Skip to main content

Classification and Quantitation of Human Cataract

  • Living reference work entry
  • First Online:
Albert and Jakobiec's Principles and Practice of Ophthalmology

Abstract

Cataract classification is the designation of the type or severity of cataract, or both, according to a standardized, valid methodology. Originally based simply on the need to accurately describe different types or severities of cataract encountered in the clinic, it has become an important tool in ophthalmologic and epidemiologic research. That age-related opacification of the lens did not take a single form was apparent to those who first examined the lens with an ophthalmoscope. Simply recording what was seen yielded the classes of cortical, nuclear, posterior subcapsular, and mixed cataract. They were noted to occur in different individuals, at different times in life, and often were associated with different diseases. The classification of a cataract did not determine the cataract’s ultimate treatment, since intra- and extracapsular extractions were effective for all cataracts. In this chapter, we describe the need for cataract classification, in vitro and in vivo classification systems, multidimensional scaling, and time-honored LOCS I, II, and III systems. Additionally, we discuss other classification systems including the Wilmer system, Oxford system, Japanese Cooperative Cataract Epidemiology Study Group system, Wisconsin Cataract Grading System and AREDS Lens Opacity grading protocol, and WHO’s simplified cataract grading system. We also discuss objective systems of measuring cataracts including lens photography and digital imaging, wavefront analysis, Scheimpflug photography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bencic G, Zoric-Gerber M, Saric D, et al. Clinical importance of Lens Opacities Classification System III (LOCS III) in phacoemulsification. Coll Antropol. 2005;29(Suppl 1):91–4.

    PubMed  Google Scholar 

  2. Davison JA. Ultrasonic power reduction during phacoemulsification using adjunctive NeoSoniX technology. J Cataract Refract Surg. 2005;31:1015–9.

    Article  PubMed  Google Scholar 

  3. Smith JMA, El-Brawany M, Nassin D, Tababdeh H, Thompson GM. The relationship between nuclear colour and opalescence on the LOCS III scale and physical characteristics of cataract nuclei. Eye. 2002;16:543–51.

    Article  CAS  PubMed  Google Scholar 

  4. Klein BEK, Hubbard L, Ferrier NJ, et al. Detecting progression of nuclear sclerosis by using human grading versus semiautomated computer grading. Invest Ophthalmol Vis Sci. 2005;46:1155–62.

    Article  PubMed  Google Scholar 

  5. Duncan DD, Shukla OB, West SK, Schein OD. New objective classification system for nuclear opacification. J Opt Soc Am A. 1997;14:1197–204.

    Article  CAS  Google Scholar 

  6. National Advisory Eye Council, Cataract Panel. Vision research: a national plan: 1983–1987. NIH publication no. 83-2470. Washington, DC: National Institutes of Health; 1983.

    Google Scholar 

  7. Helen Keller International. To restore sight: the global conquest of cataract blindness. Great Neck: Helen Keller International; 1986.

    Google Scholar 

  8. Thylefors B, Negrel AD, Pararajasegaram R, Dadzie KY. Available data on blindness (update 1994). Ophthalmic Epidemiol. 1995;2:5–39.

    Article  CAS  PubMed  Google Scholar 

  9. WHO. Management of cataract in primary health care services. WHO publication no. 1152344. 2nd ed. Geneva: WHO; 1996.

    Google Scholar 

  10. Chylack LT Jr, Lee MR, Tung WH, Cheng HM. Classification of human senile cataractous change by the American Cooperative Cataract Research Group (CCRG) method. I. Instrumentation and technique. Invest Ophthalmol Vis Sci. 1983;24:424–31.

    PubMed  Google Scholar 

  11. Chylack LT Jr. Classification of human cataracts. Arch Ophthalmol. 1978;96:888–92.

    Article  PubMed  Google Scholar 

  12. Chylack LT Jr, Leske MC, McCarthy D, et al. Lens Opacities Classification System II (LOCS II). Arch Ophthalmol. 1989;107:991–7.

    Article  PubMed  Google Scholar 

  13. Chylack LT Jr, Wolfe JK, Singer DM, et al. The Lens Opacities Classification System III. The Longitudinal Study of Cataract Study Group. Arch Ophthalmol. 1993;111:831–6.

    Article  PubMed  Google Scholar 

  14. Thylefors B, Chylack LT Jr, Konyamia K, et al. A simplified cataract grading system – the WHO Cataract Grading Group, WHO/PBD. Geneva: WHO; 1997.

    Google Scholar 

  15. Available: http://www.who.int/ncd/vision2020_actionplan/documents/WHOPBLEyeExaminationRec.jpg

  16. Pirie A. Color and solubility of the proteins of human cataracts. Investig Ophthalmol. 1968;7:634–50.

    CAS  Google Scholar 

  17. Truscott RJW, Augusteyn RC. Changes in human lens proteins during nuclear cataract formation. Exp Eye Res. 1977;24:159–70.

    Article  CAS  PubMed  Google Scholar 

  18. Marcantonio JM, Duncan G, Davies PD, et al. Classification of human senile cataracts by nuclear colour and sodium content. Exp Eye Res. 1980;31:227–37.

    Article  CAS  PubMed  Google Scholar 

  19. Chylack LT Jr, Ransil BJ, White O, et al. Classification of human senile cataractous change by the American Cooperative Research Group (CCRG) method. III. The association of nuclear color (sclerosis) with extent of cataract formation, age, and visual acuity. Invest Ophthalmol Vis Sci. 1984;25:174–80.

    PubMed  Google Scholar 

  20. Harding CV, Chylack LT Jr, Susan SR, et al. Elemental and ultrastructural analysis of specific human lens opacities. Invest Ophthalmol Vis Sci. 1982;23:1–13.

    CAS  PubMed  Google Scholar 

  21. Harding CV, Chylack LT Jr, Susan SR, et al. Calcium-containing opacities in the human lens. Invest Ophthalmol Vis Sci. 1983;24:1194–202.

    CAS  PubMed  Google Scholar 

  22. Chylack LT Jr, Rosner B, Garner W, et al. Validity and reproducibility of the Cooperative Cataract Research Group (CCRG) cataract classification system. Exp Eye Res. 1985;40:135–47.

    Article  PubMed  Google Scholar 

  23. Chylack LT Jr. Classification of human cataractous change by the American Cooperative Cataract Research Group method. Ciba Found Symp. 1984;106:3–24.

    PubMed  Google Scholar 

  24. Duncan G. On classifying human cataractous lens. In: Duncan G, editor. Mechanisms of cataract formation in the human lens. Orlando: Academic; 1981.

    Google Scholar 

  25. Leske MC, Sperduto R. The epidemiology of senile cataracts: a review. Am J Epidemiol. 1983;118:152–65.

    Article  CAS  PubMed  Google Scholar 

  26. West SK, Taylor HR. The detection and grading of cataract: an epidemiologic approach. Surv Ophthalmol. 1986;31:175–84.

    Article  CAS  PubMed  Google Scholar 

  27. Baez KA, Orengo S, Gandham S, Spaeth GL. Intraobserver and interobserver reproducibility of the Nidek EAS-1000 anterior eye segment analysis system. Ophthalmic Surg. 1992;23:426–8.

    CAS  PubMed  Google Scholar 

  28. Sparrow JM, Brown NAP, Shun-Shin GA, Bron AJ. The Oxford modular cataract image analysis system. Eye. 1990;4:638–48.

    Article  PubMed  Google Scholar 

  29. Chylack LT Jr, Leske MC, Sperduto R, et al. Lens Opacities Classification System. Arch Ophthalmol. 1988;106:330–4.

    Article  PubMed  Google Scholar 

  30. Taylor HR, West SK. A simple system for the clinical grading of lens opacities. Yan Ke Xue Bao. 1988;4:14–8.

    CAS  PubMed  Google Scholar 

  31. Adamsons I, Taylor KI, Enger C, Taylor HR. A new method for documenting lens opacities. Am J Ophthalmol. 1991;111:65–70.

    Article  CAS  PubMed  Google Scholar 

  32. Adamsons I, Munoz B, Enger C, Taylor HR. Prevalence of lens opacities in surgical and general populations. Arch Ophthalmol. 1991;109:993–7.

    Article  CAS  PubMed  Google Scholar 

  33. Lee JA, Taylor HR. Evaluation of photographic methods for documentation of lens opacities. Invest Ophthalmol Vis Sci. 1990;31:1191–3.

    CAS  PubMed  Google Scholar 

  34. Taylor HR, Munoz B. The incidence and progression of lens opacities. Aust N Z J Ophthalmol. 1991;19:353–6.

    Article  CAS  PubMed  Google Scholar 

  35. West SK, Rosenthal F, Newland HS, et al. Use of photographic techniques to grade nuclear cataracts. Invest Ophthalmol Vis Sci. 1988;29:73–7.

    CAS  PubMed  Google Scholar 

  36. Sasaki K, Shibata T, Obazawa H, et al. A cataract classification and grading system. Nippon Ganka Gakkai Zasshi. 1989;93:796–800.

    CAS  PubMed  Google Scholar 

  37. Sasaki K, Sakamoto Y, Fujisawa K, et al. A new grading system for nuclear cataracts – an alternative to the Japanese Cooperative Cataract Epidemiology Study Group’s grading system. Dev Ophthalmol. 1997;27:42–9.

    Article  CAS  PubMed  Google Scholar 

  38. Sparrow JM, Bron AJ, Brown NAP, et al. The Oxford clinical cataract classification and grading system. Int Ophthalmol. 1986;9:207–25.

    Article  CAS  PubMed  Google Scholar 

  39. Getty DJ, Pickett RM, Chylack LT Jr, et al. An enriched set of features of nuclear cataract identified by multidimensional scaling. Curr Eye Res. 1989;8:1–8.

    Article  CAS  PubMed  Google Scholar 

  40. Rouhiainen P, Rouhiainen H, Notkola IL, Salonen JT. Comparison of the Lens Opacities Classification System II and Lensmeter 701. Am J Ophthalmol. 1993;116:617–21.

    Article  CAS  PubMed  Google Scholar 

  41. Leske MC, Chylack LT Jr, Wu S-Y. The lens opacities case-control study. Risk factors for cataract. Arch Ophthalmol. 1991;109:244–51.

    Article  CAS  PubMed  Google Scholar 

  42. Lasa MS, Podgor MJ, Datiles MB III, et al. Glare sensitivity in early cataracts. Br J Ophthalmol. 1993;77:489–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chylack LT Jr, Padhye N, Khu PM, et al. Loss of contrast sensitivity in diabetic patients with LOCS II-classified cataracts. Br J Ophthalmol. 1993;77:7–11.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Maraini G, Pasquini P, Sperduto RD, et al. The effect of cataract severity and morphology on the reliability of the Lens Opacities Classification System II (LOCS II). Invest Ophthalmol Vis Sci. 1991;32:2400–3.

    CAS  PubMed  Google Scholar 

  45. Van den Berg TJ, Felius J. Relationship between spectral transmittance and slit lamp color of human lenses. Invest Ophthalmol Vis Sci. 1995;36:322–9.

    PubMed  Google Scholar 

  46. Maraini G, Rosmini F, Graziosi P, et al. Influence of type and severity of pure forms of age-related cataract on visual acuity and contrast sensitivity. Italian American Cataract Study Group. Invest Ophthalmol Vis Sci. 1994;35:262–7.

    CAS  PubMed  Google Scholar 

  47. Magno BV, Datiles MB III, Lasa SM. Senile cataract progression studies using the Lens Opacities Classification System II. Invest Ophthalmol Vis Sci. 1993;34:2138–41.

    CAS  PubMed  Google Scholar 

  48. Magno BV, Datiles MB, Lasa MS. Progression of lens opacities in cataract patients after one year. Acta Ophthalmol Scand. 1995;73:45–9.

    Article  CAS  PubMed  Google Scholar 

  49. Miglior S, Marighi PE, Orzalesi N. Suitability of slit lamp retroillumination photographs for classifying cataracts according to Lens Opacities Classification System II (LOCS II). Curr Eye Res. 1992;11:971–9.

    Article  CAS  PubMed  Google Scholar 

  50. Heyworth P, Thompson GM, Tabandeh H, McGuigan S. The relationship between clinical classification of cataract and lens hardness. Eye. 1993;7:726–30.

    Article  PubMed  Google Scholar 

  51. Giuffre G, Giammanco R, DiPace F, Ponte F. Casteldaccia eye study: prevalence of cataract in the adult and elderly population of a Mediterranean town. Int Ophthalmol. 1994–1995;18:363–71.

    Google Scholar 

  52. Belpoliti M, Rosmini F, Carta A, et al. Distribution of cataract types in the Italian-American case-control study and at eye surgery in the Parma area. Ophthalmology. 1995;102:1594–7.

    Article  CAS  PubMed  Google Scholar 

  53. Melberg NS, Thomas MA. Nuclear sclerotic cataract after vitrectomy in patients younger than 50 years of age. Ophthalmology. 1995;102:1466–71.

    Article  CAS  PubMed  Google Scholar 

  54. Lasa MS, Datiles MB III, Freidlin V. Potential vision tests in patients with cataracts. Ophthalmology. 1995;102:1007–11.

    Article  CAS  PubMed  Google Scholar 

  55. Maraini G, Pasquini P, Sperduto RD, et al. Distribution of lens opacities in the Italian-American case-control study of age-related cataract. The Italian-American Study Group. Ophthalmology. 1990;97:752–6.

    Article  CAS  PubMed  Google Scholar 

  56. Hirvela H, Luukinen H, Laatikainen L. Prevalence and risk factors of lens opacities in the elderly in Finland: a population-based study. Ophthalmology. 1995;102:108–17.

    Article  CAS  PubMed  Google Scholar 

  57. Leske MC, Chylack LT Jr, Wu S-Y, et al. Incidence and progression of nuclear opacities in the Longitudinal Study of Cataract. Ophthalmology. 1996;103:705–12.

    Article  CAS  PubMed  Google Scholar 

  58. Karbassi M, Magnante PC, Wolfe JK, Chylack LT Jr. Objective line spread function measurement, Snellen acuity, and LOCS II classification in patients with cataract. Optom Vis Sci. 1993;70:956–62.

    Article  CAS  PubMed  Google Scholar 

  59. Xu J, Yu Q, Zhu S, Li S. Evaluation of a Lens Opacities Classification System II (LOCS II) in the survey population-based sample. Yen Ko Hsueh Pao. 1991;7:140–2.

    CAS  PubMed  Google Scholar 

  60. Maraini G, Pasquini P, Tomba MC, et al. An independent evaluation of the Lens Opacities Classification System II (LOCS II). Ophthalmology. 1989;96:611–5.

    Article  CAS  PubMed  Google Scholar 

  61. Kirwan JF, Venter L, Stulting AA, Murdoch IE. LOCS III examination at the slitlamp, do settings matter? Ophthalmic Epidemiol. 2003;10:259–66.

    Article  PubMed  Google Scholar 

  62. Sparrow JM, Ayliffe W, Bron AJ, et al. Inter-observer and intra-observer variability of the Oxford clinical cataract classification and grading system. Int Ophthalmol. 1988;11:151–7.

    Article  CAS  PubMed  Google Scholar 

  63. Oxford Cataract Treatment and Evaluation Team (OCTET). Use of a grading system in the evaluation of complications in a randomised controlled trial on cataract surgery. Br J Ophthalmol. 1986;70:411–4.

    Article  Google Scholar 

  64. Brown NA, Bron AJ, Ayliffe W, et al. The objective assessment of cataract. Eye. 1987;1:234–46.

    Article  PubMed  Google Scholar 

  65. Sparrow JM. Methods of clinical cataract grading: two systems compared. Arch Ophthalmol. 1990;108:1209–10.

    Article  CAS  PubMed  Google Scholar 

  66. Frost NA, Sparrow JM, Moore L. Associations of human crystalline lens retrodots and waterclefts with visual impairment: an observational study. Invest Ophthalmol Vis Sci. 2002;43:2105–9.

    PubMed  Google Scholar 

  67. Sasaki K, Shibata T, Obazawa H, et al. Classification system for cataracts: application by the Japanese Cooperative Cataract Epidemiology Study Group. Ophthalmic Res. 1990;22(Suppl 1):46.

    Article  PubMed  Google Scholar 

  68. Klein BEK, Magli YL, Neider MW, Klein R. Wisconsin system for classification of cataracts from photographs. Accession no. PB 90–138306. Springfield: National Technical Information Service; 1989.

    Google Scholar 

  69. Klein BE, Klein R, Linton KL. Prevalence of age-related lens opacities in a population. The Beaver Dam Eye Study. Ophthalmology. 1992;99:546–52.

    Article  CAS  PubMed  Google Scholar 

  70. Thylefors B, Chylack LT Jr, Konyama K, et al. A simplified cataract grading system. The WHO Cataract Grading Group. Ophthalmic Epidemiol. 2005;9:83–95.

    Article  Google Scholar 

  71. Sasaki K, Sasaki H, Jonasson F, et al. Racial differences of lens transparency properties with aging and prevalence of age-related cataract applying a WHO classification system. Ophthalmic Res. 2004;36:332–40.

    Article  PubMed  Google Scholar 

  72. Brown N. Photographic investigation of the human lens and cataract. Surv Ophthalmol. 1979;23:307–14.

    Article  CAS  PubMed  Google Scholar 

  73. Hockwin O, Dragomirescu V, Koch HR. Photographic documentation of disturbances of the lens transparency during aging with a Scheimpflug camera system. Ophthalmic Res. 1979;11:405–10.

    Article  Google Scholar 

  74. Dragomirescu V, Hockwin O, Koch HR, et al. Development of a new equipment for rotating slit image photography according to Scheimpflug’s principle. Interdiscip Top Gerontol. 1978;13:1–13.

    Google Scholar 

  75. Laser H, Berndt W, Leyendecker M, et al. Comparison between Topcon SL-45 and SL-45B with different correction methods for factors influencing Scheimpflug examination. Ophthalmic Res. 1990;22(Suppl 1):9.

    Article  PubMed  Google Scholar 

  76. Hockwin O, Laser H, Wegener A. Investigations on rat eyes with diabetic cataract and naphthalene cataract by Zeiss-Scheimpflug measuring system SLC. Graefes Arch Clin Exp Ophthalmol. 1986;224:502–6.

    Article  CAS  PubMed  Google Scholar 

  77. Sparrow JM, Brown NAP, Shun-Shin GA, et al. The Oxford modular cataract image analysis system. Eye. 1990;4:638–48.

    Article  PubMed  Google Scholar 

  78. Khu PM, Chylack LT Jr, McCarthy D. Evaluation of a new Topcon cataract attachment for photo slit lamp (Topcon SL-5D/6E) capable of simultaneous Scheimpflug slit and retroillumination cataract photography. Lens Res. 1988;5:273–84.

    Google Scholar 

  79. Sasaki K, Sakamoto Y, Shibata T, et al. The multi-purpose camera: a new anterior eye segment analysis system. Ophthalmic Res. 1990;22(Suppl 1):3.

    Article  PubMed  Google Scholar 

  80. Douvas N, Allen L. Anterior segment photography with the Nordenson retinal camera. Am J Ophthalmol. 1950;33:291.

    Article  CAS  PubMed  Google Scholar 

  81. Maclean H, Taylor CJ. An objective staging for cortical cataract in vivo aided by pattern-analyzing computer. Exp Eye Res. 1981;33:597–602.

    Article  CAS  PubMed  Google Scholar 

  82. Kawara T, Obazawa H. A new method for retroillumination photography of cataractous lens opacities. Am J Ophthalmol. 1980;90:186–9.

    Article  CAS  PubMed  Google Scholar 

  83. Buehl W, Findl O, Menapace R, et al. Reproducibility of standardized retroillumination photography for quantification of regeneratory PCO. J Cataract Refract Surg. 2002;28:265–70.

    Article  PubMed  Google Scholar 

  84. Findl O, Buehl W, Siegl H, Pinz A. Removal of reflections in the photographic assessment of PCO by fusion of digital retroillumination images. Invest Ophthalmol Vis Sci. 2003;44:275–80.

    Article  PubMed  Google Scholar 

  85. Wolfe JK, Chylack LT Jr. Objective analysis of percent opacification in retroillumination lens photographs. Invest Ophthalmol Vis Sci. 1989;30(Suppl):328.

    Google Scholar 

  86. Miyauchi A, Mukai S, Sakamoto Y. A new analysis method for cataractous images taken by retroillumination photography. Ophthalmic Res. 1990;22(Suppl 1):74.

    Article  PubMed  Google Scholar 

  87. Sakamoto Y, Rankov G, Sasaki K. Comparison of retroillumination images of crystalline lenses taken with different camera types. Ophthalmic Res. 1990;22(Suppl 1):41.

    Article  PubMed  Google Scholar 

  88. Wolfe JK, Chylack LT Jr. Objective measurement of cortical and subcapsular opacification in retroillumination photographs. Ophthalmic Res. 1990;22(Suppl 1):62.

    Article  PubMed  Google Scholar 

  89. Li H, Lim JH, Liu J, et al. An automatic diagnosis system of nuclear cataract using slit-lamp images. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:3693–6.

    Google Scholar 

  90. Wolfe JK, Chylack LT Jr. Differentiation between cortical and posterior subcapsular cataract using pattern matching in computerized image analysis. Invest Ophthalmol Vis Sci. 1990;30(Suppl):353.

    Google Scholar 

  91. Duncan DD, Shukla OB, West SK, et al. New objective classification system for nuclear opacification. J Opt Soc Am A Opt Image Sci Vis. 1997;14:1197–204.

    Article  CAS  PubMed  Google Scholar 

  92. Srivastava R, Gao X, Yin F, et al. Automatic nuclear cataract grading using image gradients. J Med Imaging. 2014;1:014502.

    Article  Google Scholar 

  93. Gao X, Lin S, Wong TY. Automatic feature learning to grade nuclear cataracts based on deep learning. IEEE Trans Biomed Eng. 2015;62:2693–701.

    Article  PubMed  Google Scholar 

  94. Liang J, Grimm B, Goelz S, Bille JF. Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor. J Opt Soc Am. 1994;11:1949–57.

    Article  CAS  Google Scholar 

  95. Liang J, Williams DR. Aberrations and retinal quality of the normal human eye. J Opt Soc Am. 1997;14:2873–83.

    Article  CAS  Google Scholar 

  96. Thibos LN, Hong X. Clinical applications of the Hartmann–Shack aberrometer. Optom Vis Sci. 1999;76:817–25.

    Article  CAS  PubMed  Google Scholar 

  97. Kuroda T, Fujikado T, Maeda N, et al. Wavefront analysis of higher-order aberrations in patients with cataracts. J Cataract Refract Surg. 2002;28:438–44.

    Article  PubMed  Google Scholar 

  98. Kuroda T, Takashi F, Maeda N, et al. Wavefront analysis in eyes with nuclear or cortical cataract. Am J Ophthalmol. 2002;134:1–9.

    Article  PubMed  Google Scholar 

  99. Gupta M, Ram J, Jain A, et al. Correlation of nuclear density using the Lens Opacity Classification System III versus Scheimpflug imaging with phacoemulsification parameters. J Cataract Refract Surg. 2013;39:1818–23.

    Article  PubMed  Google Scholar 

  100. Weiner X, Baumeister M, Kohnen T, et al. Repeatability of lens densitometry using Scheimpflug imaging. J Cataract Refract Surg. 2014;40:756–63.

    Article  PubMed  Google Scholar 

  101. McAlinden C, Moore JE. The change in internal aberrations following myopic corneal laser refractive surgery. Graefes Arch Clin Exp Ophthalmol. 2011;249:775–81.

    Article  PubMed  Google Scholar 

  102. Dubbelman M, Van der Heijde GL. The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox. Vis Res. 2001;41:1867–77.

    Article  CAS  PubMed  Google Scholar 

  103. Hu CY, Jian JH, Cheng YP, et al. Analysis of crystalline lens position. J Cataract Refract Surg. 2006;32:599–603.

    Article  PubMed  Google Scholar 

  104. Kirkwood BJ, Hendicott PL, Read SA, et al. Repeatability and validity of lens densitometry measured with Scheimpflug imaging. J Cataract Refract Surg. 2009;35:1210–5.

    Article  PubMed  Google Scholar 

  105. Faria-Correia F, Lopes B, Monteiro T, et al. Scheimpflug lens densitometry and ocular wavefront aberrations in patients with mild nuclear cataract. J Cataract Refract Surg. 2016;42:405–11.

    Article  PubMed  Google Scholar 

  106. Wong AL, Leung CK-S, Weinreb RN, et al. Quantitative assessment of lens opacities with anterior segment optical coherence tomography. Br J Ophthalmol. 2009;93:61–5.

    Article  CAS  PubMed  Google Scholar 

  107. Brás JEG, Sickenberger W, Hirnschall N, et al. Cataract quantification using swept-source optical coherence tomography. J Cataract Refract Surg. 2018;44:1478–81.

    Article  PubMed  Google Scholar 

  108. Panthier C, Burgos J, Rouger H, et al. New objective lens density quantification method using swept-source optical coherence tomography technology: comparison with existing methods. J Cataract Refract Surg. 2017;43:1575–81.

    Article  PubMed  Google Scholar 

  109. Kim YN, Park JH, Tchah H. Quantitative analysis of lens nuclear density using optical coherence tomography (OCT) with a liquid optics interface: correlation between OCT images and LOCS III grading. J Ophthalmol. 2016;2016:3025413.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Photo Research, Inc. PR-700/PC series SpectraScan. Instruction manual. Chatsworth: Photo Research, Inc; 1987.

    Google Scholar 

  111. Herzberg SE, McCarthy D, Kansupada KB, et al. Positional dependence of objective measures of nuclear color in the lens: correlation with LOCS II score. Invest Ophthalmol Vis Sci. 1990;31(Suppl):352.

    Google Scholar 

  112. McCarthy D, Chylack LT Jr, Rosner B. Quantification of nuclear yellowing and its effects on visual function. Invest Ophthalmol Vis Sci. 1989;30(Suppl):457.

    Google Scholar 

  113. Artal P, Benito A, Perez GM, et al. An objective scatter index based on double-pass retinal images of a point source to classify cataracts. PLoS One. 2011;6:16823.

    Article  CAS  Google Scholar 

  114. Pan AP, Wang QM, Huang F, et al. Correlation among Lens Opacities Classification System III grading, visual function index-14, pentacam nucleus staging, and objective scatter index for cataract assessment. Am J Ophthalmol. 2015;159:241–247.e2.

    Article  PubMed  Google Scholar 

  115. Yang C-w, Xu L, Wang S, et al. The evaluation of screening for cataract needed surgery with digital nonmydriatic fundus camera. Ophthalmol China. 2010;19:46–9.

    Google Scholar 

  116. Abdul-Rahman AM, Molteno T, Molteno ACB. Fourier analysis of digital retinal images in estimation of cataract severity. Clin Exp Ophthalmol. 2008;36:637–45.

    PubMed  Google Scholar 

  117. Xiong L, Li H, Xu L. An approach to evaluate blurriness in retinal images with vitreous opacity for cataract diagnosis. J Healthc Eng. 2017;2017:5645498.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Gali HE, Sella R, Afshari NA. Cataract grading systems: a review of past and present. Curr Opin Ophthalmol. 2019;30:13–8.

    Article  PubMed  Google Scholar 

  119. Chew M, Chiang PPC, Zheng Y, et al. The impact of cataract, cataract types, and cataract grades on vision-specific functioning using Rasch analysis. Am J Ophthalmol. 2012;154:29–38.e2.

    Article  PubMed  Google Scholar 

  120. Stifter E, Sacu S, Benesch T, Weghaupt H. Impairment of visual acuity and reading performance and the relationship with cataract type and density. Invest Ophthalmol Vis Sci. 2005;46:2071–5.

    Article  PubMed  Google Scholar 

  121. Davison JA, Chylack LT. Clinical application of the Lens Opacities Classification System III in the performance of phacoemulsification. J Cataract Refract Surg. 2003;29:138–45.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri T. Azar .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chylack, L.T., Kim, Ti., Azar, D.T. (2021). Classification and Quantitation of Human Cataract. In: Albert, D., Miller, J., Azar, D., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-90495-5_189-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90495-5_189-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90495-5

  • Online ISBN: 978-3-319-90495-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics