Skip to main content

Biology and Ecology of Freshwater Fungi

  • Chapter
Biology of Microfungi

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

The biodiversity of fungi in freshwater habitats is very high, and their ecological roles are significant. By estimation, there may be more than 3000 species including ascomycetes, basidiomycetes, chytrids, and fungal-like waterborne oomycetes. They are distributed globally as saprobes, animal pathogens, and even plankton parasites. New species have been reported repeatedly through ecological and taxonomical studies based on morphologies and recently through molecular barcodes utilizing latest sequencing technologies. Herein we review their biology and ecological role in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Aziz FA (2008) Diversity of aquatic fungi on Phragmites australis at Lake Manzala, Egypt. Sydowia 60(1):1–14, PubMed PMID: WOS:000257909100001

    Google Scholar 

  • Abdel-Raheem AM, Ali EH (2004) Lignocellulolytic enzyme production by aquatic hyphomycetes species isolated from the Nile’s delta region. Mycopathologia 157:277–286

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Raheem A, Shearer C (2002) Extracellular enzyme production by freshwater ascomycetes. Fungal Divers 11:1–19

    Google Scholar 

  • Aimer RD, Segedin BP (1985) Some aquatic hyphomycetes from New Zealand streams. N Z J Bot 23:273–299

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Evol 215:403–410

    CAS  Google Scholar 

  • Anderson JL, Shearer CA (2011) Population genetics of the aquatic fungus Tetracladium marchalianum over space and time. PLoS One 6(1):10. doi:10.1371/journal.pone.0015908, PubMed PMID: WOS:000286516500015

    Article  PubMed Central  CAS  Google Scholar 

  • Ando K (1992) A study of terrestrial aquatic hyphomycetes. Trans Mycol Soc Jpn 33:415–425

    Google Scholar 

  • Ando K, Tubaki K (1984a) Some undescribed hyphomycetes in rainwater draining from intact trees. Trans Mycol Soc Jpn 25:39–47

    Google Scholar 

  • Ando K, Tubaki K (1984b) Some undescribed hyphomycetes in the rain drops from intact leaf-surface. Trans Mycol Soc Jpn 25:21–37

    Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  PubMed  Google Scholar 

  • Au DWT, Jones EBG, Moss ST (1996) Spore attachment and extracellular mucilage of aquatic hyphomycetes. Biofouling 10:123–140

    Article  CAS  PubMed  Google Scholar 

  • Bärlocher F (1992) The ecology of aquatic hyphomycetes. Springer, Berlin

    Book  Google Scholar 

  • Bärlocher F (2010) Molecular approaches promise a deeper and broader understanding of the evolutionary ecology of aquatic hyphomycetes. J N Am Benthol Soc 29(3):1027–1041. doi:10.1899/09-081.1, PubMed PMID: WOS:000280692400021

    Article  Google Scholar 

  • Bärlocher F, Kendrick B (1974) Dynamics of the fungal population on leaves in a stream. J Ecol 62:761–791

    Article  Google Scholar 

  • Bärlocher F, Seena S, Wilson KP, Williams DD (2008) Raised water temperature lowers diversity of hyporheic aquatic hyphomycetes. Freshw Biol 53(2):368–379. doi:10.1111/j.1365-2427.2007.01899.x, PubMed PMID: WOS:000252393800013

    Google Scholar 

  • Baschien C, Marvanová L, Szewzyk U (2006) Phylogeny of selected aquatic hyphomycetes based on morphological and molecular data. Nova Hedwigia 83(3–4):311–352. doi:10.1127/0029-5035/2006/0083-0311, PubMed PMID: WOS:000242664300003

    Article  Google Scholar 

  • Baschien C, Rode G, Böckelmann U, Götz F, Szewzyk U (2009) Interactions between hyphosphere-associated bacteria and the fungus Cladosporium herbarum on aquatic leaf litter. Microb Ecol 58(3):642–650. doi:10.1007/s00248-009-9528-6, PubMed PMID: WOS:000269928300020

    Article  PubMed  Google Scholar 

  • Baschien C, Tsui CKM, Gulis V, Szewzyk U, Marvanová L (2013) The molecular phylogeny of aquatic hyphomycetes with affinity to the Leotiomycetes. Fungal Biol 117(9):660–672. doi:10.1016/j.funbio.2013.07.004, PubMed PMID: WOS:000324899800008

    Article  PubMed  Google Scholar 

  • Beakes GW (2003) Lower fungi: a review of microscopial techniques for the taxonomic and ecological study of zoosporic freshwater fungi. In: Tsui CKM, Hyde KD (eds) Fungal diversity research series 10 freshwater mycology -a practical approach. Fungal Diversity Press, Hong Kong, pp 51–79

    Google Scholar 

  • Belliveau MJ-R, Bärlocher F (2005) Molecular evidence confirms multiple origins of aquatic hyphomycetes. Mycol Res 109(12):1407–1417, PubMed

    Article  CAS  PubMed  Google Scholar 

  • Berbee ML, Taylor JW (2001) Fungal molecular evolution: gene trees and geologic time. In: Mc Laughlin DJ and Mc Laughlin EJ, Lemke PA (eds) The mycota VII part b systematics and evolution. Springer, Berlin

    Google Scholar 

  • Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL et al (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc Natl Acad Sci USA 95(15):9031–9036. doi:10.1073/pnas.95.15.9031, PubMed PMID: WOS:000075143900110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bermingham S, Fisher PJ, Martin A, Marriott M, Lappin-Scott H (1998) The effect of the herbicide Mecoprop on Heliscus lugdunensis and its influence on the preferential feeding of Gammarus pseudolimnaeus. Microb Ecol 35:199–204

    Article  CAS  PubMed  Google Scholar 

  • Beverwijk AL (1951) Candelabrum spinulosum, a new fungus species. Anton Leeuw Int J Gen Mol Microbiol 17:9–12

    Google Scholar 

  • Bowman BH, Taylor JW, Brown AG, Lee J, Lu SD, White TJ (1992) Molecular evolution of the fungi relationship of the basidiomycetes, ascomycetes and chytridiomycetes. Mol Biol Evol 9:285–296

    CAS  PubMed  Google Scholar 

  • Bucher VVC, Hyde KD, Pointing SB, Reddy CA (2004) Production of wood decay enzymes, mass loss and lignin solubilization in wood by marine ascomycetes and their anamorphs. Fungal Divers 15:1–14

    Google Scholar 

  • Buczacki ST (1983) Zoosporic plant pathogens: a modern perspective. Academic, London

    Google Scholar 

  • Cai L, Zhang KQ, McKenzie EHC, Hyde KD (2003) New species of Dictyosporium and Digitodesmium from submerged wood in Yunnan, China. Sydowia 55(2):129–135, PubMed PMID: WOS:000188231200001

    Google Scholar 

  • Campbell J, Shearer C, Marvanová L (2006) Evolutionary relationships among aquatic anamorphs and teleomorphs: Lemonniera, Margaritispora, and Goniopila. Mycol Res 110:1025–1033. doi:10.1016/j.mycres.2006.04.012, PubMed PMID: WOS:000241957700003

    Article  PubMed  Google Scholar 

  • Campbell J, Marvanová L, Gulis V (2009) Evolutionary relationships between aquatic anamorphs and teleomorphs: Tricladium and Varicosporium. Mycol Res 113:1322–1334. doi:10.1016/j.mycres.2009.09.003, PubMed PMID: WOS:000272811000009

    Article  PubMed  Google Scholar 

  • Casas JJ, Gessner MO, Lopez D, Descals E (2011) Leaf-litter colonisation and breakdown in relation to stream typology: insights from Mediterranean low-order streams. Freshw Biol 56(12):2594–2608. doi:10.1111/j.1365-2427.2011.02686.x, PubMed PMID: WOS:000296502000014

    Article  CAS  Google Scholar 

  • Chamier A (1985) Cell-wall-degrading enzymes of aquatic hyphomycetes: a review. Bot J Linn Soc 91:67–81

    Article  Google Scholar 

  • Chandrashekar KR, Kaveriappa KM (1991) Production of extracellular cellulase by Lunulospora curvula and Flagellospora penicillioides. Folia Microbiol 36:249–255

    Article  CAS  Google Scholar 

  • Chauvet E (1991) Aquatic hyphomycete distribution in South-Western France. J Biogeogr 18:699–706

    Article  Google Scholar 

  • Chukanhom K, Hatai K (2004) Freshwater fungi isolated from eggs of the common carp (Cyprinus carpio) in Thailand. Mycoscience 45:42–48

    Article  Google Scholar 

  • Clivot H, Cornut J, Chauvet E, Elger A, Poupin P, Guerold F et al (2014) Leaf-associated fungal diversity in acidified streams: insights from combining traditional and molecular approaches. Environ Microbiol 16(7):2145–2156. doi:10.1111/1462-2920.12245, PubMed PMID: WOS:000338983600013

    Article  CAS  PubMed  Google Scholar 

  • Cole JJ, Caraco NF, Likens GE (1990) Short-range atmospheric transport—a significant source of phosphorus to an Oligotrophic Lake. Limnol Oceanogr 35(6):1230–1237, PubMed PMID: WOS:A1990EP94300002

    Article  CAS  Google Scholar 

  • Digby S, Goos RD (1987) Morphology, development and taxonomy of Loramyces. Mycologia 79:821–831

    Article  Google Scholar 

  • Dix NJ, Webster J (1995) Fungal ecology. Springer, Berlin

    Book  Google Scholar 

  • Doggett MS (2000) Characterization of fungal biofilms within a municipal water distribution system. Appl Environ Microbiol 66(3):1249–1251. doi:10.1128/aem.66.3.1249-1251.2000, PubMed PMID: WOS:000085604800059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte S, Seena S, Baerlocher F, Cassio F, Pascoal C (2012) Preliminary insights into the phylogeography of six aquatic hyphomycete species. PLoS One 7(9), e45289. doi:10.1371/journal.pone.0045289, PubMed PMID: WOS:000311313900114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte S, Baerlocher F, Cassio F, Pascoal C (2014) Current status of DNA barcoding of aquatic hyphomycetes. Sydowia 66(2):191–202, PubMed PMID: WOS:000347436300003

    Google Scholar 

  • Eaton RA, Jones EBG (1971a) The biodeterioration of timber in water-cooling towers. II. Fungi growing on wood in different positions in a water cooling system. Mater Org 6:81–92

    Google Scholar 

  • Eaton RA, Jones EGB (1971b) The biodeterioration of timber in water cooling towers. I. Fungal ecology and the decay of wood at Connah’s Quay and Ince. Mater Org 6:51–80

    Google Scholar 

  • Eaton RA, Hale MDC (1993) Wood: decay, pests and protection. Chapman & Hall, London

    Google Scholar 

  • Fallah PM, Shearer CA (2001) Freshwater ascomycetes: new or noteworthy species from north temperate lakes in Wisconsin. Mycologia 93(3):566–602. doi:10.2307/3761741, PubMed PMID: WOS:000168935100016

    Article  Google Scholar 

  • Ferreira V, Castagneyrol B, Koricheva J, Gulis V, Chauvet E, Graça MA (2014) A meta‐analysis of the effects of nutrient enrichment on litter decomposition in streams. Biol Rev. doi:10.1111/brv.12125

    Google Scholar 

  • Ferrer A, Miller AN, Shearer CA (2011) Minutisphaera and Natipusilla: two new genera of freshwater Dothideomycetes. Mycologia 103(2):411–423. doi:10.3852/10-177, PubMed PMID: WOS:000288887400017

    Article  PubMed  Google Scholar 

  • Fisher PJ, Sharma PD, Webster J (1977) Cellulolytic ability of aero-aquatic hyphomycetes. Trans Br Mycol Soc 69:495–496, PubMed PMID: WOS:A1977EF05300018

    Article  Google Scholar 

  • Fisher PJ, Petrini O, Webster J (1991) Aquatic hyphomycetes and other fungi in living aquatic and terrestrial roots of Alnus glutinosa. Mycol Res 95:543–547

    Article  Google Scholar 

  • Fuller MS, Jaworski A (1987) Zoosporic fungi in teaching and research. Southeastern Publishing Corporation, Athen, GA

    Google Scholar 

  • Gessner MO, Gulis V, Kuehn KA, Chauvet E, Suberkropp K (2007) 17 Fungal decomposers of plant litter in aquatic ecosystems. In: Christian PK, Druzhinina IS (eds) Environmental and microbial relationships, 4th edn. Springer, Berlin

    Google Scholar 

  • Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH et al (2010) Diversity meets decomposition. Trends Ecol Evol 25(6):372–380, PubMed PMID: WOS:000278682500008

    Article  PubMed  Google Scholar 

  • Goh TK (1997) Tropical freshwater hyphomycetes. In: Hyde KD (ed) Biodiversity of tropical microfungi. Hong Kong University Press, Hong Kong

    Google Scholar 

  • Goh T, Hyde K (1996a) Biodiversity of freshwater fungi. J Ind Microbiol 17(5–6):328–345

    Article  CAS  Google Scholar 

  • Goh TK, Tsui CKM (2003) Key to common dematiaceous hyphomycetes from freshwater. In: Tsui CKM, Hyde KD (eds) Freshwater mycology. Fungal Diversity Press, Hong Kong

    Google Scholar 

  • Goh TK, Ho WH, Hyde KD, Umali TE (1997) New records and species of Sporoschisma and Sporoschismopsis from submerged wood in the tropics. Mycol Res 101:1295–1307

    Article  Google Scholar 

  • Goh TK, Ho WH, Hyde KD, Whitton SR, Umali TE (1998) New records and species of Canalisporium (Hyphomycetes), with a revision of the genus. Can J Bot-Revue Canadienne De Botanique 76(1):142–152, PubMed PMID: WOS:000073021500017

    Article  Google Scholar 

  • Gönczöl J (1989) Longitudinal distribution patterns of aquatic hyphomycetes in a mountain stream in Hungary—experiments with leaf packs. Nova Hedwigia 48(3–4):391–404, PubMed PMID: WOS:A1989AD12000009

    Google Scholar 

  • Gönczöl J, Révay A (2003) Treehole fungal communities: aquatic, aero-aquatic and dematiaceous hyphomycetes. Fungal Divers 12:19–34, PubMed PMID: WOS:000181503800003

    Google Scholar 

  • Gönczöl J, Révay A (2004) Fungal spores in rainwater: stemflow, throughfall and gutter conidial assemblages. Fungal Divers 16:67–86, PubMed PMID: WOS:000222743900006

    Google Scholar 

  • Gönczöl J, Révay A (2006) Species diversity of rainborne hyphomycete conidia from living trees. Fungal Divers 22:37–54, PubMed PMID: WOS:000239781700003

    Google Scholar 

  • Graça MAS, Ferreira V, Canhoto C, Encalada AC, Guerrero-Bolano F, Wantzen KM et al (2015) A conceptual model of litter breakdown in low order streams. Int Rev Hydrobiol 100(1):1–12. doi:10.1002/iroh.201401757, PubMed PMID: WOS:000347777600001

    Article  CAS  Google Scholar 

  • Gulis V (2001) Are there any substrate preferences in aquatic hyphomycetes? Mycol Res 105:1088–1093. doi:10.1016/s0953-7562(08)61971-1, PubMed PMID: WOS:000171808900009

    Article  Google Scholar 

  • Gulis V, Suberkropp K (2003) Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshw Biol 48(1):123–134. doi:10.1046/j.1365-2427.2003.00985.x, PubMed PMID: WOS:000179693900011

    Article  Google Scholar 

  • Hameed AAA, El Hawarry S, Kamel MM (2008) Prevalence and distribution of airborne and waterborne fungi and actinomycetes in the Nile river. Aerobiologia 24(4):231–240. doi:10.1007/s10453-008-9101-7, PubMed PMID: WOS:000260611900006

    Article  Google Scholar 

  • Harrop BL, Marks JC, Watwood ME (2009) Early bacterial and fungal colonization of leaf litter in Fossil Creek, Arizona. J N Am Benthol Soc 28(2):383–396. doi:10.1899/08-068.1, PubMed PMID: WOS:000266645700011

    Article  Google Scholar 

  • Heinrichs G, Hübner I, Schmidt CK, de Hoog GS, Haase G (2013) Analysis of black fungal biofilms occurring at domestic water taps. I: compositional analysis using Taq-Encoded FLX Amplicon Pyrosequencing. Mycopathologia 175:387–397

    Article  CAS  PubMed  Google Scholar 

  • Hori C, Ishida T, Igarashi K, Samejima M, Suzuki H, Master E et al (2014) Analysis of the Phlebiopsis gigantea genome, transcriptome and secretome provides insight into its pioneer colonization strategies of wood. PLoS Genet 10, e1004759

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu DM, Cai L, Jones EBG, Zhang H, Boonyuen N, Hyde KD (2014) Taxonomy of filamentous asexual fungi from freshwater habitats, links to sexual morphs and their phylogeny. In: Hyde KD, Jones EBG, Pang KL (eds) Freshwater fungi: and fungal-like organisms. Walter de Gruyter GmbH & Co KG, Berlin

    Google Scholar 

  • Hyde KD, Wong SW, Jones EBG (1997) Freshwater ascomycetes. In: Hyde KD (ed) Biodiversity of tropical microfungi Hong Kong. Hong Kong University Press, Hong Kong

    Google Scholar 

  • Ibelings BW, De Bruin A, Kagami M, Rijkeboer M, Brehm M, van Donk E (2004) Host parasite interactions between freshwater phytoplankton and chytrid fungi (Chytridiomycota). J Phycol 40(3):437–453. doi:10.1111/j.1529-8817.2004.03117.x, PubMed PMID: WOS:000221644400001

    Article  Google Scholar 

  • Ingold CT (1942) Aquatic hyphomycetes of decaying alder leaves. Trans Br Mycol Soc 25:339–417

    Article  Google Scholar 

  • Ingold CT (1955) Aquatic Ascomycetes: further species from the English Lake District. Trans Br Mycol Soc 38:157–168

    Article  Google Scholar 

  • Ingold CT (1966) The tetraradiate aquatic fungal spore. Mycologia 58(1):43–56. doi:10.2307/3756987, PubMed PMID: WOS:A19667371900002

    Article  Google Scholar 

  • Ingold CT (1975) Hooker lecture 1974: convergent evolution in aquatic fungi: the tetraradiate spore. Biol J Linn Soc 7(1):1–25. doi:10.1111/j.1095-8312.1975.tb00731.x

    Article  Google Scholar 

  • Ingold CT, Chapman B (1952) Aquatic Ascomycetes: Loramyces juncicola Weston and L. macrospora n. sp. Trans Br Mycol Soc 35:269–272

    Google Scholar 

  • Ishii N, Ishida S, Kagami M (2015) PCR primers for assessing community structure of aquatic fungi including Chytridiomycota and Cryptomycota. Fungal Ecol 13:33–43

    Article  Google Scholar 

  • James TY, Pelin A, Bonen L, Ahrendt S, Sain D, Corradi N et al (2013) Shared signatures of parasitism and phylogenomics unite Cryptomycota and Microsporidia. Curr Biol 23(16):1548–1553. doi:10.1016/j.cub.2013.06.057, PubMed PMID: WOS:000323401100019

    Article  CAS  PubMed  Google Scholar 

  • Jones EBG (1981) Observations on the ecology of lignicolous aquatic hyphomycetes. In: Wicklow DT, Carroll GC (eds) The fungal community. Marcel Dekker, New York, pp 731–742

    Google Scholar 

  • Jones EBG (2006) Form and function of fungal spore appendages. Mycoscience 47:167–183

    Article  CAS  Google Scholar 

  • Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D, Massana R et al (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474(7350):200–203. doi:10.1038/nature09984, PubMed PMID: WOS:000291397800047

    Article  CAS  PubMed  Google Scholar 

  • Jones EBG, Hyde KD, Pang KL (2014) Freshwater fungi and fungal-like organisms. Walter de Gruyter GmbH, Berlin

    Google Scholar 

  • Junghanns C, Moeder M, Krauss G, Martin C, Schlosser D (2005) Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. Microbiology 151:45–57. doi:10.1099/mic.0.27431-0, PubMed PMID: WOS:000226352800006

    Article  CAS  PubMed  Google Scholar 

  • Kagami M, Miki T, Takimoto G (2014) Mycoloop: chytrids in aquatic food webs. Front Microbiol 5:9. doi:10.3389/fmicb.2014.00166, PubMed PMID: WOS:000334664400001

    Google Scholar 

  • Kaushik NK, Hynes HBN (1971) The fate of the dead leaves that fall into streams. Archiv Fur Hydrobiologie 68:465–515

    Google Scholar 

  • Kelly JJ, Bansal A, Winkelman J, Janus LR, Hell S, Wencel M et al (2010) Alteration of microbial communities colonizing leaf litter in a temperate woodland stream by growth of trees under conditions of elevated atmospheric CO2. Appl Environ Microbiol 76(15):4950–4959. doi:10.1128/aem.00221-10, PubMed PMID: WOS:000280266200005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr JL, Baldwin DS, Tobin MJ, Puskar L, Kappen P, Rees GN et al (2013) High spatial resolution infrared micro-spectroscopy reveals the mechanism of leaf lignin decomposition by aquatic fungi. PLoS One 8, e60857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohout P, Sykorova Z, Ctvrtlikova M, Rydlova J, Suda J, Vohnik M et al (2012) Surprising spectra of root-associated fungi in submerged aquatic plants. FEMS Microbiol Ecol 80(1):216–235. doi:10.1111/j.1574-6941.2011.01291.x, PubMed PMID: WOS:000301051600019

    Article  CAS  PubMed  Google Scholar 

  • Kohout P, Tesitelova T, Roy M, Vohnik M, Jersakova J (2013) A diverse fungal community associated with Pseudorchis albida (Orchidaceae) roots. Fungal Ecol 6(1):50–64. doi:10.1016/j.funeco.2012.08.005, PubMed PMID: WOS:000314256500007

    Article  Google Scholar 

  • Krauss G, Bärlocher F, Schreck P, Wennrich R, Glasser W, Krauss GJ (2001) Aquatic hyphomycetes occur in hyperpolluted waters in Central Germany. Nova Hedwigia 72(3–4):419–428, PubMed PMID: WOS:000169242400010

    Google Scholar 

  • Krauss G, Sridhar KR, Bärlocher F (2005) Aquatic hyphomycetes and leaf decomposition in contaminated groundwater wells in Central Germany. Archiv Fur Hydrobiologie 162(3):417–429. doi:10.1127/003-9136/2005/0162/0417, PubMed PMID: WOS:000228391300009

    Article  CAS  Google Scholar 

  • Kuske CR, Hesse CN, Challacombe JF, Cullen D, Herr JR, Mueller RC et al (2015) Prospects and challenges for fungal metatranscriptomics of complex communities. Fungal Ecol 14:133–137

    Article  Google Scholar 

  • Lazarus KL, James TY (2015) Surveying the biodiversity of the Cryptomycota using a targeted PCR approach. Fungal Ecol 14:62–70

    Article  Google Scholar 

  • Lecerf A, Richardson JS (2010a) Biodiversity-ecosystem function research: insights gained from streams. River Res Appl 26(1):45–54. doi:10.1002/rra.1286, PubMed PMID: WOS:000274310500006

    Article  Google Scholar 

  • Lecerf A, Richardson JS (2010b) Litter decomposition can detect effects of high and moderate levels of forest disturbance on stream condition. For Ecol Manag 259(12):2433–2443. doi:10.1016/j.foreco.2010.03.022, PubMed PMID: WOS:000278303700022

    Article  Google Scholar 

  • Longcore JE, Pessier AP, Nichols DK (1999) Batrachochytrium dendrobatidis gen et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91(2):219–227. doi:10.2307/3761366, PubMed PMID: WOS:000079317100001

    Article  Google Scholar 

  • Magyar D, Gönczöl J, Révay A, Grillenzoni F, Seijo-Coello MDC (2005) Stauro- and scolecoconidia in floral and honeydew honeys. Fungal Divers 20:103–120, PubMed PMID: WOS:000234463100008

    Google Scholar 

  • Masclaux H, Perga ME, Kagami M, Desvilettes C, Bourdier G, Bec A (2013) How pollen organic matter enters freshwater food webs. Limnol Oceanogr 58:1185–1195

    CAS  Google Scholar 

  • Miura A, Urabe J (2014) Spatial and seasonal changes in species diversity of epilithic fungi along environmental gradients of a river. Freshw Biol 60:673–685

    Article  CAS  Google Scholar 

  • Nagy LA, Olson BH (1982) The occurrence of filamentous fungi in drinking-water distribution-systems. Can J Microbiol 28(6):667–671, PubMed PMID: WOS:A1982NV58700017

    Article  CAS  PubMed  Google Scholar 

  • Nechwatal J, Wielgoss A, Mendgen K (2005) Pythium phragmitis sp. nov., a new species close to P. arrhenomanes as a pathogen of common reed (Phragmites australis). Mycol Res 109:1337–1346. doi:10.1017/s0953756205003990, PubMed PMID: WOS:000233734000003

    Article  CAS  PubMed  Google Scholar 

  • Nemec S (1969) Sporulation and identification of fungi isolated from root rot-diseased strawberry plants. Phytopathology 59(10):1552–1553, PubMed PMID: WOS:A1969E429700058

    Google Scholar 

  • Nikolcheva LG, Bärlocher F (2005) Seasonal and substrate preferences of fungi colonizing leaves in streams: traditional versus molecular evidence. Environ Microbiol 7(2):270–280. doi:10.1111/j.1462-2920.2004.00709.x, PubMed PMID: WOS:000226376800013

    Article  CAS  PubMed  Google Scholar 

  • Nikolcheva LG, Cockshutt AM, Bärlocher F (2003) Determining diversity of freshwater fungi on decaying leaves: comparison of traditional and molecular approaches. Appl Environ Microbiol 69(5):2548–2554. doi:10.1128/aem/69.5.2548.2554.2003, PubMed PMID: WOS:000182808300015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolcheva LG, Bourque T, Bärlocher F (2005) Fungal diversity during initial stages of leaf decomposition in a stream. Mycol Res 109:246–253. doi:10.1017/s0953756204001698

    Article  PubMed  Google Scholar 

  • Niyogi DK, Cheatham CA, Thomson WH, Christiansen JM (2009) Litter breakdown and fungal diversity in a stream affected by mine drainage. Fundam Appl Limnol 175(1):39–48. doi:10.1127/1863-9135/2009/0175-0039, PubMed PMID: WOS:000269326500003

    Article  CAS  Google Scholar 

  • Noga EJ (1993) Fungal diseases of marine and estuarine fishes. In: Couch JA, Fournie JW (eds) Pathology of marine and estuarine organisms. CRC Press, Boca Raton, FL, pp 85–110

    Google Scholar 

  • Park D (1974) Aquatic hyphomycetes in non-aquatic habitats. Trans Br Mycol Soc 63(1):183–187

    Article  Google Scholar 

  • Pascoal C, Cassio F, Marvanová L (2005) Anthropogenic stress may affect aquatic hyphomycete diversity more than leaf decomposition in a low-order stream. Archiv Fur Hydrobiologie 162(4):481–496. doi:10.1127/0003-9136/2005/0162-0481, PubMed PMID: WOS:000229072700004

    Article  Google Scholar 

  • Pérez J, Descals E, Pozo J (2012) Aquatic Hyphomycete communities associated with decomposing alder leaf litter in reference headwater streams of the Basque Country (northern Spain). Microb Ecol 64(2):279–290. doi:10.1007/s00248-012-0022-1, PubMed PMID: WOS:000306174700001

    Article  PubMed  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  CAS  PubMed  Google Scholar 

  • Powell MJ (1993) Looking at mycology with a Janus face: a glimpse at Chytridiomycetes active in the environment. Mycologia 85:1–20

    Article  Google Scholar 

  • Powell MJ, Letcher PM (2014) 6 Chytridiomycota, Monoblepharidomycota, and Neocallimastigomycota. In: McLaughlin DJ, Spatafora JW (eds) Systematics and evolution. 7A, 2nd edn. Springer, Berlin, pp 141–175

    Chapter  Google Scholar 

  • Powell MJ, Letcher PM, Blackwell WH (2013) A new aquatic cellulose-degrading chytrid in the Chytridiales. Phytopathology 103(6):115, PubMed PMID: WOS:000322799500634

    Google Scholar 

  • Raja HA, Schmit JP, Shearer CA (2009) Latitudinal, habitat and substrate distribution patterns of freshwater ascomycetes in the Florida Peninsula. Biodivers Conserv 18(2):419–455. doi:10.1007/s10531-008-9500-7, PubMed PMID: WOS:000262965400011

    Article  Google Scholar 

  • Raja HA, Oberlies NH, Figueroa M, Tanaka K, Hirayama K, Hashimoto A et al (2013) Freshwater Ascomycetes: Minutisphaera (Dothideomycetes) revisited, including one new species from Japan. Mycologia 105(4):959–976. doi:10.3852/12-313, PubMed PMID: WOS:000322849500014

    Article  PubMed  Google Scholar 

  • Raviraja NS, Sridhar KR, Bärlocher F (1998) Breakdown of Ficus and Eucalyptus leaves in an organically polluted river in India: fungal diversity and ecological functions. Freshw Biol 39:537–545

    Article  Google Scholar 

  • Reynolds JD (1988) Crayfish extinctions and crayfish plague in central Ireland. Biol Conserv 45(4):279–285. doi:10.1016/0006-3207(88)90059-6, PubMed PMID: WOS:A1988P839500004

    Article  Google Scholar 

  • Sati SC, Belwal M (2005) Aquatic hyphomycetes as endophytes of riparian plant roots. Mycologia 97(1):45–49. doi:10.3852/mycologia.97.1.45, PubMed PMID: WOS:000229365800005

    Article  CAS  PubMed  Google Scholar 

  • Schlütz F, Shumilovskikh LS (2013) On the relation of Potamomyces armatisporus to the fossil form-type Mediaverrunites and its taxonomical and ecological implications. Fungal Ecol 6(4):309–315

    Article  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686. doi:10.1017/s095375620500273x, PubMed PMID: WOS:000230687600001

    Article  PubMed  Google Scholar 

  • Seena S, Wynberg N, Baerlocher F (2008) Fungal diversity during leaf decomposition in a stream assessed through clone libraries. Fungal Divers 30:1–14, PubMed PMID: WOS:000258548800001

    Google Scholar 

  • Selosse MA, Vohnik M, Chauvet E (2008) Out of the rivers: are some aquatic hyphomycetes plant endophytes? New Phytol 178(1):3–7. doi:10.1111/j.1469-8137.2008.02390.x, PubMed PMID: WOS:000253711800002

    Article  PubMed  Google Scholar 

  • Shearer CA (1993a) The fresh-water Ascomycetes. Nova Hedwigia 56(1–2):1–33, PubMed PMID: WOS:A1993KT94300001

    Google Scholar 

  • Shearer CA (1993b) A new species of Kirschsteiniothelia (Pleosporales) with an unusual fissitunicate ascus. Mycologia 85:963–969

    Article  Google Scholar 

  • Shearer CA, Webster J (1985a) Aquatic hyphomycete communities in the River Teign. 1. Longitudinal distribution patterns. Trans Br Mycol Soc 84:489–501, PubMed PMID: WOS:A1985AHE9100011

    Article  Google Scholar 

  • Shearer CA, Webster J (1985b) Aquatic hyphomycete communities in the River Teign. 3. Comparison of sampling techniques. Trans Br Mycol Soc 84:509–518, PubMed PMID: WOS:A1985AHE9100013

    Article  Google Scholar 

  • Shearer CA, Webster J (1991) Aquatic hyphomycete communities in the River Teign. 4. Twig colonization. Mycol Res 95:413–420, PubMed PMID: WOS:A1991FL70400006

    Article  Google Scholar 

  • Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanová L, Padgett D et al (2007) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16(1):49–67. doi:10.1007/s10531-006-9120-z, PubMed PMID: WOS:000244185900004

    Article  Google Scholar 

  • Shearer CA, Raja HA, Miller AN, Nelson P, Tanaka K, Hirayama K et al (2009) The molecular phylogeny of freshwater Dothideomycetes. Stud Mycol 64:145–153. doi:10.3114/sim.2009.64.08, PubMed PMID: WOS:000274365900009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonis JL, Raja HA, Shearer CA (2008) Extracellular enzymes and soft rot decay: are ascomycetes important degraders in freshwater? Fungal Divers 31:135–146

    Google Scholar 

  • Sing VO, Bartnicki-Garcia S (1972) Adhesion of zoospores of Phytophthora palmivora to solid surface. Phytopathology 62:790

    Google Scholar 

  • Singh S, Harms H, Schlosser D (2014) Screening of ecologically diverse fungi for their potential to pretreat lignocellulosic bioenergy feedstock. Appl Microbiol Biotechnol 98(7):3355–3370. doi:10.1007/s00253-014-5563-4, PubMed PMID: WOS:000334167900045

    Article  CAS  PubMed  Google Scholar 

  • Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD et al (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4(2):125–134. doi:10.1007/s10393-007-0093-5, PubMed PMID: WOS:000248231900004

    Article  Google Scholar 

  • Smither-Kopperl ML, Charudattan R, Berger RD (1998) Dispersal of spores of Fusarium culmorum in aquatic systems. Phytopathology 88(5):382–388. doi:10.1094/phyto.1998.88.5.382, PubMed PMID: WOS:000073487300002

    Article  CAS  PubMed  Google Scholar 

  • Sole M, Muller I, Pecyna MJ, Fetzer I, Harms H, Schlosser D (2012) Differential regulation by organic compounds and heavy metals of multiple laccase genes in the aquatic Hyphomycete Clavariopsis aquatica. Appl Environ Microbiol 78(13):4732–4739. doi:10.1128/aem.00635-12, PubMed PMID: WOS:000305376600023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sondergaard M, Laegaard S (1977) Vesicular-arbuscular mycorrhiza in some aquatic vascular plants. Nature 268(5617):232–233. doi:10.1038/268232a0, PubMed PMID: WOS:A1977DN97200031

    Article  Google Scholar 

  • Sonstebo JH, Rohrlack T (2011) Possible implications of chytrid parasitism for population subdivision in freshwater cyanobacteria of the genus Planktothrix. Appl Environ Microbiol 77(4):1344–1351. doi:10.1128/aem.02153-10, PubMed PMID: WOS:000287078100023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sparrow FK (1960) Aquatic phycomycetes. University of Michigan Press, Ann Arbor, MI, 1187 p

    Book  Google Scholar 

  • Sridhar KR, Bärlocher F, Krauss GJ, Krauss G (2005) Response of aquatic hyphomycete communities to changes in heavy metal exposure. Int Rev Hydrobiol 90(1):21–32. doi:10.1002/iroh.200410739, PubMed PMID: WOS:000227722800002

    Article  CAS  Google Scholar 

  • Sridhar KR, Duarte S, Cassio F, Pascoal C (2009) The role of early fungal colonizers in leaf-litter decomposition in Portuguese streams impacted by agricultural runoff. Int Rev Hydrobiol 94(4):399–409. doi:10.1002/iroh.200811154, PubMed PMID: WOS:000269832100005

    Article  CAS  Google Scholar 

  • Stajich JEBM, Blackwell M, Hibbett DS, James TY, Spatafora JW, Taylor JW (2009) The fungi. Curr Biol 19:R840–R845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudova R, Rydlova J, Ctvrtlikova M, Havranek P, Adamec L (2011) The incidence of arbuscular mycorrhiza in two submerged Isoetes species. Aquat Bot 94(4):183–187. doi:10.1016/j.aquabot.2011.02.003, PubMed PMID: WOS:000290502100006

    Article  Google Scholar 

  • Taylor JW, Berbee ML (2006) Dating divergences in the fungal tree of life: review and new analyses. Mycologia 98:838–849

    Article  PubMed  Google Scholar 

  • Tedersoo L, Pellet P, Kõljalg U, Selosse M-A (2007) Parallel evolutionary paths to mycoheterotrophy in understorey Ericaceae and Orchidaceae: ecological evidence for mixotrophy in Pyroleae. Oecologia 151(2):206–217

    Article  PubMed  Google Scholar 

  • Thomas K, Chilvers GA, Norris RH (1989) Seasonal occurrence of conidia of aquatic hyphomycetes (fungi) in Lees Creek, Australian Capital Territory. Aust J Mar Freshwat Res 40:11–23

    Article  CAS  Google Scholar 

  • Thomas K, Chilvers GA, Norris RH (1992) Aquatic hyphomycetes from different substrates; substrate preference and seasonal occurrence. Aust J Mar Freshwat Res 43:491–509

    Article  Google Scholar 

  • Tsui CKM, Berbee ML (2006) Phylogenetic relationships and convergence of helicosporous fungi inferred from ribosomal DNA sequences. Mol Phylogenet Evol 39(3):587–597. doi:10.1016/j.ympev.2006.01.025, PubMed PMID: WOS:000238155300001

    Article  CAS  PubMed  Google Scholar 

  • Tsui CKM, Hyde KD, Hodgkiss IJ (2001a) Longitudinal and temporal distribution of freshwater ascomycetes and dematiaceous hyphomycetes on submerged wood in the Lam Tsuen River, Hong Kong. J N Am Benthol Soc 20(4):533–549. doi:10.2307/1468086, PubMed PMID: WOS:000172517400003

    Article  Google Scholar 

  • Tsui CKM, Hyde KD, Hodgkiss IJ (2001b) Colonization patterns of wood-inhabiting fungi on baits in Hong Kong rivers, with reference to the effects of organic pollution. Anton Leeuw Int J Gen Mol Microbiol 79(1):33–38. doi:10.1023/a:1010210631215, PubMed PMID: WOS:000167920200004

    Article  CAS  Google Scholar 

  • Tubaki K, Tokumasu S, Ando K (1985) Morning dew and Tripospermum (Hyphomycetes). Bot J Linn Soc 91:45–50

    Article  Google Scholar 

  • Vijaykrishna D, Jeewon R, Hyde KD (2006) Molecular taxonomy, origins and evolution of freshwater ascomycetes. Fungal Divers 23:351–390, PubMed PMID: WOS:000243414100015

    Google Scholar 

  • Voglmayr H (2004) Spirosphaera cupreorufescens sp. nov., a rare aeroaquatic fungus. Stud Mycol 50(1):221–228

    Google Scholar 

  • Voglmayr H (2011) Phylogenetic relationships and reclassification of Spirosphaera lignicola, an enigmatic aeroaquatic fungus. Mycotaxon 116:191–202

    Article  Google Scholar 

  • Voglmayr H, Delgado-Rodriguez G (2001) Dendroclathra caeruleofusca gen.nov. et sp.nov., an aeroaquatic hyphomycete from Cuba. Can J Bot-Revue Canadienne De Botanique 79(9):995–1000, PubMed PMID: WOS:000171070800001

    Article  Google Scholar 

  • Voglmayr H, Delgado-Rodriguez G (2003) New species, notes and key to the aeroaquatic genera Beverwykella and Ramicephala gen. nov. Mycol Res 107:236–244. doi:10.1017/s0953756203007172, PubMed PMID: WOS:000182647300015

    Article  PubMed  Google Scholar 

  • Voglmayr H, Krisai-Greilhuber I (1997) Pseudoclathrosphaerina evamariae gen. et sp. nov. and Sympodioclathra globosa gen. et sp. nov., two aeroaquatic fungi similar to Clathrosphaerina. Mycologia 89(6):942–951. doi:10.2307/3761115, PubMed PMID: WOS:A1997YK93200014

    Article  Google Scholar 

  • Voglmayr H, Park MJ, Shin HD (2011) Spiroplana centripeta gen. & sp. nov., a leaf parasite of Philadelphus and Deutzia with a remarkable aeroaquatic conidium morphology. Mycotaxon 116:203–216

    Article  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe T (1975) Tetracladium setigerum an aquatic hyphomycetes associated with gentian and strawberry roots. Trans Mycol Soc Jpn 16:348–350

    Google Scholar 

  • Webster J (1959) Experiments with spores of aquatic hyphomycetes I: sedimentation and impaction on smooth surfaces. Ann Bot 23:595–611

    Google Scholar 

  • Webster J (1980) Introduction to fungi, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Webster J, Davey RA (1984) Sigmoid conidial shape in aquatic fungi. Trans Br Mycol Soc 83:43–52, PubMed PMID: WOS:A1984TH62300005

    Article  Google Scholar 

  • Webster J, Descals E (1981) Morphology, distribution, and ecology of conidial fungi in freshwater habitats. In: Cole GC, Kendrick B (eds) Biology of conidial fungi. Academic, London, pp 295–335

    Chapter  Google Scholar 

  • Willoughby LG (2003) Diseases of freshwater fishes. In: Tsui CKM, Hyde KD (eds) Freshwater mycology. Fungal Diversity Press, Hong Kong, pp 111–126

    Google Scholar 

  • Wong SW, Hyde KD (1999) Proboscispora aquatica gen. et sp. nov., from wood submerged in freshwater. Mycol Res 103:81–87. doi:10.1017/s0953756298006820, PubMed PMID: WOS:000078869900013

    Article  Google Scholar 

  • Wong MKM, Goh TK, Hodgkiss IJ, Hyde KD, Ranghoo VM, Tsui CKM et al (1998) Role of fungi in freshwater ecosystems. Biodivers Conserv 7(9):1187–1206. doi:10.1023/a:1008883716975, PubMed PMID: WOS:000078129900005

    Article  Google Scholar 

  • Wood-Eggenschwiler S, Bärlocher F (1985) Geographical distribution of Ingoldian fungi. Verhandlungen Internationaler nereinigung fuer Theoretische und Angewanot d Liminologie 22:2780–2785

    Google Scholar 

  • Wurzbacher C, Rosel S, Rychla A, Grossart H-P (2014) Importance of saprotrophic freshwater fungi for pollen degradation. PLoS One 9(4), e94643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuen TK, Hyde KD, Hodgkiss IJ (1998) Physiological growth parameters and enzyme production in tropical freshwater fungi. Mater Org 32(1):1–16, PubMed PMID: WOS:000079120700001

    CAS  Google Scholar 

  • Zemek J, Marvanov L, Kuniak L, Kadlecikova B (1985) Hydrolytic enzymes in aquatic hyphomycetes. Folia Microbiol 30:363–372

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the following students of Professor T.K. Goh, for providing the pictures of freshwater fungi used in this chapter: Bao Yee Loh (Oomycetes), Huey Kei Lee (Ingoldian fungi), and Wee Kee Sim (lignicolous hyphomycetes). We are grateful to Dr. Huzefa Raja for comments and suggestions. The authors thank the master student of Christiane Baschien, Jens Schmidt for the picture of Lunulospora curvula conidiogenesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clement K. M. Tsui Ph.D. .

Editor information

Editors and Affiliations

Additional information

Our work is dedicated to John Webster (1925–2014) for his pioneer and influential work on freshwater fungi.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tsui, C.K.M., Baschien, C., Goh, TK. (2016). Biology and Ecology of Freshwater Fungi. In: Li, DW. (eds) Biology of Microfungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-29137-6_13

Download citation

Publish with us

Policies and ethics