESRD in Okinawa, Japan. Am J Kidney Dis. 2004;44(5):806–14.

    CAS  PubMed  Google Scholar 

  34. Peterson JC, Adler S, Burkart JM, Greene T, Hebert LA, Hunsicker LG, et al. Blood pressure control, proteinuria, and the progression of renal disease. The Modification of Diet in Renal Disease Study. Ann Intern Med. 1995;123:754–62.

    CAS  PubMed  Google Scholar 

  35. Remuzzi G, Ruggenenti P, Perico N. Chronic renal disease: renoprotective benefits of renin-angiotensin system inhibition. Ann Intern Med. 2002;136:604–15.

    CAS  PubMed  Google Scholar 

  36. Ruggenenti P, Perna A, Mosconi L, Matalone M, Pisoni R, Gaspari F, et al. Proteinuria predicts end-stage renal failure in non-diabetic chronic nephropathies. The “Gruppo Italiano di Studi Epidemiologici in Nefrologia” (GISEN). Kidney Int Suppl. 1997;63:S54–S7.

    CAS  PubMed  Google Scholar 

  37. Ardissino G, Testa S, Dacco V, Vigano S, Taioli E, Claris-Appiani A, et al. Proteinuria as a predictor of disease progression in children with hypodysplastic nephropathy. Pediatr Nephrol. 2004;19:172–7.

    PubMed  Google Scholar 

  38. Wong CS, Pierce CB, Cole SR, Warady BA, Mak RH, Benador NM, et al. Association of proteinuria with race, cause of chronic kidney disease, and glomerular filtration rate in the chronic kidney disease in children study. Clin J Am Soc Nephrol. 2009;4(4):812–9. https://doi.org/10.2215/CJN.01780408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fathallah-Shaykh SA, Flynn JT, Pierce CB, Abraham AG, Blydt-Hansen TD, Massengill SF, et al. Progression of pediatric CKD of nonglomerular origin in the CKiD cohort. Clin J Am Soc Nephrol. 2015;10(4):571–7. https://doi.org/10.2215/CJN.07480714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wühl E, Trivelli A, Picca S, Litwin M, Peco-Antic A, Zurowska A, et al. Strict blood pressure control and renal failure progression in children. The ESCAPE trial group. N Engl J Med. 2009;361:1639–50.

    PubMed  Google Scholar 

  41. van den Belt SM, Heerspink HJL, Gracchi V, de Zeeuw D, Wuhl E, Schaefer F, et al. Early proteinuria lowering by angiotensin-converting enzyme inhibition predicts renal survival in children with CKD. J Am Soc Nephrol. 2018;29(8):2225–33. https://doi.org/10.1681/ASN.2018010036.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Saland JM, Pierce CB, Mitsnefes MM, Flynn JT, Goebel J, Kupferman JC, et al. Dyslipidemia in children with chronic kidney disease. Kidney Int. 2010;78(11):1154–63. https://doi.org/10.1038/ki.2010.311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Muntner P, Coresh J, Clinton Smith J, Eckfeldt J, Klag MJ. Plasma lipids and risk of developing renal dysfunction: the atherosclerosis risk in communities study. Kidney Int. 2000;58:293–301.

    CAS  PubMed  Google Scholar 

  44. Saland MJ, Ginsberg H, Fisher EA. Dyslipidemia in pediatric renal disease: epidemiology, pathophysiology, and management. Curr Opin Pediatr. 2002;14:197–204.

    PubMed  Google Scholar 

  45. Cheng SC, Chu TS, Huang KY, Chen YM, Chang WK, Tsai TJ, et al. Association of hypertriglyceridemia and insulin resistance in uremic patients undergoing CAPD. Perit Dial Int. 2001;21:282–9.

    CAS  PubMed  Google Scholar 

  46. Mak RH. 1,25-Dihydroxyvitamin D3 corrects insulin and lipid abnormalities in uremia. Kidney Int. 1998;53:1353–7.

    CAS  PubMed  Google Scholar 

  47. Mak RH. Effect of metabolic acidosis on hyperlipidemia in uremia. Pediatr Nephrol. 1999;13:891–3.

    CAS  PubMed  Google Scholar 

  48. Chen J, Muntner P, Hamm LL, Jones DW, Batuman V, Fonseca V, et al. The metabolic syndrome and chronic kidney disease in US adults. Ann Intern Med. 2004;140:167–74.

    PubMed  Google Scholar 

  49. Bagby SP. Obesity-initiated metabolic syndrome and the kidney: a recipe for chronic kidney disease? J Am Soc Nephrol. 2004;15(11):2775–91. https://doi.org/10.1097/01.ASN.0000141965.28037.EE.

    Article  PubMed  Google Scholar 

  50. Herget-Rosenthal S, Dehnen D, Kribben A, Quellmann T. Progressive chronic kidney disease in primary care: modifiable risk factors and predictive model. Prev Med. 2013;57(4):357–62. https://doi.org/10.1016/j.ypmed.2013.06.010.

    Article  PubMed  Google Scholar 

  51. Wang Y, Chen X, Song Y, Caballero B, Cheskin LJ. Association between obesity and kidney disease: a systematic review and meta-analysis. Kidney Int. 2008;73(1):19–33. https://doi.org/10.1038/sj.ki.5002586.

    Article  CAS  PubMed  Google Scholar 

  52. Dobre M, Yang W, Chen J, Drawz P, Hamm LL, Horwitz E, et al. Association of serum bicarbonate with risk of renal and cardiovascular outcomes in CKD: a report from the Chronic Renal Insufficiency Cohort (CRIC) study. Am J Kidney Dis. 2013;62(4):670–8. https://doi.org/10.1053/j.ajkd.2013.01.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Harambat J, Kunzmann K, Azukaitis K, Bayazit AK, Canpolat N, Doyon A, et al. Metabolic acidosis is common and associates with disease progression in children with chronic kidney disease. Kidney Int. 2017;92(6):1507–14. https://doi.org/10.1016/j.kint.2017.05.006.

    Article  CAS  PubMed  Google Scholar 

  54. Feig DI. Uric acid: a novel mediator and marker of risk in chronic kidney disease? Curr Opin Nephrol Hypertens. 2009;18(6):526–30. https://doi.org/10.1097/MNH.0b013e328330d9d0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Madero M, Sarnak MJ, Wang X, Greene T, Beck GJ, Kusek JW, et al. Uric acid and long-term outcomes in CKD. Am J Kidney Dis. 2009;53(5):796–803. https://doi.org/10.1053/j.ajkd.2008.12.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rodenbach KE, Schneider MF, Furth SL, Moxey-Mims MM, Mitsnefes MM, Weaver DJ, et al. Hyperuricemia and progression of CKD in children and adolescents: the Chronic Kidney Disease in Children (CKiD) Cohort Study. Am J Kidney Dis. 2015;66(6):984–92. https://doi.org/10.1053/j.ajkd.2015.06.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Poulianiti KP, Kaltsatou A, Mitrou GI, Jamurtas AZ, Koutedakis Y, Maridaki M, et al. Systemic redox imbalance in chronic kidney disease: a systematic review. Oxidative Med Cell Longev. 2016;2016:8598253. https://doi.org/10.1155/2016/8598253.

    Article  CAS  Google Scholar 

  58. Wolf M. Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int. 2012;82(7):737–47. https://doi.org/10.1038/ki.2012.176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee S, Kang S, Joo YS, Lee C, Nam KH, Yun HR, et al. Smoking, smoking cessation, and progression of chronic kidney disease: results from KNOW-CKD Study. Nicotine Tob Res. 2021;23(1):92–8. https://doi.org/10.1093/ntr/ntaa071.

    Article  PubMed  Google Scholar 

  60. Omoloja A, Jerry-Fluker J, Ng DK, Abraham AG, Furth S, Warady BA, et al. Secondhand smoke exposure is associated with proteinuria in children with chronic kidney disease. Pediatr Nephrol. 2013;28(8):1243–51. https://doi.org/10.1007/s00467-013-2456-1.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bakris GL, Williams M, Dworkin L, Elliot WJ, Epstein M, Toto R, et al. Preserving renal function in adults with hypertension and diabetes: a consensus approach. National Kidney Foundation Hypertension and Diabetes Executive Committees Working Group. Am J Kidney Dis. 2000;36:646–61.

    CAS  PubMed  Google Scholar 

  62. Sarnak MJ, Greene T, Wang X, Beck G, Kusek JW, Collins AJ, et al. The effect of a lower target blood pressure on the progression of kidney disease: long-term follow-up of the modification of diet in renal disease study. Ann Intern Med. 2005;142:342–51.

    PubMed  Google Scholar 

  63. Klahr S, Levy AD, Beck GJ. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. N Engl J Med. 1994;330:877–84.

    CAS  PubMed  Google Scholar 

  64. Wright JT Jr, Bakris G, Greene T, Agodoa LY, Appel LJ, Charleston J, et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. JAMA. 2002;288:2421–31.

    CAS  PubMed  Google Scholar 

  65. Schrier RW, Estacio RO, Mehler PS, Hiatt WR. Appropriate blood pressure control in hypertensive and normotensive type 2 diabetes mellitus: a summary of the ABCD trial. Nat Clin Pract Nephrol. 2008;3:428–38.

    Google Scholar 

  66. Ruggenenti P, Perna A, Loriga G, Ganeva M, Ene-Iordache B, Turturro M, et al. Blood pressure control for renoprotection in patients with non-diabetic chronic renal disease (REIN-2): multicenter, randomized controlled trial. Lancet. 2005;365:939–46.

    PubMed  Google Scholar 

  67. Appel LJ, Wright JT Jr, Greene T, Agodoa LY, Astor BC, Bakris GL, et al. Intensified blood-pressure control in hypertensive chronic kidney disease. N Engl J Med. 2010;363:918–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lv J, Ehteshami P, Sarnak MJ, Tighiouart H, Jun M, Ninomiya T, et al. Effects of intensive blood pressure lowering on the progression of chronic kidney disease: a systematic review and meta-analysis. CMAJ. 2013;185(11):949–57. https://doi.org/10.1503/cmaj.121468.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lurbe E, Agabiti-Rosei E, Cruickshank JK, Dominiczak A, Erdine S, Hirth A, et al. 2016 European Society of hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016;34(10):1887–920. https://doi.org/10.1097/HJH.0000000000001039.

    Article  CAS  PubMed  Google Scholar 

  70. Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics. 2017;140(3). https://doi.org/10.1542/peds.2017-1904.

  71. SPRINT Research Group, Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373(22):2103–16. https://doi.org/10.1056/NEJMoa1511939.

    Article  CAS  Google Scholar 

  72. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Hypertension. 2018;71(6):1269–324. https://doi.org/10.1161/HYP.0000000000000066.

    Article  CAS  PubMed  Google Scholar 

  73. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018; https://doi.org/10.1093/eurheartj/ehy339.

  74. Randomized placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nephrologia). Lancet. 1997;349:1857–63.

    Google Scholar 

  75. Remuzzi G, Ruggenenti P, Benigni A. Understanding the nature of renal disease progression. Kidney Int. 1997;51:2–15.

    CAS  PubMed  Google Scholar 

  76. Jafar TH, Schmid CH, Landa M, Giatras I, Toto R, Remuzzi G, et al. Angiotensin-converting enzyme inhibitors and progression of nondiabetic renal disease. A meta-analysis of patient-level data. Ann Intern Med. 2001;135(2):73–87.

    CAS  PubMed  Google Scholar 

  77. Ruggenenti P, Schieppati A, Remuzzi G. Progression, remission, regression of chronic renal diseases. Lancet. 2001;357:1601–8.

    CAS  PubMed  Google Scholar 

  78. Schrier RW, Estacio RO, Esler A, Mehler P. Effects of aggressive blood pressure control in normotensive type 2 diabetic patients on albuminuria, retinopathy and strokes. Kidney Int. 2002;61:1086–97.

    PubMed  Google Scholar 

  79. Jafar TH, Stark PC, Schmid CH, Landa M, Maschio G, de Jong PE, et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann Intern Med. 2003;139(4):244–52.

    CAS  PubMed  Google Scholar 

  80. Ruggenenti P, Perna A, Gherardi G, Garini G, Zoccali C, Salvadori M, et al. Renoprotective properties of ACE-inhibition in non-diabetic nephropathies with non-nephrotic proteinuria. Lancet. 1999;354(9176):359–64. https://doi.org/10.1016/S0140-6736(98)10363-X.

    Article  CAS  PubMed  Google Scholar 

  81. Brenner BM, Cooper ME, DeZeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–9.

    CAS  PubMed  Google Scholar 

  82. Lewis EJ, Hunsicker LG, Raymond PB, Rohde RD, for the Collaborative Study Group. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N Engl J Med. 1993;329:1456–62.

    CAS  PubMed  Google Scholar 

  83. Maschio G, Alberti D, Janin G, Locatelli F, Mann JF, Motolese M, et al. Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N Engl J Med. 1996;334(15):939–45. https://doi.org/10.1056/NEJM199604113341502.

    Article  CAS  PubMed  Google Scholar 

  84. Hannedouche T, Landais P, Goldfarb B, elEsper N, Fournier A, Godin M, et al. Randomised controlled trial of enalapril and beta blockers in non-diabetic chronic renal failure. BMJ. 1994;309:833–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bomback AS, Klemmer PJ. The incidence and implications of aldosterone breakthrough. Nat Clin Pract Nephrol. 2007;3:486–92.

    CAS  PubMed  Google Scholar 

  86. Ruggenenti P, Perna A, Remuzzi G. Retarding progression of chronic renal disease: the neglected issue of residual proteinuria. Kidney Int. 2003;63:2254–61.

    CAS  PubMed  Google Scholar 

  87. Bakris GL, Weir MR. Angiotensin-converting enzyme inhibitor-associated elevations in serum creatinine: is this a cause for concern? Arch Int Med. 2000;160:685–93.

    CAS  Google Scholar 

  88. van den Belt SM, Heerspink HJL, Kirchner M, Gracchi V, Thurn-Valsassina D, Bayazit AK, et al. Discontinuation of RAAS inhibition in children with advanced CKD. Clin J Am Soc Nephrol. 2020;15(5):625–32. https://doi.org/10.2215/CJN.09750819.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Doulton TW, He FJ, MacGregor FA. Systemic review of combined angiotensin-converting enzyme inhibition and angiotensin receptor blockade in hypertension. Hypertension. 2005;45:880–6.

    CAS  PubMed  Google Scholar 

  90. MacKinnon M, Shurraw S, Akbari A, Knoll GA, Jaffey J, Clark HD. Combination therapy with an angiotensin receptor blocker and an ACE inhibitor in proteinuric renal disease: a systematic review of the efficacy and safety data. Am J Kidney Dis. 2006;48:8–20.

    CAS  PubMed  Google Scholar 

  91. Investigators O, Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, et al. Renal outcomes with telmisartan, ramipril, or both, in patients at high vascular risk (the ONTARGET study): a multicenter, randomized, double-blind, controlled trial. N Engl J Med. 2008;358:1547–59.

    Google Scholar 

  92. Mann JF, Schmieder RF, McQueen M, Dyal L, Schumacher H, pogue J, et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet. 2008;372:547–53.

    CAS  PubMed  Google Scholar 

  93. Abutaleb N. ONTARGET should not be over interpreted. Nephrol Dial Transplant. 2010;25(1):44–7. https://doi.org/10.1093/ndt/gfp633.

    Article  PubMed  Google Scholar 

  94. White WB, Carr AA, Krause S, Jordan R, Roniker B, Oigman W. Assessment of the novel selective aldosterone blocker eplerenone using ambulatory and clinical blood pressure in patients with systemic hypertension. Am J Cardiol. 2003;92:38–42.

    CAS  PubMed  Google Scholar 

  95. Chung EY, Ruospo M, Natale P, Bolignano D, Navaneethan SD, Palmer SC, et al. Aldosterone antagonists in addition to renin angiotensin system antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev. 2020;10:CD007004. https://doi.org/10.1002/14651858.CD007004.pub4.

    Article  PubMed  Google Scholar 

  96. Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 2020;383(23):2219–29. https://doi.org/10.1056/NEJMoa2025845.

    Article  CAS  PubMed  Google Scholar 

  97. Oparil S, Yarows SA, Patel S, Fang H, Zhang J, Satlin A. Efficacy and safety of combined use of aliskiren and valsartan in patients with hypertension: a randomized, double-blind trial. Lancet. 2007;370:221–9.

    CAS  PubMed  Google Scholar 

  98. Wilmer WA, Rovin BH, Hebert CJ, Rao SV, Kumor K, Hebert LA. Management of glomerular proteinuria: a commentary. J Am Soc Nephrol. 2003;14:3217–32.

    CAS  PubMed  Google Scholar 

  99. Parving HH, Andersen AR, Smidt UM, Svendsen PA. Early aggressive antihypertensive treatment reduces rate of decline in kidney function in diabetic nephropathy. Lancet. 1983;1:1175–9.

    CAS  PubMed  Google Scholar 

  100. Flynn JT, Mitsnefes M, Pierce C, Cole SR, Parekh RS, Furth SL, et al. Blood pressure in children with chronic kidney disease: a report from the Chronic Kidney Disease in Children study. Hypertension. 2008;52(4):631–7. https://doi.org/10.1161/HYPERTENSIONAHA.108.110635.

    Article  CAS  PubMed  Google Scholar 

  101. Hermida RC, Ayala DE, Mojón A, Fernández JR. Bedtime dosing of antihypertensive medications reduces cardiovascular risk in CKD. J Am Soc Nephrol. 2011;22:2313–21.

    PubMed  PubMed Central  Google Scholar 

  102. Heerspink HJL, Kosiborod M, Inzucchi SE, Cherney DZI. Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney Int. 2018;94(1):26–39. https://doi.org/10.1016/j.kint.2017.12.027.

    Article  CAS  PubMed  Google Scholar 

  103. Piperidou A, Sarafidis P, Boutou A, Thomopoulos C, Loutradis C, Alexandrou ME, et al. The effect of SGLT-2 inhibitors on albuminuria and proteinuria in diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. J Hypertens. 2019;37(7):1334–43. https://doi.org/10.1097/HJH.0000000000002050.

    Article  CAS  PubMed  Google Scholar 

  104. Piperidou A, Loutradis C, Sarafidis P. SGLT-2 inhibitors and nephroprotection: current evidence and future perspectives. J Hum Hypertens. 2020. https://doi.org/10.1038/s41371-020-00393-4.

  105. Mak RH. Metabolic effects of erythropoietin in patients on peritoneal dialysis. Pediatr Nephrol. 1998;12:660–5.

    CAS  PubMed  Google Scholar 

  106. Wanner C, Tonelli M, Kidney Disease: Improving Global Outcomes Lipid Guideline Development Work Group Members. KDIGO clinical practice guideline for lipid management in CKD: summary of recommendation statements and clinical approach to the patient. Kidney Int. 2014;85(6):1303–9. https://doi.org/10.1038/ki.2014.31.

    Article  CAS  PubMed  Google Scholar 

  107. Sanguankeo A, Upala S, Cheungpasitporn W, Ungprasert P, Knight EL. Effects of statins on renal outcome in chronic kidney disease patients: a systematic review and meta-analysis. PLoS One. 2015;10(7):e0132970. https://doi.org/10.1371/journal.pone.0132970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hu PJ, Wu MY, Lin TC, Chen TT, Wu YC, Su SL, et al. Effect of statins on renal function in chronic kidney disease patients. Sci Rep. 2018;8(1):16276. https://doi.org/10.1038/s41598-018-34632-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Martinez-Arias L, Panizo S, Alonso-Montes C, Martin-Virgala J, Martin-Carro B, Fernandez-Villabrille S, et al. Effects of calcitriol and paricalcitol on renal fibrosis in CKD. Nephrol Dial Transplant. 2021. https://doi.org/10.1093/ndt/gfaa373.

  110. Shroff R, Aitkenhead H, Costa N, Trivelli A, Litwin M, Picca S, et al. Normal 25-hydroxyvitamin D levels are associated with less proteinuria and attenuate renal failure progression in children with CKD. J Am Soc Nephrol. 2016;27(1):314–22. https://doi.org/10.1681/ASN.2014090947.

    Article  CAS  PubMed  Google Scholar 

  111. Patel L, Bernard LM, Elder GJ. Sevelamer versus calcium-based binders for treatment of hyperphosphatemia in CKD: a meta-analysis of randomized controlled trials. Clin J Am Soc Nephrol. 2016;11(2):232–44. https://doi.org/10.2215/CJN.06800615.

    Article  CAS  PubMed  Google Scholar 

  112. de Brito-Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol. 2009;20:2075–84.

    PubMed  PubMed Central  Google Scholar 

  113. Siu YP, Leung KT, Tong MK, Kwan TH. Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am J Kidney Dis. 2006;47:51–9.

    CAS  PubMed  Google Scholar 

  114. Whelton A, Macdonald PA, Zhao L, Hunt B, Gunawardhana L. Renal function in gout: long-term treatment effects of febuxostat. J Clin Rheumatol. 2011;17(1):7–13. https://doi.org/10.1097/RHU.0b013e318204aab4.

    Article  PubMed  Google Scholar 

  115. Badve SV, Pascoe EM, Tiku A, Boudville N, Brown FG, Cass A, et al. Effects of allopurinol on the progression of chronic kidney disease. N Engl J Med. 2020;382(26):2504–13. https://doi.org/10.1056/NEJMoa1915833.

    Article  CAS  PubMed  Google Scholar 

  116. Levey AS, Adler S, Caggiula AW, England BK, Greene T, Hunsicker LG, et al. Effects of dietary protein restriction on the progression of advanced renal disease in the Modification of Diet in Renal Disease Study. Am J Kidney Dis. 1996;27(5):652–63.

    CAS  PubMed  Google Scholar 

  117. Chaturvedi S, Jones C. Protein restriction for children with chronic renal failure. Cochrane Database Syst Rev. 2007;(4):Cd006863. https://doi.org/10.1002/14651858.cd006863.

  118. Cho ME, Kopp JB. Pirfenidone: an anti-fibrotic therapy for progressive kidney disease. Expert Opin Investig Drugs. 2010;19(2):275–83. https://doi.org/10.1517/13543780903501539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Allinovi M, De Chiara L, Angelotti ML, Becherucci F, Romagnani P. Anti-fibrotic treatments: a review of clinical evidence. Matrix Biol. 2018;68–69:333–54. https://doi.org/10.1016/j.matbio.2018.02.017.

    Article  CAS  PubMed  Google Scholar 

  120. Mann JF, Green D, Jamerson K, Ruilope LM, Kuranoff SJ, Littke T, et al. Avosentan for overt diabetic nephropathy. J Am Soc Nephrol. 2010;21:527–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Heerspink HJL, Parving HH, Andress DL, Bakris G, Correa-Rotter R, Hou FF, et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet. 2019;393(10184):1937–47. https://doi.org/10.1016/S0140-6736(19)30772-X.

    Article  CAS  PubMed  Google Scholar 

  122. Trachtman H, Nelson P, Adler S, Campbell KN, Chaudhuri A, Derebail VK, et al. DUET: a phase 2 study evaluating the efficacy and safety of sparsentan in patients with FSGS. J Am Soc Nephrol. 2018;29(11):2745–54. https://doi.org/10.1681/ASN.2018010091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu D, Wang LN, Li HX, Huang P, Qu LB, Chen FY. Pentoxifylline plus ACEIs/ARBs for proteinuria and kidney function in chronic kidney disease: a meta-analysis. J Int Med Res. 2017;45(2):383–98. https://doi.org/10.1177/0300060516663094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Judge PK, Haynes R. TaleNeprilysin and Neprilysin inhibition in chronic kidney disease. Curr Opin Nephrol Hypertens. 2021;30(1):123–30. https://doi.org/10.1097/MNH.0000000000000659.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke Wühl .

Editor information

Editors and Affiliations

Additional information

In memory of H. William Schnaper, an outstanding person and a great teacher who paved the way to understanding the pathophysiology of chronic kidney disease

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wühl, E., Schnaper, H.W. (2021). Progression of Chronic Kidney Disease and Nephroprotection in Children. In: Emma, F., Goldstein, S., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27843-3_58-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27843-3_58-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27843-3

  • Online ISBN: 978-3-642-27843-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Progression of Chronic Kidney Disease and Nephroprotection in Children
    Published:
    23 November 2021

    DOI: https://doi.org/10.1007/978-3-642-27843-3_58-2

  2. Original

    Pathophysiology of Progressive Renal Disease in Children
    Published:
    22 June 2015

    DOI: https://doi.org/10.1007/978-3-642-27843-3_58-1