Skip to main content

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

The intrinsic flavor properties of wine are dependent upon the flavor compounds’ composition and how these influence sensory perception. Aromatic amino acids are catabolized by the transamination of the amino group and the formation of alpha-keto acids, which are decarboxylated to the aldehydes. Furthermore, they create highly desired wine aroma by transforming into aromatic alcohol. While only traces of tryptophan metabolites could be determined in grapes and grape musts, their amounts increase significantly during fermentation. Even under optimal fermentation conditions, the most efficient thiol-releasing Saccharomyces cerevisiae wine strain realizes less than 5 % of the thiol-related flavor potential of grape juice. Tryptophanase is able to convert an odorless substrate, L-tryptophan, into the odorous products methyl mercaptan and indole. Tryptophanase-encoded cysteine-beta-lyase releases up to 25 times more 4-mercapto-4-methylpentan-2-one (4MMP) and 3-mercaptohexan-1-ol (3MH) and transforms these compounds into free thiols. In order to produce wines with more pronounced aromatic profiles, low-temperature alcoholic fermentations are utilized frequently. Tryptophan metabolism of yeast influences fermentation performance during low-temperature wine fermentation. Actually, tryptophan uptake by yeast cells is sensitive to decreases in membrane fluidity caused by either high pressure or low temperature. Thus, tryptophan permease-expressing yeast cells can grow up under low-temperature conditions. Moreover, nitrogen deficiency in grape musts is one of the main causes of ineffective wine fermentations. In this respect, ammonium is the preferred nitrogen source for biomass production. Indeed, ammonium supplementation has a greater impact on wine aroma and color intensity. Additionally, tryptophanase activity and the rate of tryptophan synthesis increase with ammonium. Tryptophan and its metabolites are considered to be potential precursors of an aroma compound, 2-aminoacetophenone (AAP). If the amount of AAP increases significantly during fermentation, “untypical aging off-flavor” (UTA) may occur. Hence, a significant correlation is found between the level of AAP concentrations and poor quality of wine. On the contrary, indol-3-ethanol which is mainly formed during alcoholic fermentation from tryptophan does not reveal unpleasant odor. Pressure treatments impart aged-like characteristics to the wines and can influence the red wine physicochemical and sensorial characteristics. L-tryptophan is of primary importance for cell growth under high-pressure conditions. Indeed, the availability of tryptophan is the key factor for the continuation of growth at high pressure. Considering the flavor profile of wine, the ethanol stress-tolerant yeast strains are highly desired by winemakers. The enhancement of expression of genes related to tryptophan biosynthesis increases the ethanol stress tolerance of yeast cells. The fruity odors of wine are largely derived from the synthesis of esters and higher alcohols during yeast fermentation. The adaptation of yeast to metabolic conditions throughout the fermentation process by secreting aromatic alcohols is known as quorum sensing. Quorum-sensing molecules, tryptophol and phenylethanol, regulate the morphogenesis of Saccharomyces cerevisiae during nitrogen starvation. The production of aromatic alcohols is autostimulated by tryptophol. Melatonin is detected in grape extract within the range of 120–160 ng/g, while its isomer is found in musts and finished wines. Melatonin levels are higher in red wine than in white wine. Although melatonin in wine, thus, is believed to be derived from grapes, yeast also produces up to 100 ng/mg protein melatonin. However, the contribution of melatonin to the flavor of wine is not well understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe F (2011) Regulation and dynamics of tryptophan import in yeast analyzed using high hydrostatic pressure. www.horiba.com/uploads/media/R14E_05_01.pdf English Edition No.14 February 2011

  • Abe F, Horikoshi K (2000) Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae. Mol Cell Biol 20:8093–8102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Abe F, Kato C, Horikoshi K (1999) Pressure-regulated metabolism in microorganisms. Trends Microbiol 7:447–453

    Article  CAS  PubMed  Google Scholar 

  • Albuquerque P, Casadevall A (2012) Quorum sensing in fungi–a review. Med Mycol 50:337–345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Allen T, Herbst-Johnstone M, Girault M, Butler P, Logan G, Jouanneau S, Nicolau L, Kilmartin PA (2011) Influence of grape-harvesting steps on varietal thiol aromas in Sauvignon blanc wines. J Agric Food Chem 59:10641–10650

    Article  CAS  PubMed  Google Scholar 

  • Augustyniak A, Stankiewicz A, Skrzydlewska E (2008) The influence of L-carnitine on oxidative modification of LDL. In Vitro Toxicol Mech Methods 18:455–462

    Article  CAS  Google Scholar 

  • Bai FW, Chen LJ, Zhang Z, Anderson WA, Moo-Young M (2004) Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. J Biotechnol 110:287–293

    Article  CAS  PubMed  Google Scholar 

  • Bauer BE, Rossington D, Mollapour M, Mamnun Y, Kuchler K, Piper PW (2003) Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants. Eur J Biochem 270:3189–3195

    Article  CAS  PubMed  Google Scholar 

  • Belitz HD, Grosch W, Schieberle P (2009) Amino acids, peptides, proteins in food chemistry, 4th revised and extended edition. Springer, India, pp 8–34

    Google Scholar 

  • Beltran G, Esteve-Zarzoso B, Rozès N, Mas A, Guillamón JM (2005) Influence of the timing of nitrogen additions during synthetic grape must fermentations on fermentation kinetics and nitrogen consumption. J Agric Food Chem 53:996–1002

    Article  CAS  PubMed  Google Scholar 

  • Berlanga TM, Atanasio C, Mauricio JC, Ortega JM (2001) Influence of aeration on the physiological activity of flor yeasts. J Agric Food Chem 49:3378–3384

    Article  CAS  PubMed  Google Scholar 

  • Blateyron L, Ortiz-Julien A, Sablayrolles JM (2003) Stuck fermentations: oxygen and nitrogen requirements – importance of optimising their addition. Aust N Z Grapegrower Winemaker 478:73–79

    Google Scholar 

  • Boccalandro HE, González CV, Wunderlin DA, Silva MF (2011) Melatonin levels, determined by LC-ESI-MS/MS, fluctuate during the day/night cycle in Vitis vinifera cv Malbec: evidence of its antioxidant role in fruits. J Pineal Res 51:226–232

    Article  CAS  PubMed  Google Scholar 

  • Carrasco P, Querol A, del Olmo M (2001) Analysis of the stress resistance of commercial wine yeast strains. Arch Microbiol 175:450–457

    Article  CAS  PubMed  Google Scholar 

  • Carrau FM, Medina K, Farina L, Boido E, Henschke PA, Dellacassa E (2008) Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains. FEMS Yeast Res 8:1196–1207

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Fink GR (2006) Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev 20:1150–1161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen D, Chia JY, Liu SQ (2014) Impact of addition of aromatic amino acids on non-volatile and volatile compounds in lychee wine fermented with Saccharomyces cerevisiae MERIT.ferm. Int J Food Microbiol 170:12–20

    Article  CAS  PubMed  Google Scholar 

  • Christoph N, Gessner M, Simat TJ, Hoenicke K (1999) Off-flavor compounds in wine and other food products formed by enzymatical, physical, and chemical degradation of tryptophan and its metabolites. In: Gerald H, Walter K, Simat TJ, Hans S (eds) Advances in experimental medicine and biology V. 467, 1999;467:659-69 Tryptophan, serotonin and melatonin. Basic aspects and applications. Kluwer Academic Publishers/Plenum Publishers, New York. ISBN ISBN 0-306-46204-4

    Google Scholar 

  • Cordente AG, Swiegers JH, Hegardt FG, Pretorius IS (2007) Modulating aroma compounds during wine fermentation by manipulating carnitine acetyltransferases in Saccharomyces cerevisiae. FEMS Microbiol Lett 267:159–166

    Article  CAS  PubMed  Google Scholar 

  • Dinh TN, Nagahisa K, Yoshikawa K, Hirasawa T, Furusawa C, Shimizu H (2009) Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray. Bioprocess Biosyst Eng 32:681–688

    Article  CAS  PubMed  Google Scholar 

  • Favre G, Peña-Neira Á, Baldi C, Hernández N, Traverso S, Gil G, González-Neves G (2014) Low molecular-weight phenols in Tannat wines made by alternative winemaking procedures. Food Chem 158:504–512

    Article  CAS  PubMed  Google Scholar 

  • Fleet GH (2003) Yeast interactions and wine flavour. Int J Food Microbiol 86:11–22

    Article  CAS  PubMed  Google Scholar 

  • Franken J, Kroppenstedt S, Swiegers JH, Bauer FF (2008) Carnitine and carnitine acetyltransferases in the yeast Saccharomyces cerevisiae: a role for carnitine in stress protection. Curr Genet 53:347–360

    Article  CAS  PubMed  Google Scholar 

  • Gomez FJ, Raba J, Cerutti S, Silva MF (2012) Monitoring melatonin and its isomer in Vitis vinifera cv. Malbec by UHPLC-MS/MS from grape to bottle. J Pineal Res 52:349–355

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, Ros J, Matallana E (2010) Reduction of oxidative cellular damage by overexpression of the thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass. Microb Cell Fact 9:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Gori K, Knudsen PB, Nielsen KF, Arneborg N, Jespersen L (2011) Alcohol-based quorum sensing plays a role in adhesion and sliding motility of the yeast Debaryomyces hansenii. FEMS Yeast Res 11:643–652

    Article  CAS  PubMed  Google Scholar 

  • Grant CM (2001) Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol Microbiol 39:533–541

    Article  CAS  PubMed  Google Scholar 

  • Harsch MJ, Benkwitz F, Frost A, Colonna-Ceccaldi B, Gardner RC, Salmon JM (2013) New precursor of 3-mercaptohexan-1-ol in grape juice: thiol-forming potential and kinetics during early stages of must fermentation. J Agric Food Chem 61:3703–3713

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S (2007) Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J Biotechnol 131:34–44

    Article  CAS  PubMed  Google Scholar 

  • Hoenicke K, Simat TJ, Steinhart H, Christoph N, Köhler HJ, Schwab A (1999) Determination of tryptophan and tryptophan metabolites in grape must and wine. Adv Exp Med Biol 467:671–677

    Article  CAS  PubMed  Google Scholar 

  • Hoenicke K, Simat TJ, Steinhart H, Köhler HJ, Schwab A (2001) Determination of free and conjugated indole-3-acetic acid, tryptophan, and tryptophan metabolites in grape must and wine. J Agric Food Chem 49:5494–5501

    Article  CAS  PubMed  Google Scholar 

  • Hoenicke K, Borchert O, Grüning K, Simat TJ (2002) “Untypical aging off-flavor” in wine: synthesis of potential degradation compounds of indole-3-acetic acid and kynurenine and their evaluation as precursors of 2-aminoacetophenone. J Agric Food Chem 50:4303–4309

    Article  CAS  PubMed  Google Scholar 

  • Hogan DA (2006) Quorum sensing: alcohols in a social situation. Curr Biol 16:R457–R458

    Article  CAS  PubMed  Google Scholar 

  • Holt S, Cordente AG, Williams SJ, Capone DL, Jitjaroen W, Menz IR, Curtin C, Anderson PA (2011) Engineering Saccharomyces cerevisiae to release 3-Mercaptohexan-1-ol during fermentation through overexpression of an S. cerevisiae Gene, STR3, for improvement of wine aroma. Appl Environ Microbiol 77:3626–3632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hostetler HA, Lupas D, Tan Y, Dai J, Kelzer MS, Martin GG, Woldegiorgis G, Kier AB, Schroeder F (2011) Acyl-CoA binding proteins interact with the acyl-CoA binding domain of mitochondrial carnitine palmitoyl transferase I. Mol Cell Biochem 355:135–148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iriti M, Faoro F (2006) Grape phytochemicals: a bouquet of old and new nutraceuticals for human health. Med Hypotheses 67:833–838

    Article  CAS  PubMed  Google Scholar 

  • Iriti M, Faoro F (2009) Bioactivity of grape chemicals for human health. Nat Prod Commun 4:611–634

    CAS  PubMed  Google Scholar 

  • Lattey KA, Bramley BR, Francis IL (2010) Consumer acceptability, sensory properties and expert quality judgements of Australian Cabernet Sauvignon and Shiraz wines. Aust J Grape Wine Res 16:189–202

    Article  Google Scholar 

  • Lilly M, Bauer FF, Lambrechts MG, Swiegers JH, Cozzolino D, Pretorius IS (2006) The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates. Yeast 23:641–659

    Article  CAS  PubMed  Google Scholar 

  • Llauradó JM, Rozès N, Constantí M, Mas A (2005) Study of some Saccharomyces cerevisiae strains for winemaking after preadaptation at low temperatures. J Agric Food Chem 53:1003–1011

    Article  PubMed  Google Scholar 

  • López-Malo M, García-Rios E, Chiva R, Guillamon JM, Martí-Raga M (2014) Effect of deletion and overexpression of tryptophan metabolism genes on growth and fermentation capacity at low temperature in wine yeast. Biotechnol Prog 30:776–783

    Article  PubMed  Google Scholar 

  • Loscos N, Hernandez-Orte P, Cacho J, Ferreira V (2007) Release and formation of varietal aroma compounds during alcoholic fermentation from nonfloral grape odorless flavor precursors fractions. J Agric Food Chem 55:6674–6684

    Article  CAS  PubMed  Google Scholar 

  • Ma M, Liu ZL (2010) Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 87:829–845

    Article  CAS  PubMed  Google Scholar 

  • Marcobal A, Martín-Alvarez PJ, Polo MC, Muñoz R, Moreno-Arribas MV (2006) Formation of biogenic amines throughout the industrial manufacture of red wine. J Food Prot 69:397–404

    CAS  PubMed  Google Scholar 

  • Marks VD, van der Merwe GK, van Vuuren HJ (2003) Transcriptional profiling of wine yeast in fermenting grape juice: regulatory effect of diammonium phosphate. FEMS Yeast Res 3:269–287

    Article  CAS  PubMed  Google Scholar 

  • Maslov L, Jeromel A, Herjavec S, Korenika AMJ, Mihaljevic M, Plavša T (2011) Indole-3-acetic acid and tryptophan in Istrian Malvasia grapes and wine. Food Agric Environ JFAE 9:29–33

    CAS  Google Scholar 

  • Masneuf-Pomarède I, Mansour C, Murat ML, Tominaga T, Dubourdieu D (2006) Influence of fermentation temperature on volatile thiols concentrations in Sauvignon blanc wines. Int J Food Microbiol 108:385–390

    PubMed  Google Scholar 

  • Mauricio JC, Ortega JM (1997) Nitrogen compounds in wine during its biological aging by two flor film yeasts: an approach to accelerated biological aging of dry sherry-type wines. Biotechnol Bioeng 53:159–167

    Article  CAS  PubMed  Google Scholar 

  • Mauricio JC, Valero E, Millán C, Ortega JM (2001) Changes in nitrogen compounds in must and wine during fermentation and biological aging by flor yeasts. J Agric Food Chem 49:3310–3315

    Article  CAS  PubMed  Google Scholar 

  • Mercolini L, Addolorata Saracino M, Bugamelli F, Ferranti A, Malaguti M, Hrelia S, Raggi MA (2008) HPLC-F analysis of melatonin and resveratrol isomers in wine using an SPE procedure. J Sep Sci 31:1007–1014

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-González C, Rodríguez-Bencomo JJ, Moreno-Arribas MV, Pozo-Bayón M (2011) Beyond the characterization of wine aroma compounds: looking for analytical approaches in trying to understand aroma perception during wine consumption. Anal Bioanal Chem 401:1497–1512

    Article  PubMed  Google Scholar 

  • Murch SJ, Hall BA, Le CH, Saxena PK (2010) Changes in the levels of indoleamine phytochemicals during véraison and ripening of wine grapes. J Pineal Res 49:95–100

    CAS  PubMed  Google Scholar 

  • Patel P, Herbst-Johnstone M, Lee SA, Gardner RC, Weaver R, Nicolau L, Kilmartin PA (2010) Influence of juice pressing conditions on polyphenols, antioxidants, and varietal aroma of Sauvignon blanc microferments. J Agric Food Chem 58:7280–7288

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Torrado R, Bruno-Bárcena JM, Matallana E (2005) Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making. Appl Environ Microbiol 71:6831–6837

    Article  PubMed Central  PubMed  Google Scholar 

  • Perez-Torrado R, Gomez-Pastor R, Larsson C, Matallana E (2009) Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth. Appl Microbiol Biotechnol 81:951–960

    Article  CAS  PubMed  Google Scholar 

  • Pina C, António J, Hogg T (2004) Inferring ethanol tolerance of Saccharomyces and non-Saccharomyces yeasts by progressive inactivation. Biotechnol Lett 26:1521–1527

    Article  CAS  PubMed  Google Scholar 

  • Polásková P, Herszage J, Ebeler SE (2008) Wine flavor: chemistry in a glass. Chem Soc Rev 37:2478–2489

    Article  PubMed  Google Scholar 

  • Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729

    Article  CAS  PubMed  Google Scholar 

  • Rapp A (1998) Volatile flavour of wine: correlation between instrumental analysis and sensory perception. Nahrung 42:351–363

    Article  CAS  PubMed  Google Scholar 

  • Rapp A, Versini G (1991) Influence of nitrogen compounds in grapes on aroma compounds of wine. In: Proceedings of the international symposium on nitrogen in grapes and wine. American Society for Enology and Viticulture, Davis, USA, pp 156–164

    Google Scholar 

  • Rigou P, Triay A, Razungles A (2014) Influence of volatile thiols in the development of blackcurrant aroma in red wine. Food Chem 142:242–248

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Naranjo MI, Ordóñez JL, Callejón RM, Cantos-Villar E, Garcia-Parrilla MC (2013) Melatonin is formed during winemaking at safe levels of biogenic amines. Food Chem Toxicol 57:140–146

    Article  CAS  PubMed  Google Scholar 

  • Saerens SM, Delvaux FR, Verstrepen KJ, Thevelein JM (2010) Production and biological function of volatile esters in Saccharomyces cerevisiae. Microb Biotechnol 3:165–177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santos MC, Nunes C, Cappelle J, Gonçalves FJ, Rodrigues A, Saraiva JA, Coimbra MA (2013) Effect of high pressure treatments on the physicochemical properties of a sulphur dioxide-free red wine. Food Chem 141:2558–2566

    Article  CAS  PubMed  Google Scholar 

  • Shimada A, Ozaki H, Saito T, Noriko F (2009) Tryptophanase-catalyzed L-tryptophan synthesis from D-serine in the presence of diammonium hydrogen phosphate. Int J Mol Sci 10:2578–2590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spayd SE, Andersen-Bagge J (1996) Free amino acid composition of grape juice from 12 Vitis vinifera cultivars in Washington. Am J Enol Vitic 47:389–402

    CAS  Google Scholar 

  • Sprenger J, Hardeland R, Fuhrberg B, Han S-Z (1999) Melatonin and other 5-methoxylated indoles in yeast: presence in high concentrations and dependence on tryptophan availability. Cytologia 64:209–213

    Article  CAS  Google Scholar 

  • Stege PW, Sombra LL, Messina G, Martinez LD, Silva MF (2010) Determination of melatonin in wine and plant extracts by capillary electrochromatography with immobilized carboxylic multi-walled carbon nanotubes as stationary phase. Electrophoresis 31:2242–2248

    Article  CAS  PubMed  Google Scholar 

  • Styger G, Prior B, Bauer FF (2011) Wine flavor and aroma. J Ind Microbiol Biotechnol 38:1145–1159

    Article  CAS  PubMed  Google Scholar 

  • Swiegers JH, Pretorius IS (2007) Modulation of volatile sulfur compounds by wine yeast. Appl Microbiol Biotechnol 74:954–960

    Article  CAS  PubMed  Google Scholar 

  • Swiegers JH, Dippenaar N, Pretorius IS, Bauer FF (2001) Carnitine-dependent metabolic activities in Saccharomyces cerevisiae: three carnitine acetyltransferases are essential in a carnitine-dependent strain. Yeast 18:585–595

    Article  CAS  PubMed  Google Scholar 

  • Swiegers JH, Capone DL, Pardon KH, Elsey GM, Sefton MA, Francis IL, Pretorius IS (2007) Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma. Yeast 24:561–574

    Article  CAS  PubMed  Google Scholar 

  • Tabilo-Munizaga G, Gordon TA, Villalobos-Carvajal R, Moreno-Osorio L, Salazar FN, Pérez-Won M, Acuña S (2014) Effects of high hydrostatic pressure (HHP) on the protein structure and thermal stability of Sauvignon blanc wine. Food Chem 155:214–220

    Article  CAS  PubMed  Google Scholar 

  • Toda T, Cameron S, Sass P, Zoller M, Wigler M (1987) Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50:277–287

    Article  CAS  PubMed  Google Scholar 

  • Tominaga T, Peyrot des Gachons C, Dubourdieu D (1998) A new type of flavor precursors in Vitis vinifera L. cv. Sauvignon blanc: S-cysteine conjugates. J Agric Food Chem 46:5215–5219

    Article  CAS  Google Scholar 

  • Torija MJ, Beltran G, Novo M, Poblet M, Guillamón JM, Mas A, Rozès N (2003) Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine. Int J Food Microbiol 85:127–136

    Article  CAS  PubMed  Google Scholar 

  • Ugliano M, Henschke PA, Herderich MJ, Pretorius IS (2007) Wine Ind J 22:24–30. www.winebiz.com. Au

  • Ugliano M, Siebert T, Mercurio M, Capone D, Henschke PA (2008) Volatile and color composition of young and model-aged Shiraz wines as affected by diammonium phosphate supplementation before alcoholic fermentation. J Agric Food Chem 56:9175–9182

    Article  CAS  PubMed  Google Scholar 

  • Ugliano M, Kolouchova R, Henschke PA (2011) Occurrence of hydrogen sulfide in wine and in fermentation: influence of yeast strain and supplementation of yeast available nitrogen. J Ind Microbiol Biotechnol 38:423–429

    Article  CAS  PubMed  Google Scholar 

  • Verstrepen KJ, Van Laere SD, Vanderhaegen BM, Derdelinckx G, Dufour JP, Pretorius IS, Winderickx J, Thevelein JM, Delvaux FR (2003) Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Appl Environ Microbiol 69:5228–5237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vilanova M, Ugliano M, Varela C, Siebert T, Pretorius IS, Henschke PA (2007) Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by Saccharomyces cerevisiae wine yeasts. Appl Microbiol Biotechnol 77:145–157

    Article  CAS  PubMed  Google Scholar 

  • Vilela-Moura A, Schuller D, Mendes-Faia A, Côrte-Real M (2010) Effects of acetic acid, ethanol, and SO(2) on the removal of volatile acidity from acidic wines by two Saccharomyces cerevisiae commercial strains. Appl Microbiol Biotechnol 87:1317–1326

    Article  CAS  PubMed  Google Scholar 

  • Vilela-Moura A, Schuller D, Mendes-Faia A, Silva RD, Chaves SR, Sousa MJ, Côrte-Real M (2011) The impact of acetate metabolism on yeast fermentative performance and wine quality: reduction of volatile acidity of grape musts and wines. Appl Microbiol Biotechnol 89:271–280

    Article  CAS  PubMed  Google Scholar 

  • Vitalini S, Gardana C, Zanzotto A, Simonetti P, Faoro F, Fico G, Iriti M (2011) The presence of melatonin in grapevine (Vitis vinifera L.) berry tissues. J Pineal Res 51:331–767

    Article  CAS  PubMed  Google Scholar 

  • Vitalini S, Gardana C, Simonetti P, Fico G, Iriti M (2013) Melatonin, melatonin isomers and stilbenes in Italian traditional grape products and their antiradical capacity. J Pineal Res 54:322–333

    Article  CAS  PubMed  Google Scholar 

  • Wine and Spirits Education Trust (2012) Wine and spirits: understanding wine quality pgs 2–5, Second Revised Edition. Wine & Spirit Education Trust, London, ISBN 9781905819157

    Google Scholar 

  • Wuster A, Babu MM (2010) Transcriptional control of the quorum sensing response in yeast. Mol Biosyst 6:134–141

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhang Z, Ali MM, Sauder J, Deng X, Giang K, Aguirre SD, Pelton R, Li Y, Filipe CD (2014) Turning tryptophanase into odor-generating biosensors. Angew Chem Int Ed Engl 53:2620–2622

    Article  CAS  PubMed  Google Scholar 

  • Yunoki K, Yasui Y, Hirose S, Ohnishi M (2005) Fatty acids in must prepared from 11 grapes grown in Japan: comparison with wine and effect on fatty acid ethyl ester formation. Lipids 40:361–367

    Article  CAS  PubMed  Google Scholar 

  • Yunoki K, Hirose S, Ohnishi M (2007) Ethyl esterification of long chain unsaturated fatty acids derived from grape must by yeast during alcoholic fermentation. Biosci Biotechnol Biochem 71:3105–3109

    Article  CAS  PubMed  Google Scholar 

  • Zoecklein B, Fugelsang KC, Gump BH, Nury FS (1999) Wine analysis and production pgs 152-163, 340-343, 444-445, 467. Kluwer Academic Publishers, New York, ISBN 0834217015

    Google Scholar 

  • Zupan J, Avbelj M, Butinar B, Kosel J, Šergan M, Raspor P (2013) Monitoring of quorum-sensing molecules during minifermentation studies in wine yeast. J Agric Food Chem 61:2496–2505

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atilla Engin M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Engin, A. (2015). Wine Flavor and Tryptophan. In: Engin, A., Engin, A. (eds) Tryptophan Metabolism: Implications for Biological Processes, Health and Disease. Molecular and Integrative Toxicology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-15630-9_15

Download citation

Publish with us

Policies and ethics