Skip to main content

Evolution of Selenophosphate Synthetase

  • Chapter
  • First Online:
Selenium

Abstract

Selenophosphate synthetase (SPS or SelD) provides the active selenium (Se) donor for the synthesis of selenocysteine (Sec), the 21st amino acid in the genetic code. In this chapter we summarize the distribution, phylogeny and function of all SPS genes across the tree of life. SPS is a selenoprotein itself in many prokaryotes (SelD) and eukaryotes (SPS2). As most other selenoproteins, SPS has orthologs with cysteine (Cys) in place of Sec. Although absent in many lineages, selenoproteins and SPS occur in bacteria, archaea and eukaryotes. In prokaryotes, SPS supports additional forms of Se utilization besides Sec, most notably the use of selenouridine in tRNAs. The study of selenophosphate synthetases, while serving a map of Se utilization across all sequenced organisms, also highlighted examples of functional diversification within this family. Within archaea, a few Crenarchaeota species exhibit a SelD-like gene. This is derived from SPS, but probably carries a different function, since it never co-occurs with other Se utilization genes. Within eukaryotes, many metazoan genomes, including humans, carry a paralog called SPS1 in addition to SPS2, which replaces the Sec/Cys site with some other amino acid (i.e., threonine, arginine, glycine, or leucine). Strikingly, SPS1 genes were generated through distinct gene duplication events of SPS2 in several metazoan clades (e.g., vertebrates and insects). Their function is still unknown, but it appears to be different from that of SPS2. Despite independently originated in parallel lineages, SPS1 genes were shown to share a common function. Thus, this function was likely already present in the parental SPS2 gene, driving the gene duplication events by sub-functionalization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. VM Labunskyy et al 2014 Physiol Rev 94:739

    Google Scholar 

  2. A Krol 2002 Biochimie 84:765

    Article  CAS  PubMed  Google Scholar 

  3. D Yoshizawa, A Böck 2009 Biochim Biophys Acta 1790:1404

    Article  CAS  PubMed  Google Scholar 

  4. T Stock, M Rother 2009 Biochimica Biophys Acta 1790:1520

    Article  CAS  Google Scholar 

  5. C Allmang et al 2009 Biochim Biophys Acta 1790:1415

    Article  CAS  PubMed  Google Scholar 

  6. Z Veres et al 1994 J Biol Chem 269:10597

    CAS  PubMed  Google Scholar 

  7. M Mariotti et al 2015 Genome Res 25:1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. E Matsumoto 2008 Acta Crystallogr Sect F Struct Biol Cryst Commun 64:453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. KT Wang et al 2009 J Mol Biol 390:747

    Article  CAS  PubMed  Google Scholar 

  10. Y Itoh et al 2009 J Mol Biol 385:1456

    Article  CAS  PubMed  Google Scholar 

  11. N Noinaj et al 2012 J Bacteriol 194:499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. MJ Guimarães et al 1996 Proc Natl Acad Sci U S A 93:15086

    Google Scholar 

  13. J Lin et al 2015 Genome Biol Evol 7:664

    Article  CAS  PubMed  Google Scholar 

  14. H Romero et al 2005 Genome Biol 6:R66

    Article  PubMed  PubMed Central  Google Scholar 

  15. Y Zhang 2006 Genome Biol 7:R94

    Article  PubMed  PubMed Central  Google Scholar 

  16. Y Zhang et al 2008 BMC Genomics 9:251

    Article  PubMed  PubMed Central  Google Scholar 

  17. GP Li et al 2014 BMC Genomics 15:908

    Article  PubMed  PubMed Central  Google Scholar 

  18. WM Ching et al 1985 Proc Natl Acad Sci U S A 82:347

    Google Scholar 

  19. DH Haft, WT Self 2008 Biol Direct 3:4

    Google Scholar 

  20. M Srivastava 2011 J Bacteriol 193:1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. D Su et al 2012 FEBS Lett 586:717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. AV Lobanov et al 2009 Biochim Biophys Acta 1790:1424

    Google Scholar 

  23. L Jiang et al 2012 BMC Genomics 13:446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. MT da Silva et al 2013 Mol Biochem Parasitol 188:87

    Google Scholar 

  25. M Hirosawa-Takamori et al 2000 EMBO Rep 1:441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. XM Xu et al 2007 Biochem J 404:115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. XM Xu et al 2007 PLoS Biol 5:e4

    Article  PubMed  Google Scholar 

  28. BC Persson et al 1997 J Mol Biol 274:174

    Article  CAS  PubMed  Google Scholar 

  29. AV Lobanov et al 2008 Protein Sci 17:176

    Google Scholar 

  30. M Mariotti et al 2012 PLoS One 7:e33066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. CE Chapple, R Guigó 2008 PLoS One 3:e2968

    Google Scholar 

  32. M Mariotti 2016 in Short Views on Insect Genomics and Proteomics (Springer International Publishing) p 113

    Google Scholar 

  33. S Richards et al 2010 PLoS Biol 8:e1000313

    Article  Google Scholar 

  34. L Otero et al 2014 RNA 20:1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. MT Howard et al 2005 EMBO J 24:1596

    Google Scholar 

  36. MT Howard et al 2007 RNA 13:912

    Google Scholar 

  37. A Small-Howard et al 2006 Mol Cell Biol 26:2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. T Tamura et al 2004 Proc Natl Acad Sci U S A 101:16162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. B Alsina et al 1999 J Cell Sci 112:2875

    CAS  PubMed  Google Scholar 

  40. KH Lee et al 2011 BMC Genomics 12:426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. M Morey et al 2003 FEBS Lett 534:111

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the EMBO fellowship ASTF 289-2014, Spanish Ministry of Economy and Competitiveness under grant number BIO2011-26205 and Centro de Excelencia Severo Ochoa 2013–2017’, SEV-2012-0208.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Mariotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mariotti, M., Santesmasses, D., Guigó, R. (2016). Evolution of Selenophosphate Synthetase. In: Hatfield, D., Schweizer, U., Tsuji, P., Gladyshev, V. (eds) Selenium. Springer, Cham. https://doi.org/10.1007/978-3-319-41283-2_8

Download citation

Publish with us

Policies and ethics