Skip to main content

Advertisement

Log in

The change in internal aberrations following myopic corneal laser refractive surgery

  • Refractive Surgery
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

In virgin eyes, the internal aberrations compensate corneal aberrations, and it has been suggested that the compensation may be feedback-driven and developmental, with active or passive adaptive mechanisms potentially responsible for the aberration auto-compensation. The purpose of this study is to investigate the internal higher order aberrations (HOA) following laser in situ keratomileusis (LASIK).

Methods

Prospective corneal and internal HOA were measured pre-operatively and 6 months post-operatively on 50 consecutive LASIK patients with the OPD-Scan.

Results

There were increases to corneal HOA terms \( {\hbox{Z}}_4^0 \) (0.215 ± 0.092 μm to 0.381 ± 0.180 μm), \( {\hbox{Z}}_6^0 \) (0.002 ± 0.018 μm to 0.049 ± 0.034 μm) and \( {\hbox{Z}}_6^4 \) (0.010 ± 0.017 μm to 0.018 ± 0.016 μm) with corresponding increases to internal HOA terms \( {\hbox{Z}}_4^0 \) (-0.176 ± 0.102 μm to −0.218 ± 0.121 μm), \( {\hbox{Z}}_6^0 \) (0.004 ± 0.022 μm to −0.010 ± 0.036 μm) and \( {\hbox{Z}}_6^4 \) (0.008 ± 0.106 μm to −0.015 ± 0.054 μm). The increases in internal aberrations attenuated the increase in corneal aberrations, providing an overall lower quantity of total aberration. A greater increase in corneal spherical aberration and associated compensation was found to occur with greater degrees of attempted myopic correction.

Conclusion

Corneal spherical aberration and \( {\hbox{Z}}_6^4 \) increased with corresponding increases in the internal spherical aberration and \( {\hbox{Z}}_6^4 \) following LASIK. This may be an active compensatory mechanism of the internal optics to change, in order to reduce the effect of induced corneal HOA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Walsh G, Charman WN (1985) Measurement of the axial wavefront aberration of the human eye. Ophthalmic Physiol Opt 5(1):23–31

    Article  PubMed  CAS  Google Scholar 

  2. Cervino A, Hosking SL, Montes-Mico R, Bates K (2007) Clinical ocular wavefront analyzers. J Refract Surg 23(6):603–616

    PubMed  Google Scholar 

  3. Schwiegerling J, Greivenkamp JE (1997) Using corneal height maps and polynomial decomposition to determine corneal aberrations. Optom Vis Sci 74(11):906–916

    Article  PubMed  CAS  Google Scholar 

  4. Young T (1801) On the mechanism of the eye. Philos Trans R Soc Lond 19:23–88

    Google Scholar 

  5. el-Hage SG, Berny F (1973) Contribution of the crystalline lens to the spherical aberration of the eye. J Opt Soc Am 63(2):205–211

    Article  PubMed  CAS  Google Scholar 

  6. Millodot M, Sivak J (1979) Contribution of the cornea and lens to the spherical aberration of the eye. Vis Res 19(6):685–687

    Article  PubMed  CAS  Google Scholar 

  7. Tomlinson A, Hemenger RP, Garriott R (1993) Method for estimating the spheric aberration of the human crystalline lens in vivo. Investig Ophthalmol Vis Sci 34(3):621–629

    CAS  Google Scholar 

  8. Artal P, Guirao A (1998) Contributions of the cornea and the lens to the aberrations of the human eye. Opt Lett 23(21):1713–1715

    Article  PubMed  CAS  Google Scholar 

  9. Salmon TO, Thibos LN (1998) Relative contribution of the cornea and internal optics to the aberrations of the eye. Optom Vis Sci 75:235

    Article  Google Scholar 

  10. He J, Ong E, Gwiazda J, Held R, Thron F (2000) Wavefront aberrations in the cornea and the whole eye. Investig Ophthalmol Vis Sci 41:S105

    Google Scholar 

  11. Berrio M, Guirao A, Redondo M, Piers P, Artal P (2000) The contribution of the cornea and internal ocular surfaces to the changes in the aberrations of the eye with age. Investig Ophthalmol Vis Sci 41:S105

    Google Scholar 

  12. Artal P, Guirao A, Berrio E, Williams DR (2001) Compensation of corneal aberrations by the internal optics in the human eye. J Vis 1(1):1–8

    Article  PubMed  CAS  Google Scholar 

  13. Artal P, Berrio E, Guirao A, Piers P (2002) Contribution of the cornea and internal surfaces to the change of ocular aberrations with age. J Opt Soc Am A Opt Image Sci Vis 19(1):137–143

    Article  PubMed  Google Scholar 

  14. He JC, Gwiazda J, Thorn F, Held R (2003) Wave-front aberrations in the anterior corneal surface and the whole eye. J Opt Soc Am A Opt Image Sci Vis 20(7):1155–1163

    Article  PubMed  Google Scholar 

  15. Kelly JE, Mihashi T, Howland HC (2004) Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye. J Vis 16(4):262–271

    Google Scholar 

  16. Wang L, Santaella RM, Booth M, Koch DD (2005) Higher-order aberrations from the internal optics of the eye. J Cataract Refract Surg 31(8):1512–1519

    Article  PubMed  Google Scholar 

  17. Salmon TO, Thibos LN (2002) Videokeratoscope-line-of-sight misalignment and its effect on measurements of corneal and internal ocular aberrations. J Opt Soc Am A Opt Image Sci Vis 19(4):657–669

    Article  PubMed  Google Scholar 

  18. Glasser A, Campbell MC (1998) Presbyopia and the optical changes in the human crystalline lens with age. Vis Res 38(2):209–229

    Article  PubMed  CAS  Google Scholar 

  19. Artal P, Benito A, Tabernero J (2006) The human eye is an example of robust optical design. J Vis 6(1):1–7

    Article  PubMed  Google Scholar 

  20. Schaeffel F, Diether S (1999) The growing eye: An autofocus system that works on very poor images. Vis Res 39(9):1585–1589

    Article  PubMed  CAS  Google Scholar 

  21. Marcos S, Barbero S, Llorente L, Merayo-Lloves J (2001) Optical response to LASIK surgery for myopia from total and corneal aberration measurements. Investig Ophthalmol Vis Sci 42(13):3349–3356

    CAS  Google Scholar 

  22. Llorente L, Barbero S, Merayo J, Marcos S (2004) Total and corneal optical aberrations induced by laser in situ keratomileusis for hyperopia. J Refract Surg 20(3):203–216

    PubMed  Google Scholar 

  23. Buscemi PM (2004) Retinoscopic double pass aberrometry: Principles and application of the NIDEK OPD-scan. In: Kruegar RR, Applegate RA, MacRae SM (eds) Wavefront Customized Visual Correction: The Quest for Supervision II. Slack, Thorofare, New Jersey, pp 149–153

    Google Scholar 

  24. Baek T, Lee K, Kagaya F, Tomidokoro A, Amano S, Oshika T (2001) Factors affecting the forward shift of posterior corneal surface after laser in situ keratomileusis. Ophthalmology 108(2):317–320

    Article  PubMed  CAS  Google Scholar 

  25. Bruno CR, Roberts CJ, Castellano D, Mahmoud A, Birnbaum L (2001) Posterior corneal surface changes after laser in situ keratomileusis. Investig Ophthalmol Vis Sci 42(S605):3252

    Google Scholar 

  26. Ciolino JB, Belin MW (2006) Changes in the posterior cornea after laser in situ keratomileusis and photorefractive keratectomy. J Cataract Refract Surg 32(9):1426–1431

    Article  PubMed  Google Scholar 

  27. Lee DH, Seo S, Jeong KW, Shin SC, Vukich JA (2003) Early spatial changes in the posterior corneal surface after laser in situ keratomileusis. J Cataract Refract Surg 29(4):778–784

    Article  PubMed  Google Scholar 

  28. Ormonde S, Waterman C, McGhee C (2004) Changes in the posterior corneal surface after LASIK. J Cataract Refract Surg 30(3):533–534

    Article  PubMed  Google Scholar 

  29. Twa MD, Roberts C, Mahmoud AM, Chang JS Jr (2005) Response of the posterior corneal surface to laser in situ keratomileusis for myopia. J Cataract Refract Surg 31(1):61–71

    Article  PubMed  Google Scholar 

  30. Wang Z, Chen J, Yang B (1999) Posterior corneal surface topographic changes after laser in situ keratomileusis are related to residual corneal bed thickness. Ophthalmology 106(2):406–409, discussion 409–410

    Article  PubMed  CAS  Google Scholar 

  31. Miyata K, Kamiya K, Takahashi T, Tanabe T, Tokunaga T, Amano S et al (2002) Time course of changes in corneal forward shift after excimer laser photorefractive keratectomy. Arch Ophthalmol 120(7):896–900

    PubMed  Google Scholar 

  32. Miyata K, Tokunaga T, Nakahara M, Ohtani S, Nejima R, Kiuchi T et al (2004) Residual bed thickness and corneal forward shift after laser in situ keratomileusis. J Cataract Refract Surg 30(5):1067–1072

    Article  PubMed  Google Scholar 

  33. Kamiya K, Oshika T, Amano S, Takahashi T, Tokunaga T, Miyata K (2000) Influence of excimer laser photorefractive keratectomy on the posterior corneal surface. J Cataract Refract Surg 26(6):867–871

    Article  Google Scholar 

  34. Kamiya K, Miyata K, Tokunaga T, Kiuchi T, Hiraoka T, Oshika T (2004) Structural analysis of the cornea using scanning-slit corneal topography in eyes undergoing excimer laser refractive surgery. Cornea 23(8 Suppl):S59–S64

    Article  PubMed  Google Scholar 

  35. Lee MJ, Lee SM, Lee HJ, Wee WR, Lee JH, Kim MK (2007) The changes of posterior corneal surface and high-order aberrations after refractive surgery in moderate myopia. Korean J Ophthalmol 21(3):131–136

    Article  PubMed  Google Scholar 

  36. Naroo SA, Charman WN (2000) Changes in posterior corneal curvature after photorefractive keratectomy. J Cataract Refract Surg 26(6):872–878

    Article  PubMed  CAS  Google Scholar 

  37. Hernandez-Quintela E, Samapunphong S, Khan BF, Gonzalez B, Lu PC, Farah SG et al (2001) Posterior corneal surface changes after refractive surgery. Ophthalmology 108(8):1415–1422

    Article  PubMed  CAS  Google Scholar 

  38. Seitz B, Langenbucher A, Torres F, Behrens A, Suarez E (2002) Changes of posterior corneal astigmatism and tilt after myopic laser in situ keratomileusis. Cornea 21(5):441–446

    Article  PubMed  Google Scholar 

  39. Ueda T, Nawa Y, Masuda K, Ishibashi H, Hara Y, Uozato H (2005) Posterior corneal surface changes after hyperopic laser in situ keratomileusis. J Cataract Refract Surg 31(11):2084–2087

    Article  PubMed  Google Scholar 

  40. Hashemi H, Mehravaran S (2007) Corneal changes after laser refractive surgery for myopia: Comparison of orbscan II and pentacam findings. J Cataract Refract Surg 33(5):841–847

    Article  PubMed  Google Scholar 

  41. Nishimura R, Negishi K, Saiki M, Arai H, Shimizu S, Toda I et al (2007) No forward shifting of posterior corneal surface in eyes undergoing LASIK. Ophthalmology 114(6):1104–1110

    Article  PubMed  Google Scholar 

  42. Cairns G, McGhee CN (2005) Orbscan computerized topography: Attributes, applications, and limitations. J Cataract Refract Surg 31(1):205–220

    Article  PubMed  Google Scholar 

  43. Wilson SE (2000) Cautions regarding measurements of the posterior corneal curvature. Ophthalmology 107(7):1223

    Article  PubMed  CAS  Google Scholar 

  44. Quisling S, Sjoberg S, Zimmerman B, Goins K, Sutphin J (2006) Comparison of pentacam and orbscan IIz on posterior curvature topography measurements in keratoconus eyes. Ophthalmology 113(9):1629–1632

    Article  PubMed  Google Scholar 

  45. Lopez-Gil N, Howland HC, Howland B, Charman N, Applegate R (1998) Generation of third-order spherical and coma aberrations by use of radically symmetrical fourth-order lenses. J Opt Soc Am A Opt Image Sci Vis 15(9):2563–2571

    Article  PubMed  CAS  Google Scholar 

  46. Schlegel Z, Lteif Y, Bains HS, Gatinel D (2009) Total, corneal, and internal ocular optical aberrations in patients with keratoconus. J Refract Surg 25(10 Suppl):S951–S957

    Article  PubMed  Google Scholar 

  47. Cervino A, Hosking SL, Montes-Mico R (2008) Comparison of higher order aberrations measured by NIDEK OPD-scan dynamic skiascopy and zeiss WASCA hartmann-shack aberrometers. J Refract Surg 24(8):790–796

    PubMed  Google Scholar 

  48. Barreto J Jr, Netto MV, Cigna A, Bechara S, Kara-Jose N (2006) Precision of higher order aberration repeatability with NIDEK OPD-scan retinoscopic aberrometry. J Refract Surg 22(9 Suppl):S1037–S1040

    PubMed  Google Scholar 

  49. Holzer MP, Goebels S, Auffarth GU (2006) Precision of NIDEK OPD-scan measurements. J Refract Surg 22(9 Suppl):S1021–S1023

    PubMed  Google Scholar 

Download references

Acknowledgement

Funding from the Department for Employment and Learning (DEL), Belfast, Northern Ireland, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colm McAlinden.

Additional information

The authors have no financial interest in any of the products mentioned in the manuscript. The corresponding author has full control of all primary data, and we agree to allow Graefe's Archive for Clinical and Experimental Ophthalmology to review data upon request.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McAlinden, C., Moore, J.E. The change in internal aberrations following myopic corneal laser refractive surgery. Graefes Arch Clin Exp Ophthalmol 249, 775–781 (2011). https://doi.org/10.1007/s00417-010-1459-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-010-1459-x

Keywords

Navigation