Skip to main content

Bone Grafts and Bone Graft Substitutes

  • Reference work entry
  • First Online:
Handbook of Spine Technology

Abstract

Bone grafting has been uniquely practiced since the early 1600s. Historically, bone grafting includes autologous bone, a variety of allograft bone, and synthetic based-materials utilized in surgical interventions to treat spinal diseases or fractures. One of the most common uses of bone grafts is in spinal surgery to promote fusion between two functional vertebral segments. During a spinal surgery procedure wherein host bone is prepared, bone grafts are employed to optimize the biological environment to augment healing of the bony tissues for a desired outcome of a solid union – successful spinal fusion. State-of-the art bone graft materials have been effectively used to enhance bone induction and healing, providing more predictable outcomes resulting in spinal fusion.

Autograft has traditionally been recognized as the gold standard for bone grafts. However, differing grafting modalities are currently replacing autograft as the standard of care due to patient donor site morbidity, limitation to autograft, and the cessation of training young surgeons in the technique of autograft harvest. This has led to the research and development of various next-generation osteoconductive, osteoinductive, and osteogenic materials. In this chapter, various options to augment or replace autograft bone have been reviewed. Current options for spinal fusion discussed herein include autografts, allografts, and osteoconductive, osteoinductive, osteogenic, and osteostimulative materials. Further, novel materials such as engineered bioactive glass and peptide-based materials are presented. Choice of graft material with consideration of anatomical location, surgical application, spinal fusion technique, and patient characteristics will optimize bone healing and clinical outcomes.

The co-first authors Jae Hyuk Yang and Juliane D. Glaeser shares an equal contribution of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AATB:

American Association of Tissue Bank

ABM:

Anorganic bone matrix

ACDF:

Anterior cervical discectomy and fusion

ACS:

Absorbable collage sponge, used as a carrier

AIBG:

Autologous iliac bone graft

ALIF:

Anterior lumbar interbody fusion

Allograft:

Graft derived from unrelated human donor and transplanted to another person/patient, cadaver via bone bank; live donor patients undergoing removal, i.e., hip replacement

APC, PRP:

Autologous platelet concentrate, serum derived from patient himself is concentrated via centrifugation (contains cytokines, growth factors; theorized to promote fusion)

Autograft, Autologous:

Bone harvested from patient self from one site of the body and implant to another site of same patient

BAG, BG:

Bioactive glass, a ceramic, biologically compatible synthetic material of crystalline components

BCG:

Biocompatible glass

BCP:

Biphasic calcium phosphate

BIC:

Bone-implant contact

BMA:

Bone marrow aspirate

BMC:

Bone marrow concentrate

BMP, rhBMP-2, rhBMP-7:

Bone morphogenetic protein, recombinant human bone morphogenetic protein

βTCP, β-TCP:

Beta-tricalcium phosphate

Cage:

Cages are cylindrical or square-shaped devices usually threaded. Used as instrumentation/fixation and to hold graft material in a surgical site, employed for interbody fusion, i.e., LT-Cage

Cell-based:

Bone grafts with viable cells preserved or substitutes wherein cells are added

CGTP:

Current Good Tissue Practice

CHO:

Chinese hamster ovary (used to derive rhBMP-2)

Collagen Carrier:

ACS, bovine type I collagen matrix

CS:

Calcium sulfate, synthetic ceramic material composed of calcium-sulfate (1:1)

DBM powder:

Demineralized bone matrix powder (human derived)

DBM, hDBM:

Demineralized bone matrix (allograft), bone powder (allograft), hDBM (human derived)

DBM-based product:

Demineralized bone matrix-based product, DBM powder (human derived) mixed with other material substances, or carriers

DFBA:

Freeze-dried bone allograft

E.BMP, E.BMP-2:

Escherichia coli-derived BMP-2 (used to derive rhBMP-2)

ECM:

Extracellular matrix

Enhancer:

Acts to add properties of osteogenicity or osteoinductivity to a graft material

Extender:

Bone graft extender, osteoconductive material, compounds, scaffolds added to other grafting materials (ideally inductive or osteogenic), to increase the volume of graft. May add structural support

FDA CFR:

Code of Federal Regulations

FDA, US-FDA:

Food and Drug Administration, US FDA

Growth factors/growth Differentiation factors:

BMP, rhBMP-2, rhBMP-7, bone morphogenetic protein, recombinant human bone morphogenetic protein

GvHD:

Graft-versus-host disease

h:

Human-derived or human-like version

HA:

Hydroxyapatite, calcium-containing porous crystal, accounts for a majority of bone natural mineral component

HCO:

Bicarbonate (Bae to review)

HCT/P:

Human cell and tissue product

ICBG:

Iliac crest bone graft, autograft – bone morsels harvested from iliac crest

ISO:

International Organization for Standardization

LBG, LAG:

Local bone graft, local autograft – bone morsels harvested from the surgical dissection site

LLIF:

Lateral lumbar interbody fusion

MED:

Minimally effective dose

MIS:

Minimally Invasive Surgery

MRI:

Magnetic resonance imaging

MSC:

Mesenchymal stem cell

ncHA:

Nanocrystal hydroxyapatite

OIF:

Osteoinductive factor

OLIF:

Oblique lumbar interbody fusion

Osteoconductive:

Provides structural scaffolding upon which matrix-producing cells deposit new bone

Osteogenic:

Presence of osteoblast precursor cells that contribute to new bone growth

Osteoinductive:

Presence of molecular growth factors that stimulate precursors cells to migrate to graft site, mature into osteoid-producing cells, increase production of bone matrix

PEEK:

Polyetheretherketone synthetic material, hydrophobic material to which cells have a limited ability to bond (polyaryletherketone family colorless organic thermoplastic polymer), used to fabricate spinal devices such as cages

Peptides/growth factors/growth differentiation factors:

BMP, rhBMP-2, rhBMP-7 (OP-1 osteogenic protein), bone morphogenetic protein, recombinant human bone morphogenetic protein

rh:

Recombinant human form

PLF:

Posterolateral fusion

PLIF:

Posterior lumbar interbody fusion

PLLF:

Posterolateral lumbar fusion

PRP:

Platelet-rich plasma (PRP) platelets (thought to have target growth factors) from patients’ own blood

Segment, spinal segment:

Spinal segment of the spine includes a superior vertebral body, disc, inferior vertebral body. Upper vertebral body, target vertebral body, lower vertebral body

Substitute:

Graft substitute used instead of autologous bone grafting

TCP:

Tricalcium phosphate, synthetic ceramic material composed of calcium and phosphate (3:2)

TI:

Titanium (Ti)

TLIF:

Transforaminal lumbar interbody fusion

TNF:

Tumor necrosis factor

UDI:

FDA rule that requires medical device manufacturers to update products with a unique device identifier

Xenograft:

Grafted from one species to another species (i.e., bovine to human; porcine to human)

References

  • AAoT Banks (2018) Accreditation policies. https://images.magnetmail.net/images/clients/AATB/attach/Bulletin_Links/18_2/AATB_Accreditation_Policies_February_08_2018.pdf

  • Acharya NK, Kumar RJ, Varma HK, Menon VK (2008) Hydroxyapatite-bioactive glass ceramic composite as stand-alone graft substitute for posterolateral fusion of lumbar spine: a prospective, matched, and controlled study. J Spinal Disord Tech 21(2):106–111

    Article  PubMed  Google Scholar 

  • Adams MA (2013) The biomechanics of back pain. Churchill Livingstone Elsevier, Edinburgh

    Google Scholar 

  • Agrawal V, Sinha M (2017) A review on carrier systems for bone morphogenetic protein-2. J Biomed Mater Res B Appl Biomater 105(4):904–925

    Article  CAS  PubMed  Google Scholar 

  • Ahn E, Webster T (2009) Enhanced osteoblast & osteoclast function on nanOss a calcium phosphate nanotechnology. nanOss® Bioactive Overview, 2016. http://www.lifehealthcare.com.au/wp-content/uploads/2017/06/nanOss_Bioactive_OUS_System_Overview.pdf

  • Ajiboye RM, Alas H, Mosich GM, Sharma A, Pourtaheri S (2017) Radiographic and clinical outcomes of anterior and transforaminal lumbar interbody fusions: a systematic review and meta-analysis of comparative studies. Clin Spine Surg 31:E230–E238

    Article  Google Scholar 

  • Albee FH (2007) Transplantation of a portion of the tibia into the spine for Pott’s disease: a preliminary report 1911. Clin Orthop Relat Res 460:14–16

    Article  PubMed  Google Scholar 

  • Alimi M, Navarro-Ramirez R, Parikh K, Njoku I, Hofstetter CP, Tsiouris AJ, Hartl R (2017) Radiographic and clinical outcome of silicate-substituted calcium phosphate (Si-CaP) ceramic bone graft in spinal fusion procedures. Clin Spine Surg 30(6):E845–E852

    Article  PubMed  Google Scholar 

  • Allan I, Newman H, Wilson M (2001) Antibacterial activity of particulate bioglass against supra- and subgingival bacteria. Biomaterials 22(12):1683–1687

    Article  CAS  PubMed  Google Scholar 

  • Ammerman JM, Libricz J, Ammerman MD (2013) The role of Osteocel Plus as a fusion substrate in minimally invasive instrumented transforaminal lumbar interbody fusion. Clin Neurol Neurosurg 115(7):991–994

    Article  PubMed  Google Scholar 

  • Anderson DJ, Podgorny K, Berrios-Torres SI, Bratzler DW, Dellinger EP, Greene L, Nyquist AC, Saiman L, Yokoe DS, Maragakis LL, Kaye KS (2014) Strategies to prevent surgical site infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol 35(Suppl 2):S66–S88

    Article  PubMed  Google Scholar 

  • Arnold PM, Anderson KK, Selim A, Dryer RF, Kenneth Burkus J (2016a) Heterotopic ossification following single-level anterior cervical discectomy and fusion: results from the prospective, multicenter, historically controlled trial comparing allograft to an optimized dose of rhBMP-2. J Neurosurg Spine 25(3):292–302

    Article  PubMed  Google Scholar 

  • Arnold PM, Sasso RC, Janssen ME, Fehlings MG, Smucker JD, Vaccaro AR, Heary RF, Patel AI, Goulet B, Kalfas IH, Kopjar B (2016b) Efficacy of i-Factor bone graft versus autograft in anterior cervical discectomy and fusion: results of the prospective, randomized, single-blinded Food and Drug Administration Investigational Device Exemption Study. Spine (Phila Pa 1976) 41(13):1075–1083

    Article  Google Scholar 

  • Arnold PM, Sasso RC, Janssen ME, et al. (2018) i-Factor™ Bone Graft vs Autograft in Anterior Cervical Discectomy and Fusion: 2-Year Follow-up of the Randomized Single-Blinded Food and Drug Administration Investigational Device Exemption Study. Neurosurgery 83(3):377–384. https://doi.org/10.1093/neuros/nyx432

  • Aurégan JC, Bégué T (2015) Bioactive glass for long bone infection: a systematic review. Injury 46:S3–S7

    Article  PubMed  Google Scholar 

  • Axelsen MG, Overgaard S, Jespersen SM, Ding M (2019) Comparison of synthetic bone graft ABM/P-15 and allograft on uninstrumented posterior lumbar spine fusion in sheep. J Orthop Surg 14(1):2. Res

    Google Scholar 

  • Azevedo MM, Tsigkou O, Nair R, Jones JR, Jell G, Stevens MM (2015) Hypoxia inducible factor-stabilizing bioactive glasses for directing mesenchymal stem cell behavior. Tissue Eng Part A 21(1–2):382–389

    Article  CAS  PubMed  Google Scholar 

  • Bae HW, Zhao L, Kanim LE, Wong P, Delamarter RB, Dawson EG (2006) Intervariability and intravariability of bone morphogenetic proteins in commercially available demineralized bone matrix products. Spine (Phila Pa 1976) 31(12):1299–1306; discussion 1307–1308

    Article  Google Scholar 

  • Bae H, Zhao L, Zhu D, Kanim LE, Wang JC, Delamarter RB (2010) Variability across ten production lots of a single demineralized bone matrix product. J Bone Joint Surg Am 92(2):427–435

    Article  PubMed  Google Scholar 

  • Baino F, Hamzehlou S, Kargozar S (2018) Bioactive glasses: where are we and where are we going? J Funct Biomater 9(1):25

    Article  PubMed Central  CAS  Google Scholar 

  • Baker JF, Errico TJ, Kim Y, Razi A (2017) Degenerative spondylolisthesis: contemporary review of the role of interbody fusion. Eur J Orthop Surg Traumatol 27(2):169–180

    Article  PubMed  Google Scholar 

  • Barcohana B, Gravori TT, Kasimian S, Feldman L (2017) Use of FIBERGRAFT® BG Morsels mixed with local bone autograft and BMA in posterolateral lumbar spine fusion: a retrospective analysis of fusion results. Podium presentation, SMIS 2017 annual meeting, Las Vegas, 14–16 September 2017

    Google Scholar 

  • Beckham CA, Greenlee TK Jr, Crebo AR (1971) Bone formation at a ceramic implant interface. Calcif Tissue Res 8(2):165–171

    Article  CAS  PubMed  Google Scholar 

  • Bedi H (2017) Use of FIBERGRAFT BG morsels mixed with BMA in anterior cervical discectomy and fusion at 1, 2, 3 and 4 levels: A retrospective analysis of fusion results. Podium presentation, the 14th annual cabo meeting: state of spine surgery think tank, Los Cabos, 15–17 June 2017

    Google Scholar 

  • Birch N, D’Souza WL (2009) Macroscopic and histologic analyses of de novo bone in the posterior spine at time of spinal implant removal. J Spinal Disord Tech 22(6):434–438

    Article  PubMed  Google Scholar 

  • Boden SD (2002) Overview of the biology of lumbar spine fusion and principles for selecting a bone graft substitute. Spine (Phila Pa 1976) 27(16 Suppl 1):S26–S31

    Article  Google Scholar 

  • Boles LR, Awais R, Beenken KE, Smeltzer MS, Haggard WO, Jessica AJ (2018) Local delivery of amikacin and vancomycin from chitosan sponges prevent polymicrobial implant-associated biofilm. Mil Med 183(Suppl 1):459–465

    Article  PubMed  Google Scholar 

  • Brauer DS, Karpukhina N, O’Donnell MD, Law RV, Hill RG (2010) Fluoride-containing bioactive glasses: effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid. Acta Biomater 6(8):3275–3282

    Article  CAS  PubMed  Google Scholar 

  • Burke JF, Dhall SS (2017) Bone morphogenic protein use in spinal surgery. Neurosurg Clin N Am 28(3):331–334

    Article  PubMed  Google Scholar 

  • Burkus JK, Transfeldt EE, Kitchel SH, Watkins RG, Balderston RA (2002) Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine (Phila Pa 1976) 27(21):2396–2408

    Article  Google Scholar 

  • Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, Lattanzi W, Logroscino G (2014) Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med 25(10):2445–2461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell PG, Yadla S, Nasser R, Malone J, Maltenfort MG, Ratliff JK (2012) Patient comorbidity score predicting the incidence of perioperative complications: assessing the impact of comorbidities on complications in spine surgery. J Neurosurg Spine 16(1):37–43

    Article  PubMed  Google Scholar 

  • Campion CR, Chander C, Buckland T, Hing K (2011) Increasing strut porosity in silicate-substituted calcium-phosphate bone graft substitutes enhances osteogenesis. J Biomed Mater Res B Appl Biomater 97(2):245–254

    Article  PubMed  CAS  Google Scholar 

  • Carter JD, Swearingen AB, Chaput CD, Rahm MD (2009) Clinical and radiographic assessment of transforaminal lumbar interbody fusion using HEALOS collagen-hydroxyapatite sponge with autologous bone marrow aspirate. Spine J 9(6):434–438

    Article  PubMed  Google Scholar 

  • Chapman MW, Madison M (1993) Operative orthopaedics, 2nd edn. J.B. Lippincott, Philadelphia

    Google Scholar 

  • Cho JH, Lee JH, Yeom JS, Chang BS, Yang JJ, Koo KH, Hwang CJ, Lee KB, Kim HJ, Lee CK, Kim H, Suk KS, Nam WD, Han J (2017) Efficacy of Escherichia coli-derived recombinant human bone morphogenetic protein-2 in posterolateral lumbar fusion: an open, active-controlled, randomized, multicenter trial. Spine J 17(12):1866–1874

    Article  PubMed  Google Scholar 

  • Chu S, Chen N, Dang ABC, Kuo AC, Dang ABC (2017) The effects of topical vancomycin on mesenchymal stem cells: more may not be better. Int J Spine Surg 11:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Cunningham BW, Atkinson BL, Hu N, Kikkawa J, Jenis L, Bryant J, Zamora PO, McAfee PC (2009) Ceramic granules enhanced with B2A peptide for lumbar interbody spine fusion: an experimental study using an instrumented model in sheep. J Neurosurg Spine 10(4):300–307

    Article  PubMed  Google Scholar 

  • Dawson E, Bae HW, Burkus JK, Stambough JL, Glassman SD (2009) Recombinant human bone morphogenetic protein-2 on an absorbable collagen sponge with an osteoconductive bulking agent in posterolateral arthrodesis with instrumentation. A prospective randomized trial. J Bone Joint Surg Am 91(7):1604–1613

    Article  PubMed  Google Scholar 

  • Delawi D, Jacobs W, van Susante JL, Rillardon L, Prestamburgo D, Specchia N, Gay E, Verschoor N, Garcia-Fernandez C, Guerado E, Quarles van Ufford H, Kruyt MC, Dhert WJ, Oner FC (2016) OP-1 compared with iliac crest autograft in instrumented posterolateral fusion: a randomized, multicenter non-inferiority trial. J Bone Joint Surg Am 98(6):441–448

    Article  PubMed  Google Scholar 

  • Divi SN, Mikhael MM (2017) Use of allogenic mesenchymal cellular bone matrix in anterior and posterior cervical spinal fusion: a case series of 21 patients. Asian Spine J 11(3):454–462

    Article  PubMed  PubMed Central  Google Scholar 

  • Duarte RM, Varanda P, Reis RL, Duarte ARC, Correia-Pinto J (2017) Biomaterials and bioactive agents in spinal fusion. Tissue Eng Part B Rev 23(6):540–551

    Article  PubMed  Google Scholar 

  • Eastlack RK, Garfin SR, Brown CR, Meyer SC (2014) Osteocel Plus cellular allograft in anterior cervical discectomy and fusion: evaluation of clinical and radiographic outcomes from a prospective multicenter study. Spine (Phila Pa 1976) 39(22):E1331–E1337

    Article  Google Scholar 

  • Elder BD, Holmes C, Goodwin CR, Lo SF, Puvanesarajah V, Kosztowski TA, Locke JE, Witham TF (2015) A systematic assessment of the use of platelet-rich plasma in spinal fusion. Ann Biomed Eng 43(5):1057–1070

    Article  PubMed  Google Scholar 

  • Epstein NE, Epstein JA (2007) SF-36 outcomes and fusion rates after multilevel laminectomies and 1 and 2-level instrumented posterolateral fusions using lamina autograft and demineralized bone matrix. J Spinal Disord Tech 20(2):139–145

    Article  PubMed  Google Scholar 

  • Field J, Yeung C, Roh J (2014) Clinical Evaluation of Allogeneic Growth Factor in Cervical Spine Fusion. J Spine 3:158

    Google Scholar 

  • Fortier L, Bauer L, Chung E (2017) Use of FIBERGRAFT BG Morsels mixed with BMA in anterior cervical discectomy and fusion at 1, 2, 3 and 4 levels: a retrospective analysis of fusion results. J Spine Neurosurg 6(3):200–205

    Google Scholar 

  • Frantzen J, Rantakokko J, Aro HT, Heinanen J, Kajander S, Gullichsen E, Kotilainen E, Lindfors NC (2011) Instrumented spondylodesis in degenerative spondylolisthesis with bioactive glass and autologous bone: a prospective 11-year follow-up. J Spinal Disord Tech 24(7):455–461

    Article  PubMed  Google Scholar 

  • Fredericks D, Petersen EB, Watson N, Grosland N, Gibson-Corley K, Smucker J (2016) Comparison of two synthetic bone graft products in a rabbit posterolateral fusion model. Iowa Orthop J 36:167–173

    PubMed  PubMed Central  Google Scholar 

  • Fu Q, Saiz E, Tomsia AP (2011) Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Acta Biomater 7(10):3547–3554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furstenberg CH, Wiedenhofer B, Putz C, Burckhardt I, Gantz S, Kleinschmidt K, Schroder K (2010) Collagen hydroxyapatite (Healos) saturated with gentamicin or levofloxacin. In vitro antimicrobial effectiveness – a pilot study. Orthopade 39(4):437–443

    Article  CAS  PubMed  Google Scholar 

  • Galli MM, Protzman NM, Bleazey ST, Brigido SA (2015) Role of demineralized allograft subchondral bone in the treatment of shoulder lesions of the talus: clinical results with two-year follow-up. J Foot Ankle Surg 54(4):717–722

    Article  PubMed  Google Scholar 

  • Gao T, Aro HT, Ylanen H, Vuorio E (2001) Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro. Biomaterials 22(12):1475–1483

    Article  CAS  PubMed  Google Scholar 

  • Gao R, Street M, Tay ML, Callon KE, Naot D, Lock A, Munro JT, Cornish J, Ferguson J, Musson D (2018) Human spinal bone dust as a potential local autograft: in vitro potent anabolic effect on human osteoblasts. Spine (Phila Pa 1976) 43(4):E193–E199

    Article  Google Scholar 

  • Garbuz DS, Masri BA, Czitrom AA (1998) Biology of allografting. Orthop Clin North Am 29(2):199–204

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook M, Young DS (2016) B2A polypeptide in foot and ankle fusion. Foot Ankle Clin 21(4):803–807

    Article  PubMed  Google Scholar 

  • Goldberg VM, Stevenson S (1993) The biology of bone grafts. Semin Arthroplast 4(2):58–63

    CAS  Google Scholar 

  • Govender S, Csimma C, Genant HK, Valentin-Opran A, Amit Y, Arbel R, Aro H, Atar D, Bishay M, Borner MG, Chiron P, Choong P, Cinats J, Courtenay B, Feibel R, Geulette B, Gravel C, Haas N, Raschke M, Hammacher E, van der Velde D, Hardy P, Holt M, Josten C, Ketterl RL, Lindeque B, Lob G, Mathevon H, McCoy G, Marsh D, Miller R, Munting E, Oevre S, Nordsletten L, Patel A, Pohl A, Rennie W, Reynders P, Rommens PM, Rondia J, Rossouw WC, Daneel PJ, Ruff S, Ruter A, Santavirta S, Schildhauer TA, Gekle C, Schnettler R, Segal D, Seiler H, Snowdowne RB, Stapert J, Taglang G, Verdonk R, Vogels L, Weckbach A, Wentzensen A, Wisniewski T, BMP-2 Evaluation in Surgery for Tibial Trauma (BESTT) Study Group (2002) Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am 84-A(12):2123–2134

    Article  Google Scholar 

  • Guerado E, Fuerstenberg CH (2011) What bone graft substitutes should we use in post-traumatic spinal fusion? Injury 42(Suppl 2):S64–S71

    Article  PubMed  Google Scholar 

  • Gupta MC, Maitra S (2002) Bone grafts and bone morphogenetic proteins in spine fusion. Cell Tissue Bank 3(4):255–267

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Kukkar N, Sharif K, Main BJ, Albers CE, El-Amin Iii SF (2015) Bone graft substitutes for spine fusion: a brief review. World J Orthop 6(6):449–456

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamer AJ, Stockley I, Elson RA (1999) Changes in allograft bone irradiated at different temperatures. J Bone Joint Surg Br 81(2):342–344

    Article  CAS  PubMed  Google Scholar 

  • Harris AI, Poddar S, Gitelis S, Sheinkop MB, Rosenberg AG (1995) Arthroplasty with a composite of an allograft and a prosthesis for knees with severe deficiency of bone. J Bone Joint Surg Am 77(3):373–386

    Article  CAS  PubMed  Google Scholar 

  • Hench LL, Jones JR (2015) Bioactive glasses: frontiers and challenges. Front Bioeng Biotechnol 3:194

    Article  PubMed  PubMed Central  Google Scholar 

  • Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295(5557):1014–1017

    Article  CAS  PubMed  Google Scholar 

  • Herkowitz HN, Dvorak J, Bell GR, Nordin M, Grob D, International Society for the Study of the Lumbar Spine (2004) The lumbar spine. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Hoffmann A, Gross G (2001) BMP signaling pathways in cartilage and bone formation. Crit Rev Eukaryot Gene Expr 11(1–3):23–45

    CAS  PubMed  Google Scholar 

  • Hollawell SM (2012) Allograft cellular bone matrix as an alternative to autograft in hindfoot and ankle fusion procedures. J Foot Ankle Surg 51(2):222–225

    Article  PubMed  Google Scholar 

  • Hsu WK, Goldstein CL, Shamji MF, Cho SK, Arnold PM, Fehlings MG, Mroz TE (2017) Novel osteobiologics and biomaterials in the treatment of spinal disorders. Neurosurgery 80(3S):S100–S107

    Article  PubMed  Google Scholar 

  • Ilharreborde B, Morel E, Fitoussi F, Presedo A, Souchet P, Pennecot GF, Mazda K (2008) Bioactive glass as a bone substitute for spinal fusion in adolescent idiopathic scoliosis: a comparative study with iliac crest autograft. J Pediatr Orthop 28(3):347–351

    Article  PubMed  Google Scholar 

  • Ito Z, Imagama S, Kanemura T, Hachiya Y, Miura Y, Kamiya M, Yukawa Y, Sakai Y, Katayama Y, Wakao N, Matsuyama Y, Ishiguro N (2013) Bone union rate with autologous iliac bone versus local bone graft in posterior lumbar interbody fusion (PLIF): a multicenter study. Eur Spine J 22(5):1158–1163

    Article  PubMed  PubMed Central  Google Scholar 

  • Jahng TA, Fu TS, Cunningham BW, Dmitriev AE, Kim DH (2004) Endoscopic instrumented posterolateral lumbar fusion with Healos and recombinant human growth/differentiation factor-5. Neurosurgery 54(1):171–180; discussion 180-171

    Article  PubMed  Google Scholar 

  • James AW, LaChaud G, Shen J, Asatrian G, Nguyen V, Zhang X, Ting K, Soo C (2016) A review of the clinical side effects of bone morphogenetic protein-2. Tissue Eng Part B Rev 22(4):284–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenis LG, Banco RJ (2010) Efficacy of silicate-substituted calcium phosphate ceramic in posterolateral instrumented lumbar fusion. Spine (Phila Pa 1976) 35(20):E1058–E1063

    Article  Google Scholar 

  • Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9(1):4457–4486

    Article  CAS  PubMed  Google Scholar 

  • Jones JR (2015) Reprint of: review of bioactive glass: from Hench to hybrids. Acta Biomater 23(Suppl):S53–S82

    Article  PubMed  Google Scholar 

  • Jones JR, Ehrenfried LM, Hench LL (2006) Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27(7):964–973

    Article  CAS  PubMed  Google Scholar 

  • Kang J, An H, Hilibrand A, Yoon ST, Kavanagh E, Boden S (2012) Grafton and local bone have comparable outcomes to iliac crest bone in instrumented single-level lumbar fusions. Spine (Phila Pa 1976) 37(12):1083–1091

    Article  Google Scholar 

  • Kannan A, Dodwad SN, Hsu WK (2015) Biologics in spine arthrodesis. J Spinal Disord Tech 28(5):163–170

    Article  PubMed  Google Scholar 

  • Karpov M, Laczka M, Leboy PS, Osyczka AM (2008) Sol-gel bioactive glasses support both osteoblast and osteoclast formation from human bone marrow cells. J Biomed Mater Res A 84(3):718–726

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi S, Hart RA (2015) The need for structural allograft biomechanical guidelines. Instr Course Lect 64:87–93

    PubMed  Google Scholar 

  • Kerr EJ 3rd, Jawahar A, Wooten T, Kay S, Cavanaugh DA, Nunley PD (2011) The use of osteo-conductive stem-cells allograft in lumbar interbody fusion procedures: an alternative to recombinant human bone morphogenetic protein. J Surg Orthop Adv 20(3):193–197

    PubMed  Google Scholar 

  • Kim HJ, Chung JH, Shin SY, Shin SI, Kye SB, Kim NK, Kwon TG, Paeng JY, Kim JW, Oh OH, Kook MS, Yang HJ, Hwang SJ (2015) Efficacy of rhBMP-2/hydroxyapatite on sinus floor augmentation: a multicenter, randomized controlled clinical trial. J Dent Res 94(9 Suppl):158S–165S

    Article  CAS  PubMed  Google Scholar 

  • Kinney RC, Ziran BH, Hirshorn K, Schlatterer D, Ganey T (2010) Demineralized bone matrix for fracture healing: fact or fiction? J Orthop Trauma 24(Suppl 1):S52–S55

    Article  PubMed  Google Scholar 

  • Kirk JF, Ritter G, Waters C, Narisawa S, Millan JL, Talton JD (2013) Osteoconductivity and osteoinductivity of NanoFUSE((R)) DBM. Cell Tissue Bank 14(1):33–44

    Article  CAS  PubMed  Google Scholar 

  • Kolan KC, Leu MC, Hilmas GE, Brown RF, Velez M (2011) Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering. Biofabrication 3(2):025004

    Article  PubMed  CAS  Google Scholar 

  • Kong CB, Lee JH, Baek HR, Lee CK, Chang BS (2014) Posterolateral lumbar fusion using Escherichia coli-derived rhBMP-2/hydroxyapatite in the mini pig. Spine J 14(12):2959–2967

    Article  PubMed  Google Scholar 

  • Kraiwattanapong C, Boden SD, Louis-Ugbo J, Attallah E, Barnes B, Hutton WC (2005) Comparison of Healos/bone marrow to INFUSE(rhBMP-2/ACS) with a collagen-ceramic sponge bulking agent as graft substitutes for lumbar spine fusion. Spine (Phila Pa 1976) 30(9):1001–1007; discussion 1007

    Article  Google Scholar 

  • Kunakornsawat S, Kirinpanu A, Piyaskulkaew C, Sathira-Angkura V (2013) A comparative study of radiographic results using HEALOS collagen-hydroxyapatite sponge with bone marrow aspiration versus local bone graft in the same patients undergoing posterolateral lumbar fusion. J Med Assoc Thail 96(8):929–935

    Google Scholar 

  • Kwong FN, Ibrahim T, Power RA (2005) Incidence of infection with the use of non-irradiated morcellised allograft bone washed at the time of revision arthroplasty of the hip. J Bone Joint Surg Br 87(11):1524–1526. https://doi.org/10.1302/0301-620X.87B11.16354

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Goodman SB (2009) Cell therapy for secondary osteonecrosis of the femoral condyles using the Cellect DBM System: a preliminary report. J Arthroplast 24(1):43–48

    Article  CAS  Google Scholar 

  • Lee JH, Yu CH, Yang JJ, Baek HR, Lee KM, Koo TY, Chang BS, Lee CK (2012) Comparative study of fusion rate induced by different dosages of Escherichia coli-derived recombinant human bone morphogenetic protein-2 using hydroxyapatite carrier. Spine J 12(3):239–248

    Article  PubMed  Google Scholar 

  • Lentino JR (2003) Prosthetic joint infections: bane of orthopedists, challenge for infectious disease specialists. Clin Infect Dis 36(9):1157–1161

    Article  PubMed  Google Scholar 

  • Li R, Clark AE, Hench LL (1991) An investigation of bioactive glass powders by sol-gel processing. J Appl Biomater 2(4):231–239

    Article  CAS  PubMed  Google Scholar 

  • Licina P, Coughlan M, Johnston E, Pearcy M (2015) Comparison of silicate-substituted calcium phosphate (actifuse) with recombinant human bone morphogenetic protein-2 (infuse) in posterolateral instrumented lumbar fusion. Global Spine J 5(6):471–478

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin X, Guo H, Takahashi K, Liu Y, Zamora PO (2012) B2A as a positive BMP receptor modulator. Growth Factors 30(3):149–157

    Article  CAS  PubMed  Google Scholar 

  • Lindfors NC, Hyvonen P, Nyyssonen M, Kirjavainen M, Kankare J, Gullichsen E, Salo J (2010) Bioactive glass S53P4 as bone graft substitute in treatment of osteomyelitis. Bone 47(2):212–218

    Article  CAS  PubMed  Google Scholar 

  • Litrico S, Langlais T, Pennes F, Gennari A, Paquis P (2018) Lumbar interbody fusion with utilization of recombinant human bone morphogenetic protein: a retrospective real-life study about 277 patients. Neurosurg Rev 41(1):189–196

    Article  PubMed  Google Scholar 

  • Logoluso N, Drago L, Gallazzi E, George DA, Morelli I, Romano CL (2016) Calcium-based, antibiotic-loaded bone substitute as an implant coating: a pilot clinical study. J Bone Jt Infect 1:59–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lord CF, Gebhardt MC, Tomford WW, Mankin HJ (1988) Infection in boneallografts. Incidence, nature, and treatment. J Bone Joint Surg Am 70(3):369–376

    Article  CAS  PubMed  Google Scholar 

  • Magit DP, Maak T, Trioano N, Raphael B, Hamouria Q, Polzhofer G, Drespe I, Albert TJ, Grauer JN (2006) Healos/recombinant human growth and differentiation factor-5 induces posterolateral lumbar fusion in a New Zealand white rabbit model. Spine (Phila Pa 1976) 31(19):2180–2188

    Article  Google Scholar 

  • Makanji H, Schoenfeld AJ, Bhalla A, Bono CM (2018) Critical analysis of trends in lumbar fusion for degenerative disorders revisited: influence of technique on fusion rate and clinical outcomes. Eur Spine J 27:1868–1876

    Article  PubMed  Google Scholar 

  • Malat TA, Glombitza M, Dahmen J, Hax PM, Steinhausen E (2018) The use of bioactive glass S53P4 as bone graft substitute in the treatment of chronic osteomyelitis and infected non-unions – a retrospective study of 50 patients. Z Orthop Unfall 156(2):152–159

    Article  PubMed  Google Scholar 

  • Manyalich M, Navarro A, Koller J, Loty B, de Guerra A, Cornu O, Vabels G, Fornasari PM, Costa AN, Siska I, Hirn M, Franz N, Miranda B, Kaminski A, Uhrynowska I, Van Baare J, Trias E, Fernandez C, de By T, Poniatowski S, Carbonell R (2009) European quality system for tissue banking. Transplant Proc 41(6):2035–2043

    Article  CAS  PubMed  Google Scholar 

  • McAnany SJ, Ahn J, Elboghdady IM, Marquez-Lara A, Ashraf N, Svovrlj B, Overley SC, Singh K, Qureshi SA (2016) Mesenchymal stem cell allograft as a fusion adjunct in one- and two-level anterior cervical discectomy and fusion: a matched cohort analysis. Spine J 16(2):163–167

    Article  PubMed  Google Scholar 

  • McKee MD, Wild LM, Schemitsch EH, Waddell JP (2002) The use of an antibiotic-impregnated, osteoconductive, bioabsorbable bone substitute in the treatment of infected long bone defects: early results of a prospective trial. J Orthop Trauma 16(9):622–627

    Article  PubMed  Google Scholar 

  • McLaren AC (2004) Alternative materials to acrylic bone cement for delivery of depot antibiotics in orthopaedic infections. Clin Orthop Relat Res (427):101–106

    Google Scholar 

  • McLaren AC, McLaren SG, Nelson CL, Wassell DL, Olsen KM (2002) The effect of sampling method on the elution of tobramycin from calcium sulfate. Clin Orthop Relat Res (403):54–57

    Google Scholar 

  • Meyers MH (1985) Resurfacing of the femoral head with fresh osteochondral allografts. Long-term results. Clin Orthop Relat Res (197):111–114

    Google Scholar 

  • Miyazaki M, Tsumura H, Wang JC, Alanay A (2009) An update on bone substitutes for spinal fusion. Eur Spine J 18(6):783–799

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyazono K, Maeda S, Imamura T (2005) BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev 16(3):251–263

    Article  CAS  PubMed  Google Scholar 

  • Morris MT, Tarpada SP, Cho W (2018) Bone graft materials for posterolateral fusion made simple: a systematic review. Eur Spine J 27:1856–1867

    Article  PubMed  Google Scholar 

  • Neen D, Noyes D, Shaw M, Gwilym S, Fairlie N, Birch N (2006) Healos and bone marrow aspirate used for lumbar spine fusion: a case controlled study comparing healos with autograft. Spine (Phila Pa 1976) 31(18):E636–E640

    Article  Google Scholar 

  • Nelson CL (2004) The current status of material used for depot delivery of drugs. Clin Orthop Relat Res (427):72–78

    Google Scholar 

  • Nickoli MS, Hsu WK (2014) Ceramic-based bone grafts as a bone grafts extender for lumbar spine arthrodesis: a systematic review. Global Spine J 4(3):211–216

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95

    Article  CAS  Google Scholar 

  • Park JJ, Hershman SH, Kim YH (2013) Updates in the use of bone grafts in the lumbar spine. Bull Hosp Jt Dis (2013) 71(1):39–48

    Google Scholar 

  • Peppers TA, Bullard DE, Vanichkachorn JS, Stanley SK, Arnold PM, Waldorff EI, Hahn R, Atkinson BL, Ryaby JT, Linovitz RJ (2017) Prospective clinical and radiographic evaluation of an allogeneic bone matrix containing stem cells (Trinity Evolution(R) Viable Cellular Bone Matrix) in patients undergoing two-level anterior cervical discectomy and fusion. J Orthop Surg Res 12(1):67

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson B, Whang PG, Iglesias R, Wang JC, Lieberman JR (2004) Osteoinductivity of commercially available demineralized bone matrix. Preparations in a spine fusion model. J Bone Joint Surg Am 86-A(10):2243–2250

    Article  Google Scholar 

  • Ploumis A, Albert TJ, Brown Z, Mehbod AA, Transfeldt EE (2010) Healos graft carrier with bone marrow aspirate instead of allograft as adjunct to local autograft for posterolateral fusion in degenerative lumbar scoliosis: a minimum 2-year follow-up study. J Neurosurg Spine 13(2):211–215

    Article  PubMed  Google Scholar 

  • Poorman GW, Jalai CM, Boniello A, Worley N, McClelland S 3rd, Passias PG (2017) Bone morphogenetic protein in adult spinal deformity surgery: a meta-analysis. Eur Spine J 26(8):2094–2102

    Article  PubMed  Google Scholar 

  • Radcliff KE, Neusner AD, Millhouse PW, Harrop JD, Kepler CK, Rasouli MR, Albert TJ, Vaccaro AR (2015) What is new in the diagnosis and prevention of spine surgical site infections. Spine J 15(2):336–347

    Article  PubMed  Google Scholar 

  • Rantakokko J, Frantzen JP, Heinanen J, Kajander S, Kotilainen E, Gullichsen E, Lindfors NC (2012) Posterolateral spondylodesis using bioactive glass S53P4 and autogenous bone in instrumented unstable lumbar spine burst fractures. A prospective 10-year follow-up study. Scand J Surg 101(1):66–71

    Article  CAS  PubMed  Google Scholar 

  • Rauck RC, Wang D, Tao M, Williams RJ (2019) Chondral delamination of fresh osteochondral allografts after implantation in the knee: a matched cohort analysis. Cartilage 10:402–407

    Article  PubMed  Google Scholar 

  • Rausch V, Seybold D, Konigshausen M, Koller M, Schildhauer TA, Gessmann J (2017) [Basic principles of fracture healing]. Orthopade 46(8):640–647

    Google Scholar 

  • Reilly GC, Radin S, Chen AT, Ducheyne P (2007) Differential alkaline phosphatase responses of rat and human bone marrow derived mesenchymal stem cells to 45S5 bioactive glass. Biomaterials 28(28):4091–4097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rengachary SS (2002) Bone morphogenetic proteins: basic concepts. Neurosurg Focus 13(6):e2

    Article  PubMed  Google Scholar 

  • Robbins MA, Haudenschild DR, Wegner AM, Klineberg EO (2017) Stem cells in spinal fusion. Global Spine J 7(8):801–810

    Article  PubMed  PubMed Central  Google Scholar 

  • Roh JS, Yeung CA, Field JS, McClellan RT (2013) Allogeneic morphogenetic protein vs. recombinant human bone morphogenetic protein-2 in lumbar interbody fusion procedures: a radiographic and economic analysis. J Orthop Surg Res 8:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Salcedo S, Garcia A, Vallet-Regi M (2017) Prevention of bacterial adhesion to zwitterionic biocompatible mesoporous glasses. Acta Biomater 57:472–486

    Article  CAS  PubMed  Google Scholar 

  • Sardar Z, Alexander D, Oxner W, du Plessis S, Yee A, Wai EK, Anderson DG, Jarzem P (2015) Twelve-month results of a multicenter, blinded, pilot study of a novel peptide (B2A) in promoting lumbar spine fusion. J Neurosurg Spine 22(4):358–366

    Article  PubMed  Google Scholar 

  • Schizas C, Triantafyllopoulos D, Kosmopoulos V, Tzinieris N, Stafylas K (2008) Posterolateral lumbar spine fusion using a novel demineralized bone matrix: a controlled case pilot study. Arch Orthop Trauma Surg 128(6):621–625

    Article  PubMed  Google Scholar 

  • Shehadi JA, Elzein SM (2017) Review of commercially available demineralized bone matrix products for spinal fusions: a selection paradigm. Surg Neurol Int 8:203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shekaran A, Garcia AJ (2011) Extracellular matrix-mimetic adhesive biomaterials for bone repair. J Biomed Mater Res A 96(1):261–272

    Article  PubMed  CAS  Google Scholar 

  • Shibuya N, Jupiter DC (2015) Bone graft substitute: allograft and xenograft. Clin Podiatr Med Surg 32(1):21–34

    Article  PubMed  Google Scholar 

  • Shields LB, Raque GH, Glassman SD, Campbell M, Vitaz T, Harpring J, Shields CB (2006) Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine (Phila Pa 1976) 31(5):542–547

    Article  Google Scholar 

  • Shiels SM, Raut VP, Patterson PB, Barnes BR, Wenke JC (2017) Antibiotic-loaded bone graft for reduction of surgical site infection in spinal fusion. Spine J 17(12):1917–1925

    Article  PubMed  Google Scholar 

  • Singh K, Smucker JD, Gill S, Boden SD (2006) Use of recombinant human bone morphogenetic protein-2 as an adjunct in posterolateral lumbar spine fusion: a prospective CT-scan analysis at one and two years. J Spinal Disord Tech 19(6):416–423

    Article  PubMed  Google Scholar 

  • Smucker JD, Fredericks DC (2012) Assessment of Progenix((R)) DBM putty bone substitute in a rabbit posterolateral fusion model. Iowa Orthop J 32:54–60

    PubMed  PubMed Central  Google Scholar 

  • Smucker JD, Bobst JA, Petersen EB, Nepola JV, Fredericks DC (2008) B2A peptide on ceramic granules enhance posterolateral spinal fusion in rabbits compared with autograft. Spine (Phila Pa 1976) 33(12):1324–1329

    Article  Google Scholar 

  • Stevenson S (1999) Biology of bone grafts. Orthop Clin North Am 30(4):543–552

    Article  CAS  PubMed  Google Scholar 

  • Stoor P, Soderling E, Salonen JI (1998) Antibacterial effects of a bioactive glass paste on oral microorganisms. Acta Odontol Scand 56(3):161–165

    Article  CAS  PubMed  Google Scholar 

  • Street M, Gao R, Martis W, Munro J, Musson D, Cornish J, Ferguson J (2017) The efficacy of local autologous bone dust: a systematic review. Spine Deform 5(4):231–237

    Article  PubMed  Google Scholar 

  • Sykaras N, Opperman LA (2003) Bone morphogenetic proteins (BMPs): how do they function and what can they offer the clinician? J Oral Sci 45(2):57–73

    Article  CAS  PubMed  Google Scholar 

  • Thalgott JS, Giuffre JM, Fritts K, Timlin M, Klezl Z (2001) Instrumented posterolateral lumbar fusion using coralline hydroxyapatite with or without demineralized bone matrix, as an adjunct to autologous bone. Spine J 1(2):131–137

    Article  CAS  PubMed  Google Scholar 

  • Tohmeh AG, Watson B, Tohmeh M, Zielinski XJ (2012) Allograft cellular bone matrix in extreme lateral interbody fusion: preliminary radiographic and clinical outcomes. ScientificWorldJournal 2012:263637

    Article  PubMed  PubMed Central  Google Scholar 

  • Torrie AM, Kesler WW, Elkin J, Gallo RA (2015) Osteochondral allograft. Curr Rev Musculoskelet Med 8(4):413–422

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsigkou O, Pomerantseva I, Spencer JA, Redondo PA, Hart AR, O’Doherty E, Lin Y, Friedrich CC, Daheron L, Lin CP, Sundback CA, Vacanti JP, Neville C (2010) Engineered vascularized bone grafts. Proc Natl Acad Sci U S A 107(8):3311–3316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsigkou O, Labbaf S, Stevens MM, Porter AE, Jones JR (2014) Monodispersed bioactive glass submicron particles and their effect on bone marrow and adipose tissue-derived stem cells. Adv Healthc Mater 3(1):115–125

    Article  CAS  PubMed  Google Scholar 

  • Tuchman A, Brodke DS, Youssef JA, Meisel HJ, Dettori JR, Park JB, Yoon ST, Wang JC (2016) Iliac crest bone graft versus local autograft or allograft for lumbar spinal fusion: a systematic review. Global Spine J 6(6):592–606

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner TM, Urban RM, Gitelis S, Kuo KN, Andersson GB (2001) Radiographic and histologic assessment of calcium sulfate in experimental animal models and clinical use as a resorbable bone-graft substitute, a bone-graft expander, and a method for local antibiotic delivery. One institution’s experience. J Bone Joint Surg Am 83-A Suppl 2(Pt 1):8–18

    Article  Google Scholar 

  • Turner TM, Urban RM, Hall DJ, Chye PC, Segreti J, Gitelis S (2005) Local and systemic levels of tobramycin delivered from calcium sulfate bone graft substitute pellets. Clin Orthop Relat Res (437):97–104

    Google Scholar 

  • Urist MR (1965) Bone: formation by autoinduction. Science 150(3698):893–899

    Article  CAS  PubMed  Google Scholar 

  • Urrutia J, Molina M (2013) Fresh-frozen femoral head allograft as lumbar interbody graft material allows high fusion rate without subsidence. Orthop Traumatol Surg Res 99(4):413–418

    Article  CAS  PubMed  Google Scholar 

  • US FDA (2017) CFR – Code of Federal Regulations title 21. www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?CFRPart=1271

  • US FDA (2018) Jurisdictional update: human demineralized bone matrix. www.fda.gov/combinationproducts/jurisdictionalinformation/jurisdictionalupdates/ucm106586.ht

  • Vaccaro AR, Chiba K, Heller JG, Patel T, Thalgott JS, Truumees E, Fischgrund JS, Craig MR, Berta SC, Wang JC, North American Spine Society for Contemporary Concepts in Spine Care (2002) Bone grafting alternatives in spinal surgery. Spine J 2(3):206–215

    Article  PubMed  Google Scholar 

  • Vaccaro AR, Patel T, Fischgrund J, Anderson DG, Truumees E, Herkowitz HN, Phillips F, Hilibrand A, Albert TJ, Wetzel T, McCulloch JA (2004) A pilot study evaluating the safety and efficacy of OP-1 Putty (rhBMP-7) as a replacement for iliac crest autograft in posterolateral lumbar arthrodesis for degenerative spondylolisthesis. Spine (Phila Pa 1976) 29(17):1885–1892

    Article  Google Scholar 

  • Vaccaro AR, Anderson DG, Patel T, Fischgrund J, Truumees E, Herkowitz HN, Phillips F, Hilibrand A, Albert TJ, Wetzel T, McCulloch JA (2005) Comparison of OP-1 Putty (rhBMP-7) to iliac crest autograft for posterolateral lumbar arthrodesis: a minimum 2-year follow-up pilot study. Spine (Phila Pa 1976) 30(24):2709–2716

    Article  Google Scholar 

  • Vaccaro AR, Whang PG, Patel T, Phillips FM, Anderson DG, Albert TJ, Hilibrand AS, Brower RS, Kurd MF, Appannagari A, Patel M, Fischgrund JS (2008) The safety and efficacy of OP-1 (rhBMP-7) as a replacement for iliac crest autograft for posterolateral lumbar arthrodesis: minimum 4-year follow-up of a pilot study. Spine J 8(3):457–465

    Article  PubMed  Google Scholar 

  • Vallejo LF, Brokelmann M, Marten S, Trappe S, Cabrera-Crespo J, Hoffmann A, Gross G, Weich HA, Rinas U (2002) Renaturation and purification of bone morphogenetic protein-2 produced as inclusion bodies in high-cell-density cultures of recombinant Escherichia coli. J Biotechnol 94(2):185–194

    Article  CAS  PubMed  Google Scholar 

  • Vanichkachorn J, Peppers T, Bullard D, Stanley SK, Linovitz RJ, Ryaby JT (2016) A prospective clinical and radiographic 12-month outcome study of patients undergoing single-level anterior cervical discectomy and fusion for symptomatic cervical degenerative disc disease utilizing a novel viable allogeneic, cancellous, bone matrix (trinity evolution) with a comparison to historical controls. Eur Spine J 25(7):2233–2238

    Article  PubMed  Google Scholar 

  • Villa MM, Wang L, Huang J, Rowe DW, Wei M (2015) Bone tissue engineering with a collagen-hydroxyapatite scaffold and culture expanded bone marrow stromal cells. J Biomed Mater Res B Appl Biomater 103(2):243–253

    Article  PubMed  CAS  Google Scholar 

  • Walsh WR, Chapman-Sheath PJ, Cain S, Debes J, Bruce WJ, Svehla MJ, Gillies RM (2003) A resorbable porous ceramic composite bone graft substitute in a rabbit metaphyseal defect model. J Orthop Res 21(4):655–661

    Article  CAS  PubMed  Google Scholar 

  • Walsh WR, Oliver R, Chistou C, Wang T, Walsh ER, Lovric V, Pelletier M, Bondre S (2017) Posterolateral fusion in a NZ white rabbit model using a novel bioglass fiber combined with autograft. Poster#390, ORS 2017 annual meeting, San Diego, 19–22 March

    Google Scholar 

  • Wang W, Yeung KWK (2017) Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater 2(4):224–247

    Article  PubMed  PubMed Central  Google Scholar 

  • Wells CM, Beenken KE, Smeltzer MS, Courtney HS, Jennings JA, Haggard WO (2018) Ciprofloxacin and rifampin dual antibiotic-loaded biopolymer chitosan sponge for bacterial inhibition. Mil Med 183(Suppl_1):433–444

    Article  PubMed  Google Scholar 

  • Whang PG, Wang JC (2003) Bone graft substitutes for spinal fusion. Spine J 3(2):155–165

    Article  PubMed  Google Scholar 

  • Wheeless CR III (2013) Allografts, February 19. http://www.wheelessonline.com/ortho/allografts

  • White AA 3rd, Hirsch C (1971) An experimental study of the immediate load bearing capacity of some commonly used iliac bone grafts. Acta Orthop Scand 42(6):482–490

    Article  PubMed  Google Scholar 

  • Wozney JM (1989) Bone morphogenetic proteins. Prog Growth Factor Res 1(4):267–280

    Article  CAS  PubMed  Google Scholar 

  • Wozney JM (2002) Overview of bone morphogenetic proteins. Spine (Phila Pa 1976) 27(16 Suppl 1):S2–S8

    Article  Google Scholar 

  • Wu ZY, Hill RG, Yue S, Nightingale D, Lee PD, Jones JR (2011) Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique. Acta Biomater 7(4):1807–1816

    Article  CAS  PubMed  Google Scholar 

  • Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM (2000a) Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun 276(2):461–465

    Article  CAS  PubMed  Google Scholar 

  • Xynos ID, Hukkanen MV, Batten JJ, Buttery LD, Hench LL, Polak JM (2000b) Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation In vitro: implications and applications for bone tissue engineering. Calcif Tissue Int 67(4):321–329

    Article  CAS  PubMed  Google Scholar 

  • Yoo JS, Min SH, Yoon SH (2015) Fusion rate according to mixture ratio and volumes of bone graft in minimally invasive transforaminal lumbar interbody fusion: minimum 2-year follow-up. Eur J Orthop Surg Traumatol 25(Suppl 1):S183–S189

    Article  PubMed  Google Scholar 

  • Zadegan SA, Abedi A, Jazayeri SB, Bonaki HN, Vaccaro AR, Rahimi-Movaghar V (2017a) Clinical application of ceramics in anterior cervical discectomy and fusion: a review and update. Global Spine J 7(4):343–349

    Article  PubMed  PubMed Central  Google Scholar 

  • Zadegan SA, Abedi A, Jazayeri SB, Nasiri Bonaki H, Jazayeri SB, Vaccaro AR, Rahimi-Movaghar V (2017b) Bone morphogenetic proteins in anterior cervical fusion: a systematic review and meta-analysis. World Neurosurg 104:752–787

    Article  PubMed  Google Scholar 

  • Zamborsky R, Svec A, Bohac M, Kilian M, Kokavec M (2016) Infection in bone allograft transplants. Exp Clin Transplant 14(5):484–490

    PubMed  Google Scholar 

  • Zdeblick TA, Cooke ME, Kunz DN, Wilson D, McCabe RP (1994) Anterior cervical discectomy and fusion using a porous hydroxyapatite bone graft substitute. Spine (Phila Pa 1976) 19(20):2348–2357

    Article  CAS  Google Scholar 

  • Zhou X, Zhang N, Mankoci S, Sahai N (2017) Silicates in orthopedics and bone tissue engineering materials. J Biomed Mater Res A 105(7):2090–2102

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thank Samantha Thordarson, BS, for her editorial comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun W. Bae .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yang, J.H., Glaeser, J.D., Kanim, L.E.A., Battles, C.Y., Bondre, S., Bae, H.W. (2021). Bone Grafts and Bone Graft Substitutes. In: Cheng, B.C. (eds) Handbook of Spine Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-44424-6_36

Download citation

Publish with us

Policies and ethics