Skip to main content

Pediatric-Like Brain Tumors in Adults

  • Chapter
  • First Online:
Advances and Technical Standards in Neurosurgery

Part of the book series: Advances and Technical Standards in Neurosurgery ((NEUROSURGERY,volume 50))

  • 148 Accesses

Abstract

Pediatric brain tumors are different to those found in adults in pathological type, anatomical site, molecular signature, and probable tumor drivers. Although these tumors usually occur in childhood, they also rarely present in adult patients, either as a de novo diagnosis or as a delayed recurrence of a pediatric tumor in the setting of a patient that has transitioned into adult services.

Due to the rarity of pediatric-like tumors in adults, the literature on these tumor types in adults is often limited to small case series, and treatment decisions are often based on the management plans taken from pediatric studies. However, the biology of these tumors is often different from the same tumors found in children. Likewise, adult patients are often unable to tolerate the side effects of the aggressive treatments used in children—for which there is little or no evidence of efficacy in adults. In this chapter, we review the literature and summarize the clinical, pathological, molecular profile, and response to treatment for the following pediatric tumor types—medulloblastoma, ependymoma, craniopharyngioma, pilocytic astrocytoma, subependymal giant cell astrocytoma, germ cell tumors, choroid plexus tumors, midline glioma, and pleomorphic xanthoastrocytoma—with emphasis on the differences to the adult population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACP:

Adamantinomatous craniopharyngioma

aCPP:

Atypical choroid plexus papilloma

CBTRUS:

Central Brain Tumor Registry of the United States

CNS:

Central nervous system

CPA:

Cerebellar-pontine angle

CPC:

Choroid plexus carcinoma

CPP:

Choroid plexus papilloma

CSI:

Craniospinal irradiation

DIPG:

Diffuse intrinsic pontine glioma

DMG:

Diffuse midline glioma

GTR:

Gross total resection

HGG:

High-grade glioma

iGCT:

Intracranial germ cell tumor

PA:

Pilocytic astrocytoma

PCP:

Papillary craniopharyngioma

PF-EPN:

Posterior fossa ependymoma

PXA:

Pleomorphic xanthoastrocytoma

ST-EPN:

Supratentorial ependymoma

TSC:

Tuberous sclerosis complex

WHO:

World Health Organization

References

  1. Adel Fahmideh M, Scheurer ME. Pediatric brain tumors: descriptive epidemiology, risk factors, and future directions. Cancer Epidemiol Biomarkers Prev. 2021;30(5):813–21.

    Article  PubMed  Google Scholar 

  2. Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013-2017. Neuro Oncol. 2020;22(12 Suppl 2):iv1–iv96.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.

    Article  PubMed  Google Scholar 

  4. Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bouffet E. Management of high-risk medulloblastoma. Neurochirurgie. 2021;67(1):61–8.

    Article  CAS  PubMed  Google Scholar 

  6. Greuter L, Guzman R, Soleman J. Typical pediatric brain tumors occurring in adults-differences in management and outcome. Biomedicines. 2021;9(4):356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kool M, Korshunov A, Remke M, et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, group 3, and group 4 medulloblastomas. Acta Neuropathol. 2012;123(4):473–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brandes AA, Paris MK. Review of the prognostic factors in medulloblastoma of children and adults. Crit Rev Oncol Hematol. 2004;50(2):121–8.

    Article  PubMed  Google Scholar 

  9. Juraschka K, Taylor MD. Medulloblastoma in the age of molecular subgroups: a review. J Neurosurg Pediatr. 2019;24(4):353–63.

    Article  PubMed  Google Scholar 

  10. Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015. Neuro Oncol. 2018;20(Suppl_4):iv1–iv86.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Quinones MC, Bélanger K, Lemieux Blanchard É, et al. Adult medulloblastoma demographic, tumor and treatment impact since 2006: a Canadian university experience. Curr Oncol. 2021;28(4):3104–14.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cotter JA, Hawkins C. Medulloblastoma: WHO 2021 and beyond. Pediatr Dev Pathol. 2022;25(1):23–33.

    Article  PubMed  Google Scholar 

  13. Massimino M, Antonelli M, Gandola L, et al. Histological variants of medulloblastoma are the most powerful clinical prognostic indicators. Pediatr Blood Cancer. 2013;60(2):210–6.

    Article  PubMed  Google Scholar 

  14. Kumar R, Liu APY, Northcott PA. Medulloblastoma genomics in the modern molecular era. Brain Pathol. 2020;30(3):679–90.

    Article  PubMed  Google Scholar 

  15. Ellison DW, Dalton J, Kocak M, et al. Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol. 2011;121(3):381–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Taylor MD, Northcott PA, Korshunov A, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012;123(4):465–72.

    Article  CAS  PubMed  Google Scholar 

  17. Northcott PA, Robinson GW, Kratz CP, et al. Medulloblastoma. Nat Rev Dis Primers. 2019;5(1):11.

    Article  PubMed  Google Scholar 

  18. Wong GC, Li KK, Wang WW, et al. Clinical and mutational profiles of adult medulloblastoma groups. Acta Neuropathol Commun. 2020;8(1):191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goschzik T, Schwalbe EC, Hicks D, et al. Prognostic effect of whole chromosomal aberration signatures in standard-risk, non-WNT/non-SHH medulloblastoma: a retrospective, molecular analysis of the HIT-SIOP PNET 4 trial. Lancet Oncol. 2018;19(12):1602–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Franceschi E, Hofer S, Brandes AA, et al. EANO-EURACAN clinical practice guideline for diagnosis, treatment, and follow-up of post-pubertal and adult patients with medulloblastoma. Lancet Oncol. 2019;20(12):e715–28.

    Article  PubMed  Google Scholar 

  21. Hendrikse LD, Haldipur P, Saulnier O, et al. Failure of human rhombic lip differentiation underlies medulloblastoma formation. Nature. 2022;609(7929):1021–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Remke M, Hielscher T, Northcott PA, et al. Adult medulloblastoma comprises three major molecular variants. J Clin Oncol. 2011;29(19):2717–23.

    Article  PubMed  Google Scholar 

  23. Ang C, Hauerstock D, Guiot MC, et al. Characteristics and outcomes of medulloblastoma in adults. Pediatr Blood Cancer. 2008;51(5):603–7.

    Article  PubMed  Google Scholar 

  24. Beier D, Proescholdt M, Reinert C, et al. Multicenter pilot study of radiochemotherapy as first-line treatment for adults with medulloblastoma (NOA-07). Neuro Oncol. 2018;20(3):400–10.

    Article  CAS  PubMed  Google Scholar 

  25. Brasme JF, Chalumeau M, Doz F, et al. Interval between onset of symptoms and diagnosis of medulloblastoma in children: distribution and determinants in a population-based study. Eur J Pediatr. 2012;171(1):25–32.

    Article  PubMed  Google Scholar 

  26. Brasme JF, Grill J, Doz F, et al. Long time to diagnosis of medulloblastoma in children is not associated with decreased survival or with worse neurological outcome. PLoS One. 2012;7(4):e33415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Warren KE, Vezina G, Poussaint TY, et al. Response assessment in medulloblastoma and leptomeningeal seeding tumors: recommendations from the Response Assessment in Pediatric Neuro-Oncology committee. Neuro Oncol. 2018;20(1):13–23.

    Article  CAS  PubMed  Google Scholar 

  28. Majd N, Penas-Prado M. Updates on management of adult medulloblastoma. Curr Treat Options Oncol. 2019;20(8):64.

    Article  PubMed  Google Scholar 

  29. Thompson EM, Hielscher T, Bouffet E, et al. Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. Lancet Oncol. 2016;17(4):484–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Packer RJ, Goldwein J, Nicholson HS, et al. Treatment of children with medulloblastomas with reduced-dose craniospinal radiation therapy and adjuvant chemotherapy: a Children’s Cancer Group Study. J Clin Oncol. 1999;17(7):2127–36.

    Article  CAS  PubMed  Google Scholar 

  31. Franceschi E, Seidel C, Sahm F, Pajtler KW, Hau P. How we treat medulloblastoma in adults. ESMO Open. 2021;6(4):100173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brandes AA, Franceschi E, Tosoni A, Blatt V, Ermani M. Long-term results of a prospective study on the treatment of medulloblastoma in adults. Cancer. 2007;110(9):2035–41.

    Article  PubMed  Google Scholar 

  33. Tamburrini G, Frassanito P, Chieffo D, Massimi L, Caldarelli M, Di Rocco C. Cerebellar mutism. Childs Nerv Syst. 2015;31(10):1841–51.

    Article  CAS  PubMed  Google Scholar 

  34. Khan RB, Patay Z, Klimo P, et al. Clinical features, neurologic recovery, and risk factors of postoperative posterior fossa syndrome and delayed recovery: a prospective study. Neuro Oncol. 2021;23(9):1586–96.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ildan F, Tuna M, Erman T, Göçer AI, Zeren M, Cetinalp E. The evaluation and comparison of cerebellar mutism in children and adults after posterior fossa surgery: report of two adult cases and review of the literature. Acta Neurochir (Wien). 2002;144(5):463–73.

    Article  CAS  PubMed  Google Scholar 

  36. Schneider C, Ramaswamy V, Kulkarni AV, et al. Clinical implications of medulloblastoma subgroups: incidence of CSF diversion surgery. J Neurosurg Pediatr. 2015;15(3):236–42.

    Article  PubMed  Google Scholar 

  37. Won SY, Dubinski D, Behmanesh B, et al. Management of hydrocephalus after resection of posterior fossa lesions in pediatric and adult patients-predictors for development of hydrocephalus. Neurosurg Rev. 2020;43(4):1143–50.

    Article  PubMed  Google Scholar 

  38. Kocakaya S, Beier CP, Beier D. Chemotherapy increases long-term survival in patients with adult medulloblastoma—a literature-based meta-analysis. Neuro Oncol. 2016;18(3):408–16.

    Article  PubMed  Google Scholar 

  39. Harrison RA, Kesler SR, Johnson JM, Penas-Prado M, Sullaway CM, Wefel JS. Neurocognitive dysfunction in adult cerebellar medulloblastoma. Psychooncology. 2019;28(1):131–8.

    Article  PubMed  Google Scholar 

  40. Abacioglu U, Uzel O, Sengoz M, Turkan S, Ober A. Medulloblastoma in adults: treatment results and prognostic factors. Int J Radiat Oncol Biol Phys. 2002;54(3):855–60.

    Article  PubMed  Google Scholar 

  41. Taylor RE, Bailey CC, Robinson K, et al. Results of a randomized study of preradiation chemotherapy versus radiotherapy alone for nonmetastatic medulloblastoma: the International Society of Paediatric Oncology/United Kingdom Children’s Cancer Study Group PNET-3 Study. J Clin Oncol. 2003;21(8):1581–91.

    Article  CAS  PubMed  Google Scholar 

  42. Franceschi E, Minichillo S, Mura A, et al. Adjuvant chemotherapy in average-risk adult medulloblastoma patients improves survival: a long term study. BMC Cancer. 2020;20(1):755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Packer RJ, Sutton LN, Elterman R, et al. Outcome for children with medulloblastoma treated with radiation and cisplatin, CCNU, and vincristine chemotherapy. J Neurosurg. 1994;81(5):690–8.

    Article  CAS  PubMed  Google Scholar 

  44. Friedrich C, von Bueren AO, von Hoff K, et al. Treatment of adult nonmetastatic medulloblastoma patients according to the paediatric HIT 2000 protocol: a prospective observational multicentre study. Eur J Cancer. 2013;49(4):893–903.

    Article  PubMed  Google Scholar 

  45. Ghose A, Morris JC, Breneman JC, Essell J, Wang J, Benzaquen S. Medulloblastoma in an adult with late extraneural metastases to the mediastinum. J Investig Med High Impact Case Rep. 2014;2(2):2324709614532798.

    PubMed  PubMed Central  Google Scholar 

  46. Ramaswamy V, Remke M, Bouffet E, et al. Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. Lancet Oncol. 2013;14(12):1200–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ellison DW, Kocak M, Dalton J, et al. Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables. J Clin Oncol. 2011;29(11):1400–7.

    Article  PubMed  Google Scholar 

  48. Kieran MW, Chisholm J, Casanova M, et al. Phase I study of oral sonidegib (LDE225) in pediatric brain and solid tumors and a phase II study in children and adults with relapsed medulloblastoma. Neuro Oncol. 2017;19(11):1542–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li Y, Song Q, Day BW. Phase I and phase II sonidegib and vismodegib clinical trials for the treatment of paediatric and adult MB patients: a systemic review and meta-analysis. Acta Neuropathol Commun. 2019;7(1):123.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kian W, Roisman LC, Goldstein IM, et al. Vismodegib as first-line treatment of mutated sonic hedgehog pathway in adult medulloblastoma. JCO Precis Oncol. 2020;4 https://doi.org/10.1200/PO.19.00264.

  51. Lou E, Schomaker M, Wilson JD, Ahrens M, Dolan M, Nelson AC. Complete and sustained response of adult medulloblastoma to first-line sonic hedgehog inhibition with vismodegib. Cancer Biol Ther. 2016;17(10):1010–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grill J, Sainte-Rose C, Jouvet A, et al. Treatment of medulloblastoma with postoperative chemotherapy alone: an SFOP prospective trial in young children. Lancet Oncol. 2005;6(8):573–80.

    Article  CAS  PubMed  Google Scholar 

  53. Aref D, Croul S. Medulloblastoma: recurrence and metastasis. CNS Oncol. 2013;2(4):377–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Millard NE, De Braganca KC. Medulloblastoma. J Child Neurol. 2016;31(12):1341–53.

    Article  PubMed  Google Scholar 

  55. Zamora EA, Alkherayf F. Ependymoma. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2023.

    Google Scholar 

  56. Cacciotti C, Fleming A, Ramaswamy V. Advances in the molecular classification of pediatric brain tumors: a guide to the galaxy. J Pathol. 2020;251(3):249–61.

    Article  PubMed  Google Scholar 

  57. McGuire CS, Sainani KL, Fisher PG. Incidence patterns for ependymoma: a surveillance, epidemiology, and end results study. J Neurosurg. 2009;110(4):725–9.

    Article  PubMed  Google Scholar 

  58. Vitanza NA, Partap S. Pediatric ependymoma. J Child Neurol. 2016;31(12):1354–66.

    Article  PubMed  Google Scholar 

  59. de Carvalho C, Correa D, Tesser-Gamba F, Dias Oliveira I, et al. Molecular profiling of pediatric and adolescent ependymomas: identification of genetic variants using a next-generation sequencing panel. J Neurooncol. 2021;155(1):13–23.

    Article  Google Scholar 

  60. Junger ST, Timmermann B, Pietsch T. Pediatric ependymoma: an overview of a complex disease. Childs Nerv Syst. 2021;37(8):2451–63.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ruda R, Bruno F, Pellerino A, Soffietti R. Ependymoma: evaluation and management updates. Curr Oncol Rep. 2022;24(8):985–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Robertson PL, Zeltzer PM, Boyett JM, et al. Survival and prognostic factors following radiation therapy and chemotherapy for ependymomas in children: a report of the Children’s Cancer Group. J Neurosurg. 1998;88(4):695–703.

    Article  CAS  PubMed  Google Scholar 

  63. Merchant TE, Li C, Xiong X, Kun LE, Boop FA, Sanford RA. Conformal radiotherapy after surgery for paediatric ependymoma: a prospective study. Lancet Oncol. 2009;10(3):258–66.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Allen JC, Siffert J, Hukin J. Clinical manifestations of childhood ependymoma: a multitude of syndromes. Pediatr Neurosurg. 1998;28(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  65. Mack SC, Taylor MD. Put away your microscopes: the ependymoma molecular era has begun. Curr Opin Oncol. 2017;29(6):443–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pajtler KW, Mack SC, Ramaswamy V, et al. The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathol. 2017;133(1):5–12.

    Article  CAS  PubMed  Google Scholar 

  67. Kresbach C, Neyazi S, Schuller U. Updates in the classification of ependymal neoplasms: the 2021 WHO classification and beyond. Brain Pathol. 2022;32(4):e13068.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pajtler KW, Witt H, Sill M, et al. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell. 2015;27(5):728–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Parker M, Mohankumar KM, Punchihewa C, et al. C11orf95-RELA fusions drive oncogenic NF-kappaB signalling in ependymoma. Nature. 2014;506(7489):451–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Witt H, Mack SC, Ryzhova M, et al. Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell. 2011;20(2):143–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kotecha R, Mehta MP, Chang EL, et al. Updates in the management of intradural spinal cord tumors: a radiation oncology focus. Neuro Oncol. 2019;21(6):707–18.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ebert C, von Haken M, Meyer-Puttlitz B, et al. Molecular genetic analysis of ependymal tumors. NF2 mutations and chromosome 22q loss occur preferentially in intramedullary spinal ependymomas. Am J Pathol. 1999;155(2):627–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Limaiem F, Das JM. Myxopapillary ependymoma. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2023.

    Google Scholar 

  74. Tihan T, Zhou T, Holmes E, Burger PC, Ozuysal S, Rushing EJ. The prognostic value of histological grading of posterior fossa ependymomas in children: a Children’s Oncology Group study and a review of prognostic factors. Mod Pathol. 2008;21(2):165–77.

    Article  PubMed  Google Scholar 

  75. Cage TA, Clark AJ, Aranda D, et al. A systematic review of treatment outcomes in pediatric patients with intracranial ependymomas. J Neurosurg Pediatr. 2013;11(6):673–81.

    Article  PubMed  Google Scholar 

  76. Ruda R, Reifenberger G, Frappaz D, et al. EANO guidelines for the diagnosis and treatment of ependymal tumors. Neuro Oncol. 2018;20(4):445–56.

    Article  PubMed  Google Scholar 

  77. Thorp N, Gandola L. Management of ependymoma in children, adolescents and young adults. Clin Oncol (R Coll Radiol). 2019;31(3):162–70.

    Article  CAS  PubMed  Google Scholar 

  78. Hess CB, Indelicato DJ, Paulino AC, et al. An update from the pediatric proton consortium registry. Front Oncol. 2018;8:165.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sato M, Gunther JR, Mahajan A, et al. Progression-free survival of children with localized ependymoma treated with intensity-modulated radiation therapy or proton-beam radiation therapy. Cancer. 2017;123(13):2570–8.

    Article  CAS  PubMed  Google Scholar 

  80. Indelicato DJ, Bradley JA, Rotondo RL, et al. Outcomes following proton therapy for pediatric ependymoma. Acta Oncol. 2018;57(5):644–8.

    Article  PubMed  Google Scholar 

  81. Ritzmann TA, Chapman RJ, Kilday JP, et al. SIOP ependymoma I: final results, long-term follow-up, and molecular analysis of the trial cohort—a BIOMECA Consortium Study. Neuro Oncol. 2022;24(6):936–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gramatzki D, Roth P, Felsberg J, et al. Chemotherapy for intracranial ependymoma in adults. BMC Cancer. 2016;16:287.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gatta G, Botta L, Rossi S, et al. Childhood cancer survival in Europe 1999–2007: results of EUROCARE-5—a population-based study. Lancet Oncol. 2014;15(1):35–47.

    Article  PubMed  Google Scholar 

  84. Massimino M, Miceli R, Giangaspero F, et al. Final results of the second prospective AIEOP protocol for pediatric intracranial ependymoma. Neuro Oncol. 2016;18(10):1451–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cavalli FMG, Hubner JM, Sharma T, et al. Heterogeneity within the PF-EPN-B ependymoma subgroup. Acta Neuropathol. 2018;136(2):227–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bates JE, Choi G, Milano MT. Myxopapillary ependymoma: a SEER analysis of epidemiology and outcomes. J Neurooncol. 2016;129(2):251–8.

    Article  PubMed  Google Scholar 

  87. Bandopadhayay P, Silvera VM, Ciarlini P, et al. Myxopapillary ependymomas in children: imaging, treatment and outcomes. J Neurooncol. 2016;126(1):165–74.

    Article  PubMed  Google Scholar 

  88. Salles D, Laviola G, Malinverni ACM, Stavale JN. Pilocytic astrocytoma: a review of general, clinical, and molecular characteristics. J Child Neurol. 2020;35(12):852–8.

    Article  PubMed  Google Scholar 

  89. Bond KM, Hughes JD, Porter AL, Orina J, Fang S, Parney IF. Adult pilocytic astrocytoma: an institutional series and systematic literature review for extent of resection and recurrence. World Neurosurg. 2018;110:276–83.

    Article  PubMed  Google Scholar 

  90. Gregory TA, Chumbley LB, Henson JW, Theeler BJ. Adult pilocytic astrocytoma in the molecular era: a comprehensive review. CNS Oncol. 2021;10(1):CNS68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Johnson DR, Brown PD, Galanis E, Hammack JE. Pilocytic astrocytoma survival in adults: analysis of the surveillance, epidemiology, and end results program of the National Cancer Institute. J Neurooncol. 2012;108(1):187–93.

    Article  PubMed  Google Scholar 

  92. Theeler BJ, Ellezam B, Sadighi ZS, et al. Adult pilocytic astrocytomas: clinical features and molecular analysis. Neuro Oncol. 2014;16(6):841–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dirks PB, Jay V, Becker LE, et al. Development of anaplastic changes in low-grade astrocytomas of childhood. Neurosurgery. 1994;34(1):68–78.

    CAS  PubMed  Google Scholar 

  94. Coelho J, Nunes S, Salgado D. Spontaneous malignant transformation of a pilocytic astrocytoma of cerebellum: case report. Child Neurol Open. 2015;2(1):2329048X1456681.

    Article  Google Scholar 

  95. Ellis JA, Waziri A, Balmaceda C, Canoll P, Bruce JN, Sisti MB. Rapid recurrence and malignant transformation of pilocytic astrocytoma in adult patients. J Neurooncol. 2009;95(3):377–82.

    Article  PubMed  Google Scholar 

  96. Torp SH, Solheim O, Skjulsvik AJ. The WHO 2021 classification of central nervous system tumours: a practical update on what neurosurgeons need to know-a minireview. Acta Neurochir (Wien). 2022;164(9):2453–64.

    Article  PubMed  Google Scholar 

  97. Colin C, Padovani L, Chappe C, et al. Outcome analysis of childhood pilocytic astrocytomas: a retrospective study of 148 cases at a single institution. Neuropathol Appl Neurobiol. 2013;39(6):693–705.

    Article  CAS  PubMed  Google Scholar 

  98. Nix JS, Blakeley J, Rodriguez FJ. An update on the central nervous system manifestations of neurofibromatosis type 1. Acta Neuropathol. 2020;139(4):625–41.

    Article  PubMed  Google Scholar 

  99. Rodriguez FJ, Perry A, Gutmann DH, et al. Gliomas in neurofibromatosis type 1: a clinicopathologic study of 100 patients. J Neuropathol Exp Neurol. 2008;67(3):240–9.

    Article  PubMed  Google Scholar 

  100. Rodriguez EF, Scheithauer BW, Giannini C, et al. PI3K/AKT pathway alterations are associated with clinically aggressive and histologically anaplastic subsets of pilocytic astrocytoma. Acta Neuropathol. 2011;121(3):407–20.

    Article  CAS  PubMed  Google Scholar 

  101. Byrne S, Connor S, Lascelles K, Siddiqui A, Hargrave D, Ferner RE. Clinical presentation and prognostic indicators in 100 adults and children with neurofibromatosis 1 associated non-optic pathway brain gliomas. J Neurooncol. 2017;133(3):609–14.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ryu HH, Jung TY, Lee GJ, et al. Differences in the clinical courses of pediatric and adult pilocytic astrocytomas with progression: a single-institution study. Childs Nerv Syst. 2015;31(11):2063–9.

    Article  PubMed  Google Scholar 

  103. Patil S, Chamberlain RS. Neoplasms associated with germline and somatic NF1 gene mutations. Oncologist. 2012;17(1):101–16.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Carton C, Evans DG, Blanco I, et al. ERN GENTURIS tumour surveillance guidelines for individuals with neurofibromatosis type 1. EClinicalMedicine. 2023;56:101818.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kurani H, Gurav M, Shetty O, et al. Pilocytic astrocytomas: BRAFV600E and BRAF fusion expression patterns in pediatric and adult age groups. Childs Nerv Syst. 2019;35(9):1525–36.

    Article  PubMed  Google Scholar 

  106. Hasselblatt M, Riesmeier B, Lechtape B, et al. BRAF-KIAA1549 fusion transcripts are less frequent in pilocytic astrocytomas diagnosed in adults. Neuropathol Appl Neurobiol. 2011;37(7):803–6.

    Article  CAS  PubMed  Google Scholar 

  107. Yang W, Porras JL, Khalafallah AM, Sun Y, Bettegowda A, Mukherjee D. Comparison of adult and pediatric pilocytic astrocytomas using competing risk analysis: a population-based study. Clin Neurol Neurosurg. 2022;212:107084.

    Article  PubMed  Google Scholar 

  108. Olar A, Tran D, Mehta VP, et al. ATRX protein loss and deregulation of PI3K/AKT pathway is frequent in pilocytic astrocytoma with anaplastic features. Clin Neuropathol. 2019;38(2):59–73.

    Article  PubMed  Google Scholar 

  109. Rodriguez FJ, Brosnan-Cashman JA, Allen SJ, et al. Alternative lengthening of telomeres, ATRX loss and H3-K27M mutations in histologically defined pilocytic astrocytoma with anaplasia. Brain Pathol. 2019;29(1):126–40.

    Article  CAS  PubMed  Google Scholar 

  110. Stüer C, Vilz B, Majores M, Becker A, Schramm J, Simon M. Frequent recurrence and progression in pilocytic astrocytoma in adults. Cancer. 2007;110(12):2799–808.

    Article  PubMed  Google Scholar 

  111. Rodriguez FJ, Scheithauer BW, Burger PC, Jenkins S, Giannini C. Anaplasia in pilocytic astrocytoma predicts aggressive behavior. Am J Surg Pathol. 2010;34(2):147–60.

    Article  PubMed  Google Scholar 

  112. Parsons MW, Whipple NS, Poppe MM, Mendez JS, Cannon DM, Burt LM. The use and efficacy of chemotherapy and radiotherapy in children and adults with pilocytic astrocytoma. J Neurooncol. 2021;151(2):93–101.

    Article  CAS  PubMed  Google Scholar 

  113. Wisoff JH, Sanford RA, Heier LA, et al. Primary neurosurgery for pediatric low-grade gliomas: a prospective multi-institutional study from the Children’s Oncology Group. Neurosurgery. 2011;68(6):1548–54; discussion 1554–5.

    Article  PubMed  Google Scholar 

  114. Bowers DC, Krause TP, Aronson LJ, et al. Second surgery for recurrent pilocytic astrocytoma in children. Pediatr Neurosurg. 2001;34(5):229–34.

    Article  CAS  PubMed  Google Scholar 

  115. Dodgshun AJ, Maixner WJ, Hansford JR, Sullivan MJ. Low rates of recurrence and slow progression of pediatric pilocytic astrocytoma after gross-total resection: justification for reducing surveillance imaging. J Neurosurg Pediatr. 2016;17(5):569–72.

    Article  PubMed  Google Scholar 

  116. Packer RJ, Ater J, Allen J, et al. Carboplatin and vincristine chemotherapy for children with newly diagnosed progressive low-grade gliomas. J Neurosurg. 1997;86(5):747–54.

    Article  CAS  PubMed  Google Scholar 

  117. Cherlow JM, Shaw DWW, Margraf LR, et al. Conformal radiation therapy for pediatric patients with low-grade glioma: results from the Children’s Oncology Group phase 2 study ACNS0221. Int J Radiat Oncol Biol Phys. 2019;103(4):861–8.

    Article  PubMed  Google Scholar 

  118. Youland RS, Khwaja SS, Schomas DA, Keating GF, Wetjen NM, Laack NN. Prognostic factors and survival patterns in pediatric low-grade gliomas over 4 decades. J Pediatr Hematol Oncol. 2013;35(3):197–205.

    Article  PubMed  Google Scholar 

  119. Zacharia BE, Bruce SS, Goldstein H, Malone HR, Neugut AI, Bruce JN. Incidence, treatment and survival of patients with craniopharyngioma in the surveillance, epidemiology and end results program. Neuro Oncol. 2012;14(8):1070–8.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Nielsen EH, Feldt-Rasmussen U, Poulsgaard L, et al. Incidence of craniopharyngioma in Denmark (n = 189) and estimated world incidence of craniopharyngioma in children and adults. J Neurooncol. 2011;104(3):755–63.

    Article  CAS  PubMed  Google Scholar 

  121. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.

    Article  PubMed  Google Scholar 

  122. Sofela AA, Hettige S, Curran O, Bassi S. Malignant transformation in craniopharyngiomas. Neurosurgery. 2014;75(3):306–14; discussion 314.

    Article  PubMed  Google Scholar 

  123. Bunin GR, Surawicz TS, Witman PA, Preston-Martin S, Davis F, Bruner JM. The descriptive epidemiology of craniopharyngioma. J Neurosurg. 1998;89(4):547–51.

    Article  CAS  PubMed  Google Scholar 

  124. Fernandez-Miranda JC, Gardner PA, Snyderman CH, et al. Craniopharyngioma: a pathologic, clinical, and surgical review. Head Neck. 2012;34(7):1036–44.

    Article  PubMed  Google Scholar 

  125. Hamblin R, Tsermoulas G, Karavitaki N. Craniopharyngiomas. Presse Med. 2021;50(4):104078.

    Article  PubMed  Google Scholar 

  126. Alexandraki KI, Kaltsas GA, Karavitaki N, Grossman AB. The medical therapy of craniopharyngiomas: the way ahead. J Clin Endocrinol Metab. 2019;104(12):5751–64.

    Article  PubMed  Google Scholar 

  127. Muller HL, Merchant TE, Warmuth-Metz M, Martinez-Barbera JP, Puget S. Craniopharyngioma. Nat Rev Dis Primers. 2019;5(1):75.

    Article  PubMed  Google Scholar 

  128. Goschzik T, Gessi M, Dreschmann V, et al. Genomic alterations of adamantinomatous and papillary craniopharyngioma. J Neuropathol Exp Neurol. 2017;76(2):126–34.

    CAS  PubMed  Google Scholar 

  129. Haston S, Pozzi S, Carreno G, et al. MAPK pathway control of stem cell proliferation and differentiation in the embryonic pituitary provides insights into the pathogenesis of papillary craniopharyngioma. Development. 2017;144(12):2141–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Cossu G, Jouanneau E, Cavallo LM, et al. Surgical management of craniopharyngiomas in adult patients: a systematic review and consensus statement on behalf of the EANS skull base section. Acta Neurochir (Wien). 2020;162(5):1159–77.

    Article  PubMed  Google Scholar 

  131. Komotar RJ, Starke RM, Raper DM, Anand VK, Schwartz TH. Endoscopic endonasal compared with microscopic transsphenoidal and open transcranial resection of craniopharyngiomas. World Neurosurg. 2012;77(2):329–41.

    Article  PubMed  Google Scholar 

  132. Li X, Wu W, Miao Q, et al. Endocrine and metabolic outcomes after transcranial and endoscopic endonasal approaches for primary resection of craniopharyngiomas. World Neurosurg. 2019;121:e8–e14.

    Article  PubMed  Google Scholar 

  133. Karavitaki N, Brufani C, Warner JT, et al. Craniopharyngiomas in children and adults: systematic analysis of 121 cases with long-term follow-up. Clin Endocrinol (Oxf). 2005;62(4):397–409.

    Article  CAS  PubMed  Google Scholar 

  134. Yasargil MG, Curcic M, Kis M, Siegenthaler G, Teddy PJ, Roth P. Total removal of craniopharyngiomas. Approaches and long-term results in 144 patients. J Neurosurg. 1990;73(1):3–11.

    Article  CAS  PubMed  Google Scholar 

  135. Puget S. Treatment strategies in childhood craniopharyngioma. Front Endocrinol (Lausanne). 2012;3:64.

    Article  PubMed  Google Scholar 

  136. Hoffmann A, Warmth-Metz M, Gebhardt U, et al. Childhood craniopharyngioma—changes of treatment strategies in the trials KRANIOPHARYNGEOM 2000/2007. Klin Padiatr. 2014;226(3):161–8.

    Article  CAS  PubMed  Google Scholar 

  137. Puget S, Garnett M, Wray A, et al. Pediatric craniopharyngiomas: classification and treatment according to the degree of hypothalamic involvement. J Neurosurg. 2007;106(1 Suppl):3–12.

    PubMed  Google Scholar 

  138. Sanford RA. Craniopharyngioma: results of survey of the American Society of Pediatric Neurosurgery. Pediatr Neurosurg. 1994;21(Suppl 1):39–43.

    Article  PubMed  Google Scholar 

  139. Muller HL, Gebhardt U, Teske C, et al. Post-operative hypothalamic lesions and obesity in childhood craniopharyngioma: results of the multinational prospective trial KRANIOPHARYNGEOM 2000 after 3-year follow-up. Eur J Endocrinol. 2011;165(1):17–24.

    Article  PubMed  Google Scholar 

  140. Harrabi SB, Adeberg S, Welzel T, et al. Long term results after fractionated stereotactic radiotherapy (FSRT) in patients with craniopharyngioma: maximal tumor control with minimal side effects. Radiat Oncol. 2014;9:203.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Merchant TE, Hua CH, Shukla H, Ying X, Nill S, Oelfke U. Proton versus photon radiotherapy for common pediatric brain tumors: comparison of models of dose characteristics and their relationship to cognitive function. Pediatr Blood Cancer. 2008;51(1):110–7.

    Article  PubMed  Google Scholar 

  142. Suh JH, Gupta N. Role of radiation therapy and radiosurgery in the management of craniopharyngiomas. Neurosurg Clin N Am. 2006;17(2):143–8, vi–vii.

    Article  PubMed  Google Scholar 

  143. Kilday JP, Caldarelli M, Massimi L, et al. Intracystic interferon-alpha in pediatric craniopharyngioma patients: an international multicenter assessment on behalf of SIOPE and ISPN. Neuro Oncol. 2017;19(10):1398–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cavalheiro S, Di Rocco C, Valenzuela S, et al. Craniopharyngiomas: intratumoral chemotherapy with interferon-alpha: a multicenter preliminary study with 60 cases. Neurosurg Focus. 2010;28(4):E12.

    Article  PubMed  Google Scholar 

  145. Zhang S, Fang Y, Cai BW, Xu JG, You C. Intracystic bleomycin for cystic craniopharyngiomas in children. Cochrane Database Syst Rev. 2016;7(7):CD008890.

    PubMed  Google Scholar 

  146. Albright AL, Hadjipanayis CG, Lunsford LD, Kondziolka D, Pollack IF, Adelson PD. Individualized treatment of pediatric craniopharyngiomas. Childs Nerv Syst. 2005;21(8–9):649–54.

    Article  PubMed  Google Scholar 

  147. Goldman S, Pollack IF, Jakacki RI, et al. Phase II study of peginterferon alpha-2b for patients with unresectable or recurrent craniopharyngiomas: a Pediatric Brain Tumor Consortium report. Neuro Oncol. 2020;22(11):1696–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Roque A, Odia Y. BRAF-V600E mutant papillary craniopharyngioma dramatically responds to combination BRAF and MEK inhibitors. CNS Oncol. 2017;6(2):95–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Brastianos PK, Shankar GM, Gill CM, et al. Dramatic response of BRAF V600E mutant papillary craniopharyngioma to targeted therapy. J Natl Cancer Inst. 2016;108(2):djv310.

    Article  PubMed  Google Scholar 

  150. Brastianos PK, Strickland MR, Lee EQ, et al. Phase II study of ipilimumab and nivolumab in leptomeningeal carcinomatosis. Nat Commun. 2021;12(1):5954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Krishnamurthy N, Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors. Cancer Treat Rev. 2018;62:50–60.

    Article  CAS  PubMed  Google Scholar 

  152. Iglesias P. Targeted therapies in the medical management of craniopharyngioma. Pituitary. 2022;25(3):383–92.

    Article  CAS  PubMed  Google Scholar 

  153. Van Effenterre R, Boch AL. Craniopharyngioma in adults and children: a study of 122 surgical cases. J Neurosurg. 2002;97(1):3–11.

    Article  PubMed  Google Scholar 

  154. Takaoka K, Cioffi G, Waite KA, et al. Incidence and survival of choroid plexus tumors in the United States. Neurooncol Pract. 2023;10(1):41–9.

    PubMed  Google Scholar 

  155. Dash C, Moorthy S, Garg K, et al. Management of choroid plexus tumors in infants and young children up to 4 years of age: an institutional experience. World Neurosurg. 2019;121:e237–45.

    Article  PubMed  Google Scholar 

  156. Crea A, Bianco A, Cossandi C, et al. Choroid plexus carcinoma in adults: literature review and first report of a location into the third ventricle. World Neurosurg. 2020;133:302–7.

    Article  PubMed  Google Scholar 

  157. Wolff JE, Van Gool SW, Kutluk T, et al. Final results of the choroid plexus tumor study CPT-SIOP-2000. J Neurooncol. 2022;156(3):599–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Schneider C, Kamaly-Asl I, Ramaswamy V, et al. Neoadjuvant chemotherapy reduces blood loss during the resection of pediatric choroid plexus carcinomas. J Neurosurg Pediatr. 2015;16(2):126–33.

    Article  PubMed  Google Scholar 

  159. Mallick S, Benson R, Melgandi W, Rath GK. Effect of surgery, adjuvant therapy, and other prognostic factors on choroid plexus carcinoma: a systematic review and individual patient data analysis. Int J Radiat Oncol Biol Phys. 2017;99(5):1199–206.

    Article  PubMed  Google Scholar 

  160. Thomas C, Soschinski P, Zwaig M, et al. The genetic landscape of choroid plexus tumors in children and adults. Neuro Oncol. 2021;23(4):650–60.

    Article  CAS  PubMed  Google Scholar 

  161. Goodwin TL, Sainani K, Fisher PG. Incidence patterns of central nervous system germ cell tumors: a SEER study. J Pediatr Hematol Oncol. 2009;31(8):541–4.

    Article  PubMed  Google Scholar 

  162. Zapotocky M, Ramaswamy V, Lassaletta A, Bouffet E. Adolescents and young adults with brain tumors in the context of molecular advances in neuro-oncology. Pediatr Blood Cancer. 2018;65(2):e26861.

    Article  Google Scholar 

  163. Murray MJ, Bartels U, Nishikawa R, Fangusaro J, Matsutani M, Nicholson JC. Consensus on the management of intracranial germ-cell tumours. Lancet Oncol. 2015;16(9):e470–7.

    Article  PubMed  Google Scholar 

  164. Cuccia V, Galarza M. Pure pineal germinomas: analysis of gender incidence. Acta Neurochir (Wien). 2006;148(8):865–71; discussion 871.

    Article  CAS  PubMed  Google Scholar 

  165. Villano JL, Propp JM, Porter KR, et al. Malignant pineal germ-cell tumors: an analysis of cases from three tumor registries. Neuro Oncol. 2008;10(2):121–30.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Hoffman HJ, Otsubo H, Hendrick EB, et al. Intracranial germ-cell tumors in children. J Neurosurg. 1991;74(4):545–51.

    Article  CAS  PubMed  Google Scholar 

  167. Gittleman H, Cioffi G, Vecchione-Koval T, et al. Descriptive epidemiology of germ cell tumors of the central nervous system diagnosed in the United States from 2006 to 2015. J Neurooncol. 2019;143(2):251–60.

    Article  PubMed  Google Scholar 

  168. Frappaz D, Dhall G, Murray MJ, et al. EANO, SNO and Euracan consensus review on the current management and future development of intracranial germ cell tumors in adolescents and young adults. Neuro Oncol. 2022;24(4):516–27.

    Article  CAS  PubMed  Google Scholar 

  169. Lo AC, Hodgson D, Dang J, et al. Intracranial germ cell tumors in adolescents and young adults: a 40-year multi-institutional review of outcomes. Int J Radiat Oncol Biol Phys. 2020;106(2):269–78.

    Article  PubMed  Google Scholar 

  170. Bartels U, Fangusaro J, Shaw D, et al. GCT-41. Response-based radiation therapy in patients with newly diagnosed central nervous system localized germinoma: a children’s oncology group (cog) prospective phase 2 clinical trial. Neuro Oncol. 2020;22(Suppl 3):iii336.

    Article  PubMed Central  Google Scholar 

  171. Ho VKY, Gijtenbeek A, Wagemakers M, et al. Rare central nervous system tumors in adults: a population-based study of ependymomas, pilocytic astrocytomas, medulloblastomas, and intracranial germ cell tumors. Neurooncol Adv. 2022;4(1):vdac062.

    PubMed  PubMed Central  Google Scholar 

  172. Rao AA, Laack NN, Giannini C, Wetmore C. Pleomorphic xanthoastrocytoma in children and adolescents. Pediatr Blood Cancer. 2010;55(2):290–4.

    Article  PubMed  Google Scholar 

  173. Giannini C, Scheithauer BW, Burger PC, et al. Pleomorphic xanthoastrocytoma: what do we really know about it? Cancer. 1999;85(9):2033–45.

    Article  CAS  PubMed  Google Scholar 

  174. Shaikh N, Brahmbhatt N, Kruser TJ, et al. Pleomorphic xanthoastrocytoma: a brief review. CNS Oncol. 2019;8(3):CNS39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Dias-Santagata D, Lam Q, Vernovsky K, et al. BRAF V600E mutations are common in pleomorphic xanthoastrocytoma: diagnostic and therapeutic implications. PLoS One. 2011;6(3):e17948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Lou L, Li J, Qin M, Tian X, Guo W, Li Y. Correlation of MTAP immunohistochemical deficiency with CDKN2A homozygous deletion and clinicopathological features in pleomorphic xanthoastrocytoma. Brain Tumor Pathol. 2023;40(1):15–25.

    Article  CAS  PubMed  Google Scholar 

  177. Perkins SM, Mitra N, Fei W, Shinohara ET. Patterns of care and outcomes of patients with pleomorphic xanthoastrocytoma: a SEER analysis. J Neurooncol. 2012;110(1):99–104.

    Article  PubMed  Google Scholar 

  178. Koga T, Morita A, Maruyama K, et al. Long-term control of disseminated pleomorphic xanthoastrocytoma with anaplastic features by means of stereotactic irradiation. Neuro Oncol. 2009;11(4):446–51.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Thomas AA, Tucker SM, Nelson CJ, Nickerson JP, Durham SR, Homans AC. Anaplastic pleomorphic xanthoastrocytoma with leptomeningeal dissemination responsive to BRAF inhibition and bevacizumab. Pediatr Blood Cancer. 2019;66(1):e27465.

    Article  PubMed  Google Scholar 

  180. Migliorini D, Aguiar D, Vargas MI, Lobrinus A, Dietrich PY. BRAF/MEK double blockade in refractory anaplastic pleomorphic xanthoastrocytoma. Neurology. 2017;88(13):1291–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Lee EQ, Ruland S, LeBoeuf NR, Wen PY, Santagata S. Successful treatment of a progressive BRAF V600E-mutated anaplastic pleomorphic xanthoastrocytoma with vemurafenib monotherapy. J Clin Oncol. 2016;34(10):e87–9.

    Article  CAS  PubMed  Google Scholar 

  182. Rodrigues A, Bhambhvani H, Medress ZA, Malhotra S, Hayden-Gephart M. Differences in treatment patterns and overall survival between grade II and anaplastic pleomorphic xanthoastrocytomas. J Neurooncol. 2021;153(2):321–30.

    Article  PubMed  Google Scholar 

  183. Huang J, Dibble CC, Matsuzaki M, Manning BD. The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol. 2008;28(12):4104–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Gao C, Zabielska B, Jiao F, et al. Subependymal giant cell astrocytomas in tuberous sclerosis complex-current views on their pathogenesis and management. J Clin Med. 2023;12(3):956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Jansen AC, Belousova E, Benedik MP, et al. Newly diagnosed and growing subependymal giant cell astrocytoma in adults with tuberous sclerosis complex: results from the international TOSCA study. Front Neurol. 2019;10:821.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Roth J, Roach ES, Bartels U, et al. Subependymal giant cell astrocytoma: diagnosis, screening, and treatment. Recommendations from the International Tuberous Sclerosis Complex Consensus Conference 2012. Pediatr Neurol. 2013;49(6):439–44.

    Article  PubMed  Google Scholar 

  187. Siedlecka M, Szlufik S, Grajkowska W, Roszkowski M, Jóźwiak J. Erk activation as a possible mechanism of transformation of subependymal nodule into subependymal giant cell astrocytoma. Folia Neuropathol. 2015;53(1):8–14.

    Article  CAS  PubMed  Google Scholar 

  188. Franz DN, Bissler JJ, McCormack FX. Tuberous sclerosis complex: neurological, renal and pulmonary manifestations. Neuropediatrics. 2010;41(5):199–208.

    Article  CAS  PubMed  Google Scholar 

  189. Kingswood C, Bolton P, Crawford P, et al. The clinical profile of tuberous sclerosis complex (TSC) in the United Kingdom: a retrospective cohort study in the Clinical Practice Research Datalink (CPRD). Eur J Paediatr Neurol. 2016;20(2):296–308.

    Article  PubMed  Google Scholar 

  190. Jansen AC, Belousova E, Benedik MP, et al. Clinical characteristics of subependymal giant cell astrocytoma in tuberous sclerosis complex. Front Neurol. 2019;10:705.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Karagianni A, Karydakis P, Giakoumettis D, Nikas I, Sfakianos G, Themistocleous M. Fetal subependymal giant cell astrocytoma: a case report and review of the literature. Surg Neurol Int. 2020;11:26.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Zaher Addeen S, Bou Yehia L, Aburas L, Safadi MF. Late manifestation of subependymal giant cell astrocytoma with hydrocephalus in an adult patient with tuberous sclerosis complex. Cureus. 2022;14(8):e28435.

    PubMed  PubMed Central  Google Scholar 

  193. Amin S, Carter M, Edwards RJ, et al. The outcome of surgical management of subependymal giant cell astrocytoma in tuberous sclerosis complex. Eur J Paediatr Neurol. 2013;17(1):36–44.

    Article  PubMed  Google Scholar 

  194. Kotulska K, Borkowska J, Roszkowski M, et al. Surgical treatment of subependymal giant cell astrocytoma in tuberous sclerosis complex patients. Pediatr Neurol. 2014;50(4):307–12.

    Article  PubMed  Google Scholar 

  195. Sun P, Kohrman M, Liu J, Guo A, Rogerio J, Krueger D. Outcomes of resecting subependymal giant cell astrocytoma (SEGA) among patients with SEGA-related tuberous sclerosis complex: a national claims database analysis. Curr Med Res Opin. 2012;28(4):657–63.

    Article  PubMed  Google Scholar 

  196. Tsai JD, Wei CC, Tsao TF, et al. Association between the growth rate of subependymal giant cell astrocytoma and age in patients with tuberous sclerosis complex. Childs Nerv Syst. 2016;32(1):89–95.

    Article  PubMed  Google Scholar 

  197. Northrup H, Aronow ME, Bebin EM, et al. Updated international tuberous sclerosis complex diagnostic criteria and surveillance and management recommendations. Pediatr Neurol. 2021;123:50–66.

    Article  PubMed  Google Scholar 

  198. Danassegarane G, Tinois J, Sahler Y, Aouaissia S, Riffaud L. Subependymal giant-cell astrocytoma: a surgical review in the modern era of mTOR inhibitors. Neurochirurgie. 2022;68(6):627–36.

    Article  CAS  PubMed  Google Scholar 

  199. Frassanito P, Noya C, Tamburrini G. Current trends in the management of subependymal giant cell astrocytomas in tuberous sclerosis. Childs Nerv Syst. 2020;36(10):2527–36.

    Article  PubMed  Google Scholar 

  200. Matsumura H, Takimoto H, Shimada N, Hirata M, Ohnishi T, Hayakawa T. Glioblastoma following radiotherapy in a patient with tuberous sclerosis. Neurol Med Chir (Tokyo). 1998;38(5):287–91.

    Article  CAS  PubMed  Google Scholar 

  201. Franz DN, Belousova E, Sparagana S, et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2013;381(9861):125–32.

    Article  CAS  PubMed  Google Scholar 

  202. Franz DN, Belousova E, Sparagana S, et al. Long-term use of everolimus in patients with tuberous sclerosis complex: final results from the EXIST-1 study. PLoS One. 2016;11(6):e0158476.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Jiang T, Du J, Raynald, Wang J, Li C. Presurgical administration of mTOR inhibitors in patients with large subependymal giant cell astrocytoma associated with tuberous sclerosis complex. World Neurosurg. 2017;107:1053.e1051–6.

    Article  Google Scholar 

  204. Franz DN, Agricola KD, Tudor CA, Krueger DA. Everolimus for tumor recurrence after surgical resection for subependymal giant cell astrocytoma associated with tuberous sclerosis complex. J Child Neurol. 2013;28(5):602–7.

    Article  PubMed  Google Scholar 

  205. Trelinska J, Dachowska I, Kotulska K, et al. Factors affecting response to everolimus therapy for subependymal giant cell astrocytomas associated with tuberous sclerosis. Pediatr Blood Cancer. 2015;62(4):616–21.

    Article  CAS  PubMed  Google Scholar 

  206. Antonelli M, Poliani PL. Adult type diffuse gliomas in the new 2021 WHO classification. Pathologica. 2022;114(6):397–409.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Cahill DP, Louis DN, Cairncross JG. Molecular background of oligodendroglioma: 1p/19q, IDH, TERT, CIC and FUBP1. CNS Oncol. 2015;4(5):287–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Khuong-Quang DA, Buczkowicz P, Rakopoulos P, et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol. 2012;124(3):439–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Chumas .

Editor information

Editors and Affiliations

Ethics declarations

Funding

No funding was received to assist with the preparation of this manuscript.

Conflicts of Interest/Competing Interests

The authors have no relevant financial or nonfinancial interests to disclose.

Availability of Data and Material

All data generated or analyzed during this study are included in this published article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dias, S.F., Richards, O., Elliot, M., Chumas, P. (2024). Pediatric-Like Brain Tumors in Adults. In: Di Rocco, C. (eds) Advances and Technical Standards in Neurosurgery. Advances and Technical Standards in Neurosurgery, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-031-53578-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53578-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53577-2

  • Online ISBN: 978-3-031-53578-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics