Skip to main content

A Deep Learning Based Approach to Semantic Segmentation of Lung Tumour Areas in Gross Pathology Images

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2023)

Abstract

Gross pathology photography of surgically resected specimens is an often overlooked modality for the study of medical images that can provide and document useful information about a tumour before it is distorted by slicing. A method for the automatic segmentation of tumour areas in this modality could provide a useful tool for both pathologists and researchers. We propose the first deep learning based methodology for the automatic segmentation of tumour areas in gross pathological images of lung cancer specimens. The semantic segmentation models applied are Deeplabv3+ with both a MobileNet and Resnet50 backbone as well as UNet, all models were trained and tested with both a DICE and cross entropy loss function. Also included is a pre and post-processing pipeline for the input images and output segmentations respectively. The final model is formed of an ensemble of all the trained networks which produced a tumour pixel-wise accuracy of 69.7% (96.8% global accuracy) and tumour area IoU score of 0.616. This work on this novel application highlights the challenges with implementing a semantic segmentation model in this domain that have not been previously documented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arthur, D., Vassilvitskii, S.: k-Means++: The Advantages of Careful Seeding. Technical Report, Stanford (2006)

    MATH  Google Scholar 

  2. Baltussen, E.J., et al.: Hyperspectral imaging for tissue classification, a way toward smart laparoscopic colorectal surgery. J. Biomed. Opt. 24(1), 016002 (2019)

    Article  Google Scholar 

  3. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  4. Codella, N., et al.: Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1902.03368 (2019)

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  6. Ha, Q., Liu, B., Liu, F.: Identifying melanoma images using efficientnet ensemble: winning solution to the SIIM-ISIC melanoma classification challenge. arXiv preprint arXiv:2010.05351 (2020)

  7. Hasan, M.K., Ahamad, M.A., Yap, C.H., Yang, G.: A survey, review, and future trends of skin lesion segmentation and classification. Comput. Biol. Med. 155, 106624 (2023)

    Article  Google Scholar 

  8. Hashemi, S.R., Salehi, S.S.M., Erdogmus, D., Prabhu, S.P., Warfield, S.K., Gholipour, A.: Asymmetric loss functions and deep densely-connected networks for highly-imbalanced medical image segmentation: application to multiple sclerosis lesion detection. IEEE Access 7, 1721–1735 (2018)

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Hipp, J.D., Cheng, J.Y., Toner, M., Tompkins, R.G., Balis, U.J.: Spatially invariant vector quantization: a pattern matching algorithm for multiple classes of image subject matter including pathology. J. Pathol. Inform. 2(1), 13 (2011)

    Article  Google Scholar 

  11. Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  12. Meyer, C., Ma, B., Kunju, L.P., Davenport, M., Piert, M.: Challenges in accurate registration of 3-d medical imaging and histopathology in primary prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 40, 72–78 (2013)

    Article  Google Scholar 

  13. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  14. Okada, M., et al.: Effect of tumor size on prognosis in patients with non-small cell lung cancer: the role of segmentectomy as a type of lesser resection. J. Thorac. Cardiovasc. Surg. 129(1), 87–93 (2005)

    Google Scholar 

  15. Okasha, O., Kazmirczak, F., Chen, K.H.A., Farzaneh-Far, A., Shenoy, C.: Myocardial involvement in patients with histologically diagnosed cardiac sarcoidosis: a systematic review and meta-analysis of gross pathological images from autopsy or cardiac transplantation cases. J. Am. Heart Assoc. 8(10), e011253 (2019)

    Article  Google Scholar 

  16. Park, H., et al.: Registration methodology for histological sections and in vivo imaging of human prostate. Acad. Radiol. 15(8), 1027–1039 (2008)

    Google Scholar 

  17. Rampy, B.A., Glassy, E.F.: Pathology gross photography: the beginning of digital pathology. Surg. Pathol. Clin. 8(2), 195–211 (2015)

    Article  Google Scholar 

  18. Reines March, G.: Registration of Pre-operative Lung Cancer PET/CT Scans with Post-operative Histopathology Images. Ph.D. thesis, University of Strathclyde (2020)

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  20. Rubinstein, R.: The cross-entropy method for combinatorial and continuous optimization. Methodol. Comput. Appl. Probab. 1, 127–190 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Samani, A., Zubovits, J., Plewes, D.: Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys. Med. Biol. 52(6), 1565 (2007)

    Article  Google Scholar 

  22. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018). https://doi.org/10.1109/CVPR.2018.00474

  23. Schauerte, B., Stiefelhagen, R.: Quaternion-based spectral saliency detection for eye fixation prediction. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 116–129. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_9

  24. Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH image to Imagej: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012)

    Article  Google Scholar 

  25. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

  26. Travis, W.D., et al.: The IASLC lung cancer staging project: proposals for coding T categories for subsolid nodules and assessment of tumor size in part-solid tumors in the forthcoming eighth edition of the TNM classification of lung cancer. J. Thorac. Oncol. 11(8), 1204–1223 (2016)

    Google Scholar 

  27. Travis, W.D., et al.: IASLC multidisciplinary recommendations for pathologic assessment of lung cancer resection specimens after neoadjuvant therapy. J. Thorac. Oncol. 15(5), 709–740 (2020)

    Google Scholar 

  28. Tschandl, P., Rosendahl, C., Kittler, H.: The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific data 5(1), 1–9 (2018)

    Article  Google Scholar 

  29. Wu, P.H., Bedoya, M., White, J., Brace, C.L.: Feature-based automated segmentation of ablation zones by fuzzy c-mean clustering during low-dose computed tomography. Med. Phys. 48(2), 703–714 (2021)

    Article  Google Scholar 

  30. Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015)

    Google Scholar 

  31. Yuan, Y., Chao, M., Lo, Y.C.: Automatic skin lesion segmentation using deep fully convolutional networks with IACCARD distance. IEEE Trans. Med. Imaging 36(9), 1876–1886 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Beatson Cancer Charity and UKRI EPSRC for funding this work as well as the CDT in Applied Photonics for facilitating this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Gil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gil, M., Dick, C., Harrow, S., Murray, P., March, G.R., Marshall, S. (2024). A Deep Learning Based Approach to Semantic Segmentation of Lung Tumour Areas in Gross Pathology Images. In: Waiter, G., Lambrou, T., Leontidis, G., Oren, N., Morris, T., Gordon, S. (eds) Medical Image Understanding and Analysis. MIUA 2023. Lecture Notes in Computer Science, vol 14122. Springer, Cham. https://doi.org/10.1007/978-3-031-48593-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48593-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48592-3

  • Online ISBN: 978-3-031-48593-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics