Skip to main content

Invertebrate Protein and Peptide Hormones

  • Chapter
Hormones and the Endocrine System

Abstract

When analyzing invertebrates in the 1930s and 1940s, Berta and Hans Schaller developed the idea of neurosecretion using the large oceanic snail A. californica (Califonia sea hare) with its few and relatively large neurons. Neuropeptides have been found in all metazoans. Where whole genome sequences are available such as in bees A. mellifera) sequence motifs (signal peptides, cleaving sites of prohormone convertase, terminal glycine) could be investigated. In bees, 200 different potential neuropeptides were identified and the majority of those could be confirmed by chemical analysis (Hummon et al. 2006). In further insects, that is, D. melanogaster or C. elegans, the two model organisms of developmental biology, the potential inventory of neuropeptides is identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ciona intestinalis.

  2. 2.

    As far as PubMed is concerned; Aug. 2008

  3. 3.

    Aplysia kurodai.

  4. 4.

    Because there are two hormones that are abbreviated DH (diuretic hormone and diapause hormone) we abbreviate diuretic hormone as DiuH.

  5. 5.

    Diuretic hormone.

  6. 6.

    Aedes aegyptii.

  7. 7.

    x represent any amino acid.

  8. 8.

    Diapause hormone.

  9. 9.

    Anopheles gambiae.

  10. 10.

    (in Sept 2014)

  11. 11.

    Orconectes limosus.

  12. 12.

    Procambarus clarkii.

  13. 13.

    Leucophaea madera.

  14. 14.

    Lymnaea stagnalis.

  15. 15.

    Counted from the N-terminus: Cys1 first cysteine, Cys2 second cysteine …

  16. 16.

    For reasons of conciseness we call FMRFamides those peptides with N-terminally extended FMRFamide, and variants, for example, FIRFamide are labeled FLP for FMRFamide-like peptides

  17. 17.

    As of September 2014.

  18. 18.

    Peptidylglycine alpha-hydroxylating monooxygenase.

References

  • An S et al (2012) Insect Neuropeptide Bursicon Homodimers Induce Innate Immune and Stress Genes during Molting by Activating the NF-kB Transcription Factor Relish. PLoS ONE 7: e34510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Audsley N, Weaver RJ (2006) Analysis of peptides in the brain and corpora cardiaca-corpora allata of the honey bee, Apis mellifera using MALDI-TOF mass spectrometry. Peptides 27:512–520

    Article  CAS  PubMed  Google Scholar 

  • Audsley N, Goldsworthy GJ, Coast GM (1997) Quantification of Locusta diuretic hormone in the central nervous system and corpora cardiaca: influence of age and feeding status, and mechanism of release. Regul Pept 69:25–32

    Article  CAS  PubMed  Google Scholar 

  • Audsley N et al (2008) Allatoregulatory peptides in Lepidoptera, structures, distribution and functions. J Insect Physiol 54:969–980

    Article  CAS  PubMed  Google Scholar 

  • Baggerman G et al (2002) Peptidomics of the larval Drosophila melanogaster central nervous system. J Biol Chem 277:40368–40374

    Article  CAS  PubMed  Google Scholar 

  • Bechtold DA, Luckman SM (2007) The role of RFamide peptides in feeding. J Endocrinol 192:3–15

    Article  CAS  PubMed  Google Scholar 

  • Bishop CA, O’Shea M, Miller RJ (1981) Neuropeptide proctolin (H-Arg-Tyr-Leu-Pro-Thr-OH): immunological detection and neuronal localization in insect central nervous system. Proc Natl Acad Sci U S A 78:5899–5902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borovsky D (2003) Trypsin-modulating oostatic factor: a potential new larvicide for mosquito control. J Exp Biol 206:3869–3875

    Article  CAS  PubMed  Google Scholar 

  • Borovsky D et al (1990) Mosquito oostatic factor: a novel decapeptide modulating trypsin-like enzyme biosynthesis in the midgut. FASEB J 4:3015–3020

    CAS  PubMed  Google Scholar 

  • Brogiolo W et al (2001) An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 11:213–221

    Article  CAS  PubMed  Google Scholar 

  • Bylemans D et al (1994) Sequencing and characterization of trypsin modulating oostatic factor (TMOF) from the ovaries of the grey fleshfly. Neobellieria (Sarcophaga) bullata. Regul Pept 50:61–72

    Google Scholar 

  • Cazzamali G, Saxild N, Grimmelikhuijzen C (2002) Molecular cloning and functional expression of a Drosophila corazonin receptor. Biochem Biophys Res Commun 298:31–36

    Article  CAS  PubMed  Google Scholar 

  • Cazzamali G et al (2005) The Drosophila gene CG9918 codes for a pyrokinin-1 receptor. Biochem Biophys Res Commun 335:14–19

    Article  CAS  PubMed  Google Scholar 

  • Chang J-C et al (2009) Receptor guanylyl cyclases in Inka cells targeted by eclosion hormone. Proc Natl Acad Sci U S A 106:13371–13376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie AE et al (2007) Midgut epithelial endocrine cells are a rich source of the neuropeptides APSGFLGMRamide (Cancer borealis tachykinin-related peptide Ia) and GYRKPPFNGSIFamide (Gly1-SIFamide) in the crabs Cancer borealis, Cancer magister and Cancer productus. J Exp Biol 210:699–714

    Google Scholar 

  • Chung JS, Webster SG (2004) Expression and release patterns of neuropeptides during embryonic development and hatching of the green shore crab, Carcinus maenas. Development 131:4751–4761

    Article  CAS  PubMed  Google Scholar 

  • Chung JS, Webster SG (2005) Dynamics of in vivo release of molt-inhibiting hormone and crustacean hyperglycemic hormone in the shore crab, Carcinus maenas. Endocrinology 146:5545–5551

    Article  CAS  PubMed  Google Scholar 

  • Copenhaver PF, Truman JW (1986a) Identification of the cerebral neurosecretory cells that contain eclosion hormone in the moth Manduca sexta. J Neurosci 6:1738–1747

    CAS  PubMed  Google Scholar 

  • Copenhaver PF, Truman JW (1986b) Metamorphosis of the cerebral neuroendocrine system in the moth Manduca sexta. J Comp Neurol 249:186–204

    Article  CAS  PubMed  Google Scholar 

  • Cottrell GA (1997) The first peptide-gated ion channel J Exp Biol 200:2377–2386

    CAS  PubMed  Google Scholar 

  • Cox KJ et al (1997) Cloning, characterization, and expression of a G-protein-coupled receptor from Lymnaea stagnalis and identification of a leucokinin-like peptide, PSFHSWSamide, as its endogenous ligand. J Neurosci 17:1197–1205

    CAS  PubMed  Google Scholar 

  • Cruz-Bermudez ND, Marder E (2007) Multiple modulators act on the cardiac ganglion of the crab, Cancer borealis. J Exp Biol 210:2873–2884

    Article  CAS  PubMed  Google Scholar 

  • Csoknya M et al (2005) Neurochemical characterization of nervous elements innervating the body wall of earthworms (Lumbricus, Eisenia): immunohistochemical and pharmacological studies. Cell Tissue Res 321:479–490

    Article  CAS  PubMed  Google Scholar 

  • Dai L et al (2008) Identification, developmental expression, and functions of bursicon in the tobacco hawkmoth, Manduca sexta. J Comp Neurol 506:759–774

    Article  CAS  PubMed  Google Scholar 

  • Davis MM et al (2007) A neuropeptide hormone cascade controls the precise onset of post-eclosion cuticular tanning in Drosophila melanogaster. Development 134:4395–4404

    Article  CAS  PubMed  Google Scholar 

  • Dierick HA, Greenspan RJ (2007) Serotonin and neuropeptide F have opposite modulatory effects on fly aggression. Nat Genet 39:678–682

    Article  CAS  PubMed  Google Scholar 

  • Dircksen H et al (2001) Crustacean hyperglycaemic hormone (CHH)-like peptides and CHH-precursor-related peptides from pericardial organ neurosecretory cells in the shore crab, Carcinus maenas, are putatively spliced and modified products of multiple genes. Biochem J 356:159–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckert M, Agricola H, Penzlin H (1981) Immunocytochemical identification of proctolinlike immunoreactivity in the terminal ganglion and hindgut of the cockroach Periplaneta americana (L.). Cell Tissue Res 217:633–645

    Article  CAS  PubMed  Google Scholar 

  • Evans PD (1984) Studies on the mode of action of octopamine, 5-hydroxytryptamine and proctolin on a myogenic rhythm in the locust. J Exp Biol 110:231–251

    CAS  PubMed  Google Scholar 

  • Fernandez R et al (1995) The Drosophila insulin receptor homolog: a gene essential for embryonic development encodes two receptor isoforms with different signaling potential. EMBO J 14:3373–3384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujisawa Y et al (1999) The Aplysia mytilus inhibitory peptide-related peptides: identification, cloning, processing, distribution, and action. J Neurosci 19:9618–9634

    CAS  PubMed  Google Scholar 

  • Furukawa Y et al (2001) The enterins: a novel family of neuropeptides isolated from the enteric nervous system and CNS of Aplysia. J Neurosci 21:8247–8261

    CAS  PubMed  Google Scholar 

  • Gaede G (2004) Regulation of intermediary metabolism and water balance of insects by neuropeptides. Ann Rev Entomol 49:93–113

    Article  CAS  Google Scholar 

  • Gammie SC, Truman JW (1997) Neuropeptide hierarchies and the activation of sequential motor behaviors in the hawkmoth, Manduca sexta. J Neurosci 17:4389–4397

    CAS  PubMed  Google Scholar 

  • Gammie SC, Truman JW (1999) Eclosion hormone provides a link between ecdysis-triggering hormone and crustacean cardioactive peptide in the neuroendocrine cascade that controls ecdysis behavior. J Exp Biol 202:343–352

    CAS  PubMed  Google Scholar 

  • Gilbert LI, Rybczynski R, Warren JT (2002) Control and biochemical nature of the ecdysteroidogenic pathway. Ann Rev Entomol 47:883–916

    Article  CAS  Google Scholar 

  • Helfrich-Forster C et al (2002) The extraretinal eyelet of Drosophila: development, ultrastructure, and putative circadian function. J Neurosci 22:9255–9266

    PubMed  Google Scholar 

  • Hewes RS, Truman JW (1991) The roles of central and peripheral eclosion hormone release in the control of ecdysis behavior in Manduca sexta. J Comp Physiol [A] 168:697–707

    Article  CAS  Google Scholar 

  • Hirata T et al (1988) Structures and actions of Mytilus inhibitory peptides. Biochem Biophys Res Commun 152:1376–1382

    Article  CAS  PubMed  Google Scholar 

  • Hofer S, Homberg U (2006) Evidence for a role of orcokinin-related peptides in the circadian clock controlling locomotor activity of the cockroach Leucophaea maderae. J Exp Biol 209:2794–2803

    Article  CAS  PubMed  Google Scholar 

  • Holman G, Cook B, Nachman R (1986a) Isolation, primary structure and synthesis of two neuropeptides from Leucophaea maderae: members of a new family of Cephalomyotropins. Comp Biochem Physiol C 84:205–211

    Article  Google Scholar 

  • Holman G, Cook B, Nachman R (1986b) Primary structure and synthesis of two additional neuropeptides from Leucophaea maderae: members of a new family of Cephalomyotropins. Comp Biochem Physiol C 84:271–276

    Article  Google Scholar 

  • Honegger H-W et al (2008) Bursicon, the tanning hormone of insects: recent advances following the discovery of its molecular identity. J Comp Physiol A 194:989–1005

    Article  CAS  Google Scholar 

  • Hua YJ et al (1999) Identification of a prothoracicostatic peptide in the larval brain of the silkworm, Bombyx mori. J Biol Chem 274:31169–31173

    Article  CAS  PubMed  Google Scholar 

  • Hummon AB et al (2006) From the genome to the proteome: uncovering peptides in the Apis brain. Science 314:647–649

    Article  CAS  PubMed  Google Scholar 

  • Huybrechts J, De Loof A, Schoofs L (2004) Diapausing Colorado potato beetles are devoid of short neuropeptide F I and II. Biochem Biophys Res Commun 317:909–916

    Article  CAS  PubMed  Google Scholar 

  • Ikeda E (1913) Kimon Rimensen. In: Ikeda E (ed) Experimental anatomy and physiology of Bombyx mori. Meibundo, Tokyo, pp 242–243

    Google Scholar 

  • Ishizaki H, Suzuki A (1994) The brain secretory peptides that control moulting and metamorphosis of the silkmoth, Bombyx mori. Int J Dev Biol 38:301–310

    CAS  PubMed  Google Scholar 

  • Iwanov PP, Mescherskaya KA (1935) Die physiologischen Besonderheiten der geschlechtlich unreifen Insektenovarien und die zyklischen Veränderungen ihrer Eigenschaften. Zool J Physiol 55:281–348

    Google Scholar 

  • Jagge CL, Pietrantonio PV (2008) Diuretic hormone 44 receptor in Malpighian tubules of the mosquito Aedes aegypti: evidence for transcriptional regulation paralleling urination. Insect Mol Biol 17:413–426

    Article  CAS  PubMed  Google Scholar 

  • Johnson EC et al (2003) Identification of Drosophila neuropeptide receptors by G protein-coupled receptors-beta-arrestin2 interactions. J Biol Chem 278:52172–52178

    Article  CAS  PubMed  Google Scholar 

  • Kataoka H et al (1989) Isolation and identification of a diuretic hormone from the tobacco hornworm, Manduca sexta. Proc Natl Acad Sci U S A 86:2976–2980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katayama H et al (2003) The solution structure of molt-inhibiting hormone from the Kuruma prawn Marsupenaeus japonicus. J Biol Chem 278:9620–9623

    Article  CAS  PubMed  Google Scholar 

  • Kawada T et al (2011) Peptidomic analysis of the central nervous system of the protochordate, Ciona intestinalis: homologs and prototypes of vertebrate peptides and novel peptides. Endocrinology, 152:2416–2427

    Article  CAS  PubMed  Google Scholar 

  • Kawakami A et al (1989) Structure and organization of four clustered genes that encode bombyxin, an insulin-related brain secretory peptide of the silkmoth Bombyx mori. Proc Natl Acad Sci U S A 86:6843–6847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kean L et al (2002) Two nitridergic peptides are encoded by the gene capability in Drosophila melanogaster. Am J Physiol Regul Integr Comp Physiol 282:R1297–R1307

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ et al (2004b) Corazonin receptor signaling in ecdysis initiation. Proc Natl Acad Sci U S A 101:6704–6709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer SJ et al (1991) Identification of an allatostatin from the tobacco hornworm Manduca sexta. Proc Natl Acad Sci U S A 88:9458–9462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreshchenko ND (2008) Functions of flatworm neuropeptides NPF, GYIRF and FMRF in course of pharyngeal regeneration of anterior body fragments of planarian, Girardia tigrina. Acta Biol Hung 59(Suppl.):199–207

    Google Scholar 

  • Kreshchenko ND et al (2008) Effects of neuropeptide F on regeneration in Girardia tigrina (Platyhelminthes). Cell Tissue Res 331:739–750

    Article  CAS  PubMed  Google Scholar 

  • Kubli E (2003) Sex-peptides: seminal peptides of the Drosophila male. Cell Mol Life Sci 60:1689–1704

    Article  CAS  PubMed  Google Scholar 

  • Lee G, Bahn JH, Park JH (2006) Sex- and clock-controlled expression of the neuropeptide F gene in Drosophila. Proc Natl Acad Sci U S A 103:12580–12585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Kim K, Nelson LS (1999) FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. Br Res 848:26–34

    Article  CAS  Google Scholar 

  • Li WX (2005) Functions and mechanisms of receptor tyrosine kinase Torso signaling: lessons from Drosophila embryonic terminal development. Dev Dyn 232:656–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lingueglia E et al (1995) Cloning of the amiloride-sensitive FMRFamide peptidegated sodium channel. Nature 378:730–733

    Article  CAS  PubMed  Google Scholar 

  • Loi PK et al (2001) Identification, sequence and expression of a crustacean cardioactive peptide (CCAP) gene in the moth Manduca sexta. J Exp Biol 204:2803–2816

    CAS  PubMed  Google Scholar 

  • Luo CW et al (2005) Bursicon, the insect cuticle-hardening hormone, is a heterodimeric cystine knot protein that activates G protein-coupled receptor LGR2. Proc Natl Acad Sci U S A 102:2820–2825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marti T et al (1987) Microanalysis of the amino acid sequence of the eclosion hormone from the tobacco hornworm Manduca sexta. FEBS Lett 219:415–418

    Article  CAS  PubMed  Google Scholar 

  • Maruyama K et al (1992) Determination of disulfide bond arrangement in bombyxin-IV, an insulin superfamily peptide from the silkworm, Bombyx mori, by combination of thermolysin digestion of natural peptide and selective synthesis of disulfide bond isomers. J Protein Chem 11:13–20

    Article  CAS  PubMed  Google Scholar 

  • McDearmid JR, Brezina V, Weiss KR (2002) AMRP peptides modulate a novel K(+) current in pleural sensory neurons of Aplysia. J Neurophysiol 88:323–332

    CAS  PubMed  Google Scholar 

  • Meng X et al (2002) The Drosophila hugin gene codes for myostimulatory and ecdysis-modifying neuropeptides. Mech Dev 117:5–13

    Article  CAS  PubMed  Google Scholar 

  • Moore KL (2003) The biology and enzymology of protein tyrosine O-sulfation. J Biol Chem 278:24243–24246

    Article  CAS  PubMed  Google Scholar 

  • Morishita F et al (1997) A novel D-amino-acid-containing peptide isolated from Aplysia heart. Biochem Biophys Res Commun 240:354–358

    Article  CAS  PubMed  Google Scholar 

  • Morishita F et al (2003a) Distribution and function of an Aplysia cardioexcitatory peptide, NdWFamide, in pulmonate snails. Peptides 24:1533–1544

    Article  CAS  PubMed  Google Scholar 

  • Morishita F et al (2003b) Distribution of the Aplysia cardioexcitatory peptide, NdWFamide, in the central and peripheral nervous systems of Aplysia. Cell Tissue Res 312:95–111

    CAS  PubMed  Google Scholar 

  • Nagalakshmi VK et al (2004) The presence of Drosophila melanogaster sex peptidelike immunoreactivity in the accessory glands of male Helicoverpa armigera. J Insect Physiol 50:241–248

    Article  CAS  PubMed  Google Scholar 

  • Nagasawa H et al (1986) Amino acid sequence of a prothoracicotropic hormone of the silkworm Bombyx mori. Proc Natl Acad Sci U S A 83:5840–5843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nässel DR (1999) Tachykinin-related peptides in invertebrates: a review. Peptides 20:141–158

    Article  PubMed  Google Scholar 

  • Nässel DR et al (2008) A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions. BMC Neurosci 9:90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nichols R (2003) Signaling pathways and physiological functions of Drosophila melanogaster FMRFamide-related peptides. Ann Rev Entomol 48:485–503

    Article  CAS  Google Scholar 

  • Nichols R (2007) The first nonsulfated sulfakinin activity reported suggests nsDSK acts in gut biology. Peptides 28:767–773

    Article  CAS  PubMed  Google Scholar 

  • Osugi T et al (2006) Evolutionary origin and divergence of PQRFamide peptides and LPXRFamide peptides in the RFamide peptide family. Insights from novel lamprey RFamide peptides. FEBS J 273:1731–1743

    Article  CAS  PubMed  Google Scholar 

  • Park Y, Kim YJ, Adams ME (2002) Identification of G protein-coupled receptors for Drosophila PRXamide peptides, CCAP, corazonin, and AKH supports a theory of ligand-receptor coevolution. Proc Natl Acad Sci U S A 99:11423–11428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel RT et al (2005) Activation of the lipid droplet controls the rate of lipolysis of triglycerides in the insect fat body. J Biol Chem 280:22624–22631

    Article  CAS  PubMed  Google Scholar 

  • Pernet V, Anctil M, Grimmelikhuijzen CJ (2004) Antho-RFamide-containing neurons in the primitive nervous system of the anthozoan Renilla koellikeri. J Comp Neurol 472:208–220

    Article  CAS  PubMed  Google Scholar 

  • Phlippen MK et al (2000) Ecdysis of decapod crustaceans is associated with a dramatic release of crustacean cardioactive peptide into the haemolymph. J Exp Biol 203:521–536

    CAS  PubMed  Google Scholar 

  • Pietrantonio PV et al (2005) The mosquito Aedes aegypti (L.) leucokinin receptor is a multiligand receptor for the three Aedes kinins. Insect Mol Biol 14:55–67

    Article  CAS  PubMed  Google Scholar 

  • Predel R et al (2005) Tachykinin-related peptide precursors in two cockroach species. FEBS J 272:3365–3375

    Article  CAS  PubMed  Google Scholar 

  • Price DA, Greenberg MJ (1977) Structure of a molluscan cardioexcitatory neuropeptide. Science 197:670–671

    Article  CAS  PubMed  Google Scholar 

  • Rao K (2001) Crustacean pigmentary-effector hormones: chemistry and functions of RPCH, PDH, and related peptides. Amer Zool 41:364–379

    CAS  Google Scholar 

  • Rewitz KF et al (2009) The insect neuropeptide PTTH activates receptor tyrosine kinase torso to initiate metamorphosis. Science 326:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Roch G J et al (2014) GnRH receptors and peptides: skating backward. Gen Comp Endocrinol 209:118–134

    Article  CAS  PubMed  Google Scholar 

  • Rowe M L et al (2014) Neuropeptides and polypeptide hormones in echinoderms: new insights from analysis of the transcriptome of the sea cucumber Apostichopus japonicus. Gen Comp Endocrinol 197:43–55

    Article  CAS  PubMed  Google Scholar 

  • Sasaki K, Morishita F, Furukawa Y (2004) Peptidergic innervation of the vasoconstrictor muscle of the abdominal aorta in Aplysia kurodai. J Exp Biol 207:4439–4450

    Article  CAS  PubMed  Google Scholar 

  • Sato Y et al (1993) Precursor polyprotein formultiple neuropeptides secreted from the suboesophageal ganglion of the silkworm Bombyx mori: characterization of the cDNA encoding the diapause hormone precursor and identification of additional peptides. Proc Natl Acad Sci U S A 90:3251–3255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauman I, Reppert SM (1996) Molecular characterization of prothoracicotropic hormone (PTTH) from the giant silkmoth Antheraea pernyi: developmental appearance of PTTH-expressing cells and relationship to circadian clock cells in central brain. Dev Biol 178:418–429

    Article  CAS  PubMed  Google Scholar 

  • Siwicki KK et al (1985) Proctolin in the lobster nervous system. Peptides 6(Suppl 3):393–402

    Article  CAS  PubMed  Google Scholar 

  • Smit AB et al (1994) Structural characterization of a Lymnaea putative endoprotease related to human furin. FEBS Lett 343:27–31

    Article  CAS  PubMed  Google Scholar 

  • Soller M et al (2006) Sex-peptide-regulated female sexual behavior requires a subset of ascending ventral nerve cord neurons. Curr Biol 16:1771–1782

    Article  CAS  PubMed  Google Scholar 

  • Southey BR, Sweedler JV, Rodriguez-Zas SL (2008) Prediction of neuropeptide cleavage sites in insects. Bioinformatics 24:815–825

    Article  CAS  PubMed  Google Scholar 

  • Spijker S et al (2004) Stimulus-dependent regulation and cellular expression of genes encoding neuropeptides, prohormone convertases, alpha-amidating enzyme and 7B2 in identified Lymnaea neurons. J Neurochem 90:287–296

    Article  CAS  PubMed  Google Scholar 

  • Spittaels K et al (1996) Insect neuropeptide F (NPF)-related peptides: isolation from Colorado potato beetle (Leptinotarsa decemlineata) brain. Insect Biochem Mol Biol 26:375–382

    Article  CAS  PubMed  Google Scholar 

  • Stangier J et al (1987) Unusual cardioactive peptide (CCAP) from pericardial organs of the shore crab Carcinus maenas. Proc Natl Acad Sci U S A 84:575–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stangier J et al (1992) Orcokinin: a novel myotropic peptide from the nervous system of the crayfish, Orconectes limosus. Peptides 13:859–864

    Article  CAS  PubMed  Google Scholar 

  • Starratt AN, Brown BE (1975) Structure of the pentapeptide proctolin, a proposed neurotransmitter in insects. Life Sci 17:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Stay B, Tobe SS (2007) The role of allatostatins in juvenile hormone synthesis in insects and crustaceans. Ann Rev Entomol 52:277–299

    Article  CAS  Google Scholar 

  • Tessmar-Raible K et al (2007) Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell 129:1389–1400

    Article  CAS  PubMed  Google Scholar 

  • Thirumalai V, Marder E (2002) Colocalized neuropeptides activate a central pattern generator by acting on different circuit targets. J Neurosci 22:1874–1882

    CAS  PubMed  Google Scholar 

  • Tillman JA et al (1999) Insect pheromones–an overview of biosynthesis and endocrine regulation. Insect Biochem Mol Biol 29:481–514

    Article  CAS  PubMed  Google Scholar 

  • Torfs P et al (2001) Pyrokinin neuropeptides in a crustacean. Isolation and identification in the white shrimp Penaeus vannamei. Eur J Biochem 268:149–154

    Google Scholar 

  • Trube A, Audehm U, Dircksen H (1994) Crustacean cardioactive peptide-immunoreactive neurons in the ventral nervous system of crayfish. J Comp Neurol 348:80–93

    Article  CAS  PubMed  Google Scholar 

  • Truman JW (1992) The eclosion hormone system of insects. Prog Brain Res 92:361–374

    Article  CAS  PubMed  Google Scholar 

  • Truman JW (2005) Hormonal control of insect ecdysis: endocrine cascades for coordinating behavior with physiology. Vitam Horm 73:1–30

    Article  CAS  PubMed  Google Scholar 

  • Truman JW, Copenhaver PF (1989) The larval eclosion hormone neurones in Manduca sexta: identification of the brain-proctodeal neurosecretory system. J Exp Biol 147:457–470

    Google Scholar 

  • Utz S et al (2008) Mas-allatotropin in the developing antennal lobe of the sphinx moth Manduca sexta: distribution, time course, developmental regulation, and colocalization with other neuropeptides. Dev Neurobiol 68:123–142

    Article  CAS  PubMed  Google Scholar 

  • Veelaert D et al (1997) Isolation and characterization of an adipokinetic hormone release-inducing factor in locusts: the crustacean cardioactive peptide. Endocrinology 138:138–142

    Article  PubMed  Google Scholar 

  • Veenstra JA (1989) Isolation and structure of corazonin, a cardioactive peptide from the American cockroach. FEBS Lett 250:231–234

    Article  CAS  PubMed  Google Scholar 

  • Veenstra JA, Agricola HJ, Sellami A (2008) Regulatory peptides in fruit fly midgut. Cell Tissue Res 334:499–516

    Article  CAS  PubMed  Google Scholar 

  • Vehovszky A et al (2005) Crustacean cardioactive peptide (CCAP)-related molluscan peptides (M-CCAPs) are potential extrinsic modulators of the buccal feeding network in the pond snail Lymnaea stagnalis. Neurosci Lett 373:200–205

    Article  CAS  PubMed  Google Scholar 

  • Vilim FS et al (1999) Gene for pain modulatory neuropeptide NPFF: induction in spinal cord by noxious stimuli. Mol Pharmacol 55:804–811

    CAS  PubMed  Google Scholar 

  • Wasielewski O, Rosinski G (2007) Gonadoinhibitory effects of Neb-colloostatin and Neb-TMOF on ovarian development in the mealworm, Tenebrio molitor L. Arch Insect Biochem Physiol 64:131–141

    Article  CAS  PubMed  Google Scholar 

  • Wei Z et al (2000) Sulfakinins reduce food intake in the desert locust, Schistocerca gregaria. J Insect Physiol 46:1259–1265

    Article  CAS  PubMed  Google Scholar 

  • Wheeler DE, Buck N, Evans JD (2006) Expression of insulin pathway genes during the period of caste determination in the honey bee, Apis mellifera. Insect Mol Biol 15:597–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White BH, Ewer J (2013) Neural and hormonal control of postecdysial behaviors in insects. Ann Rev Entomol 59:363–381

    Article  CAS  Google Scholar 

  • Winther AM, Acebes A, Ferrus A (2006) Tachykinin-related peptides modulate odor perception and locomotor activity in Drosophila. Mol Cell Neurosci 31:399–406

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka N et al (2006) Regulation of insect steroid hormone biosynthesis by innervating peptidergic neurons. Proc Natl Acad Sci U S A 103:8622–8627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka N et al (2008) Neuropeptide receptor transcriptome reveals unidentified neuroendocrine pathways. PLoS ONE 3:e–3048

    Google Scholar 

  • Yamanaka N et al (2010) Bombyx prothoracicostatic peptides activate the sex peptide receptor to regulate ecdysteroid biosynthesis. Proc Natl Acad Sci U S A, 107:2060–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yapici N et al (2008) A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature 451:33–37

    Article  PubMed  Google Scholar 

  • Yasuda A et al (1994) Characterization of crustacean hyperglycemic hormone from the crayfish (Procambarus clarkii): multiplicity of molecular forms by stereoinversion and diverse functions. Gen Comp Endocrinol 95:387–398

    Article  CAS  PubMed  Google Scholar 

  • Zheng J et al (2008) Studies of a receptor guanylyl cyclase cloned from Y-organs of the blue crab (Callinectes sapidus), and its possible functional link to ecdysteroidogenesis. Gen Comp Endocrinol 155:780–788

    Article  CAS  PubMed  Google Scholar 

  • Zitnan D et al (1996) Identification of ecdysis-triggering hormone from an epitracheal endocrine system. Science 271:88–91

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kleine, B., Rossmanith, W.G. (2016). Invertebrate Protein and Peptide Hormones. In: Hormones and the Endocrine System. Springer, Cham. https://doi.org/10.1007/978-3-319-15060-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15060-4_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15059-8

  • Online ISBN: 978-3-319-15060-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics